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Abstract

We study the assignment model where a collection of indivisible goods are sold to

a set of buyers who want to buy at most one good. We characterize the extreme and

interior points of the Walrasian equilibrium price space of this model. Our characteri-

zations are in terms of demand sets of buyers. As a corollary to these characterizations,

we characterize the minimum and the maximum Walrasian equilibrium price vectors.

We also give necessary and sufficient conditions under which the interior of the Wal-

rasian equilibrium price vector space is non-empty. Some of our results are derived

by interpreting the Walrasian equilibrium price vectors as potential functions of an

appropriate directed graph.
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1 Introduction

The classical Arrow-Debreu model (Arrow and Debreu, 1954) for studying competitive equi-

librium assumes goods to be divisible (commodities). But economies with indivisible goods

are common in many types of markets such as housing markets, job markets, and auctions

with goods like spectrum licenses. This paper investigates economies with indivisible goods

under the assumption that buyers have unit demand, i.e., every buyer can buy at most one

good, and quasi-linear utility functions. The unit demand assumption is common, for exam-

ple, in settings of housing and job markets. Even though buyers can buy at most one good,

they have valuations (possibly zero) for every good.

In this model, the existence of a Walrasian equilibrium is guaranteed, and the set of

Walrasian equilibrium price vectors form a complete lattice (Shapley and Shubik, 1972). In

this paper, we are concerned with a verification problem. Suppose the seller announces a

price vector, and every buyer submits his demand set, the set of all goods that give him the

maximum payoff at the announced price vector. Then, we are concerned with the following

verification questions given that the only information available is the demand set information

of buyers:

1. How can one verify if the announced price vector is a Walrasian equilibrium price

vector?

2. How can one verify if the announced price vector is an extreme point or an interior

point in the set of Walrasian equilibrium price vectors?

3. How can one verify if the announced price vector is the minimum or the maximum

Walrasian equilibrium price vector?1

To answer the first question, we show that a price vector is a Walrasian equilibrium price

vector if and only if no set of goods is overdemanded and no set of goods is underdemanded

at that price vector. Whether a set of goods is overdemanded or underdemanded can be

verified using demand set information of buyers only. This characterization of Walrasian

equilibrium price vector is pivotal in answering the other questions.

Concerning the second question, we show that every Walrasian equilibrium price vector

is a potential of an appropriate directed graph. These potentials form a lattice, and we

characterize the extreme points of this lattice in terms of shortest paths in the underlying

directed graph. This characterization along with the characterization of a Walrasian equilib-

rium price vector enables us to characterize the extreme points of the Walrasian equilibrium

price lattice. These characterizations also require verifications that can be done using de-

mand set information of buyers only. Our characterization shows that at the extreme points

1 Given the lattice structure of the Walrasian equilibrium price vector space, the minimum and the

maximum Walrasian price vectors are well defined.
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of the set of Walrasian equilibrium price vectors no subset of some weakly over-demanded

set of goods is weakly under-demanded and no subset of some weakly under-demanded set

of goods is weakly over-demanded. As a corollary to this characterization, we characterize

the minimum and the maximum Walrasian equilibrium price vector, and thus answer the

third question.

Finally, we show that a price vector is an interior point of the Walrasian equilibrium

price lattice if and only if the demand set of every buyer is a singleton and no two buyers

have the same good in their demand sets. So, by changing the valuations of a buyer by

sufficiently small amount, an interior Walrasian equilibrium price vector will continue to

remain a Walrasian equilibrium price vector. Thus, this characterization shows that the

interior points are robust to small changes in valuations of buyers. However, the interior of

the Walrasian equilibrium price lattice may be empty. We show that an interior Walrasian

equilibrium price vector exists if and only if there is a unique efficient allocation and the

number of buyers is more than the number of goods.

In summary, we characterize the entire Walrasian equilibrium price vector set using de-

mand set information of buyers. Further, we provide necessary and sufficient conditions for

the interior of the Walrasian equilibrium price vector space to be non-empty, i.e., Walrasian

equilibrium price vector space to be full-dimensional.

1.1 Significance of the Questions

The standard assumptions in general equilibrium models is that the prices are somehow

given, and demand of agents is matched with the available supply. Verifying whether such a

price is a Walrasian equilibrium, and if so, the nature of such a Walrasian equilibrium is not

well explored. It may be useful in many settings.

As noted earlier, there may be multiple Walrasian equilibrium price vectors, forming a

lattice, in our model. Consider a setting where the seller knows the valuations of the buyers

on goods, but no buyer knows the values of other buyers. Based on the valuation information,

the seller promises to sell the goods to the buyers in a Walrasian equilibrium. Further, the

seller may be specific, for various reasons, about the particular Walrasian equilibrium he

will use. For example, the minimum Walrasian equilibrium price vector corresponds to the

Vickrey-Clarke-Groves payments (Leonard, 1983) and has important incentive properties.

Similarly, any interior Walrasian equilibrium price vector is a robust Walrasian equilibrium

price vector. The question is how will the seller convince the buyers after selling the goods

that he sold the goods at the promised Walrasian equilibrium.

One possibility is that the seller reveals the valuations of all the buyers to everyone, and

let the buyers verify using this valuation information. In many practical settings, however,

this may not be possible since the buyers may not want to expose their exact valuations to
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fellow buyers.2 Another possibility is to reveal demand sets of buyers to everyone. Clearly,

one can now verify if the proposed allocation and price vector is a Walrasian equilibrium. We

show that one can also verify, given the price vector and demand set information, whether

the Walrasian equilibrium price vector is an interior point or an extreme point of the Wal-

rasian equilibrium price vector space. Further, one can also verify whether the Walrasian

equilibrium price vector is the minimum or the maximum Walrasian equilibrium price vector.

Thus, the buyers can verify, ex post, if the seller sold the goods using the promised Wal-

rasian equilibrium by revealing their demand set information, and without revealing their

exact valuation information to each other.

There are some drawbacks to this approach. One drawback is that the demand set

information can be inverted to get valuation information. But most of the times, there are

infinitely many valuations that correspond to a demand set. Further, Segal (2006) argues that

the demand set approach of verification leads to minimal communication overhead in a variety

of settings. While our approach runs the risk of revealing exact valuations in some instances

and partial valuation information in many instances, cryptographic techniques may allow

for such verification without revealing any information. But the success of cryptographic

techniques rely on the bounded rationality assumptions, and, importantly, it is not clear how

cryptographic techniques will work in our setting where the underlying optimization problem

is not straightforward.

1.2 Related Work

The literature in the assignment model is long - for a survey, see Roth and Sotomayor

(1990). The initial literature focuses on the structure of the set of Walrasian equilib-

ria (Shapley and Shubik, 1972), its strategic properties (Leonard, 1983; Demange and Gale,

1985), and the relation with the core of an appropriate cooperative game (Shapley and Shubik,

1972; Roth and Sotomayor, 1988; Balinski and Gale, 1990; Quint, 1991). The studies of the

core for our model is complementary to the study of Walrasian equilibria, since the core

and the set of Walrasian equilibria are equivalent (Shapley and Shubik, 1972). However, this

literature does not answer the verification question we address in this work.

There is also a literature that is concerned with the computation of Walrasian equilib-

rium prices using auction-like processes (Crawford and Knoer, 1981; Demange et al., 1986;

Sankaran, 1994; Sotomayor, 2002). The notion of overdemanded and underdemanded sets of

goods, which we use in our characterizations, has been used in this literature. Demange et al.

(1986) use the notion of overdemanded goods to design an ascending auction that terminates

at the minimum Walrasian equilibrium price vector. Analogously, Sotomayor (2002) uses

2This is specially true in procurement settings, where sellers (suppliers) may be reluctant to reveal their

costs to fellow suppliers.
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the notion of underdemanded goods to design a descending auction that terminates at the

maximum Walrasian equilibrium price vector. But both papers do not make any connection

between these notions. Gul and Stacchetti (2000) consider a model where they allow a buyer

to buy more than one good and having gross substitutes valuations. In such a model, a Wal-

rasian equilibrium price vector is guaranteed to exist (Kelso and Crawford, 1982), and the

set of Walrasian equilibrium price vectors form a complete lattice (Gul and Stacchetti, 1999).

For such a model, they provide a generalization of Hall’s theorem (Hall, 1935), which results

in a necessary condition for a Walrasian equilibrium. Therefore, they do not characterize

the set of Walrasian equilibrium price vectors.

Gretsky et al. (1999) consider our model with a continuum of agents. For this model, sev-

eral equivalent conditions are derived that are necessary and sufficient for perfect competition,

i.e., for a unique Walrasian equilibrium price vector to exist. Using our characterizations, we

also give necessary and sufficient conditions for perfect competition in our model with finite

number of buyers and goods.

2 The Model

There is a set of indivisible goods N = {0, 1, . . . , n} for sale to a set of buyers M = {1, . . . , m}.

Each buyer can be assigned to at most one good. The good 0 is a dummy good which can

be assigned to more than one buyer. Denote N0 = N \ {0} as the set of real goods. The

value of buyer i ∈ M on good j ∈ N is vij, assumed to be a non-negative real number. Every

buyer has zero value on the dummy good. A feasible allocation µ assigns every buyer

i ∈ M a good µi ∈ N such that no good in N0 is assigned to more than one buyer. Notice

that a feasible allocation assigns every buyer a good (may be the dummy good), but some

goods may not be assigned to any buyer. We say good j ∈ N is unassigned in µ if there

exists no buyer i ∈ M with µi = j. Let Γ be the set of all feasible allocations. An efficient

allocation is a feasible allocation µ∗ ∈ Γ satisfying
∑

i∈M viµ∗

i
≥

∑

i∈M viµi
for all µ ∈ Γ.

A price vector p ∈ Rn+1
+ assigns every good j ∈ N a nonnegative price pj with p0 = 0.

We assume quasi-linear utilities. Given a price vector p, the payoff of buyer i ∈ M on

good j ∈ N at price vector p is vij − pj. The demand set of buyer i at price vector p is

Di(p) = {j ∈ N : vij − pj ≥ vik − pk ∀ k ∈ N}.

Definition 1 A Walrasian equilibrium (WE) is a price vector p and a feasible allocation

µ such that

µi ∈ Di(p) for all i ∈ M (WE-1)

and

pj = 0 for all j ∈ N that are unassigned in µ. (WE-2)
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Figure 1: Lattice nature of WE prices

If (p, µ) is a WE, then p is a Walrasian equilibrium price vector and µ is a Walrasian

equilibrium allocation.

It is well known that a Walrasian equilibrium allocation is efficient and that the set of WE

price vectors, which is non-empty, form a complete lattice (Shapley and Shubik, 1972). This

implies the existence of a unique minimum WE price vector (pmin) and a unique maximum

WE price vector (pmax). Of all the WE price vectors, pmin stands out since it corresponds to

the Vickrey-Clarke-Groves (VCG) payments of buyers assigned to them in a WE (Leonard,

1983). The VCG payments are defined as the externality of a buyer on the remaining buyers

(Vickrey, 1961; Clarke, 1971; Groves, 1973), and the VCG mechanism is an efficient and

strategy-proof mechanism.

The lattice corresponding to the WE price vectors is of a special shape - known as

the “45 degree”-lattice (Quint, 1991). In case of three buyers and two goods with values

v11 = 5, v12 = 3, v21 = 3, v22 = 4, v31 = 2, v32 = 2, the lattice shape of the WE price vector

set is shown in Figure 1. Notice that the boundary of the lattice is defined by lines that

are either parallel or at 45 degrees to the axes. For any two price vector p and p′ of equal

dimension, we write p = p′ if pj = p′j for all j. If there exists a j at which pj 6= p′j, then we

write p 6= p′. If pj ≥ p′j for all j then we write p ≥ p′ or p′ ≤ p. If p ≥ p′ but p 6= p, then

we write p 
 p′ or p′ � p. If there exists some j for which pj < p′j, then we write p � p′ or

p′ � p.

6



2.1 Overdemand and Underdemand

We define demanders of a set of goods S ⊆ N0 at price vector p as U(S, p) = {i ∈ M :

Di(p) ∩ S 6= ∅}. We define the exclusive demanders of a set of goods S ⊆ N0 at price

vector p as O(S, p) = {i ∈ M : Di(p) ⊆ S}. Clearly, for every p and every S ⊆ N0, we have

O(S, p) ⊆ U(S, p). We denote the cardinality of a finite set S as #S. Given a price vector

p, define N+(p) = {j ∈ N : pj > 0}. By definition 0 /∈ N+(p) for any p.

Definition 2 A set of goods S is (weakly) overdemanded at price vector p if S ⊆ N0

and #O(S, p)(≥) > #S.

The notion of overdemanded sets of goods can be found in Demange et al. (1986) and

Sankaran (1994), who use it as a basis for the design of ascending auctions for our model.

For settings where a buyer can buy more than one good, the notion of overdemanded goods

has been generalized in Gul and Stacchetti (2000) and de Vries et al. (2007), who also use it

as a basis for the design of ascending auctions for general models.

Definition 3 A set of goods S is (weakly) underdemanded at price vector p if S ⊆

N+(p) and #U(S, p)(≤) < #S.

The notion of underdemanded sets of goods can be found in Sotomayor (2002), who uses it to

design descending auctions for our model.3 Both concepts give us an idea about the imbalance

of supply and demand in the economy, albeit differently. A measure of total demand on a

set of goods is obtained by counting the number of exclusive demanders of these goods in

the notion of sets of overdemanded goods and by counting the number of demanders of

these goods in the notion of sets of underdemanded goods. However, the dummy good is

never part of a set of overdemanded goods and zero priced goods, which always includes the

dummy good, are never part of sets of underdemanded goods. In some sense, the existence

of sets of overdemanded (underdemanded) goods at a price vector indicates that there is

excess demand (supply) in the economy. Since both overdemanded and underdemanded

sets of goods may exist at a given price vector, excess demand and excess supply can exist

simultaneously in the economy.

3 Walrasian Equilibrium Characterization

In this section, we give a characterization of the Walrasian price vectors. Our characterization

is based on the notions of sets of overdemanded and underdemanded goods. Define M+(p) =

3There is a slight difference between our definition of underdemanded goods and the definition in

Sotomayor (2002). Sotomayor (2002) assumes the existence of a dummy buyer who demands every good

with zero price and who can be allocated more than one good. Then, a set of goods S is underdemanded

in Sotomayor (2002) at a price vector p if every good in N is demanded by a buyer (possibly the dummy

buyer), S ⊆ N+(p) and #U(S, p) < #S.
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{i ∈ M : 0 /∈ Di(p)} for any price vector p. Notice that M+(p) = O(N0, p). Now, consider

the following lemmas.

Lemma 1 Suppose no set of goods is overdemanded. Then there exists a feasible allocation

in which every buyer is assigned a good from his demand set.

Proof : Since N0 is not overdemanded, #N0 ≥ #O(N0, p) = #M+(p). Consider S ⊆

M+(p). Let T = ∪i∈SDi(p). Since 0 /∈ T and T is not overdemanded, we get #T ≥

#O(T, p) ≥ #S. Using Hall’s theorem (Hall, 1935), there is a feasible allocation in which

every buyer i in M+(p) can be assigned a good in Di(p), and every buyer in M \M+(p) can

be assigned the dummy good 0, which is in his demand set. �

Lemma 2 Suppose no set of goods is underdemanded. Then there exists a feasible allocation

in which every good in N+(p) is assigned to a buyer who is a demander of that good.

Proof : Since N+(p) is not underdemanded, #N+(p) ≤ #U(N+(p), p) ≤ #M . Consider

T ⊆ N+(p). Let S = U(T, p). Since T is not underdemanded, #T ≤ #U(T, p) = #S. Using

Hall’s theorem (Hall, 1935), there is a feasible allocation in which every good in N+(p) can

be assigned to a buyer who is a demander of that good, and the remaining buyers can be

assigned the dummy good. �

The absence of only overdemanded or only underdemanded sets of goods cannot guarantee

a WE price vector. For instance, consider an example with a single good and three buyers

with values 10, 6, and 3. A WE price is any price between 6 and 10. At any price higher than

10, the good is not overdemanded but it is not a WE price. Similarly, at any price between 3

and 6, the good is not underdemanded but it is not a WE price. In some sense, Lemma 1 says

that condition (WE-1) in Definition 1 is satisfied in the absence of overdemanded goods,

but condition (WE-2) may be violated. Similarly, Lemma 2 says that condition (WE-2) in

Definition 1 is satisfied in the absence of underdemanded goods, but condition (WE-1) may

be violated. However, the WE prices can be precisely characterized by the absence of both

overdemanded and underdemanded sets of goods.

Theorem 1 A price vector p is a WE price vector if and only if no set of goods is overde-

manded and no set of goods is underdemanded at p.

Proof : Suppose p is a WE price vector. By condition (WE-2), there exists a feasible

allocation in which every good in N+(p) can be assigned to a unique demander of that good.

Hence no set of goods is underdemanded. If some set of goods, say, S ⊆ N0, is overdemanded,

then condition (WE-1) will fail for some buyer in O(S, p) in every feasible allocation, which

is impossible since p is a WE price vector. Hence, no set of goods can be overdemanded.
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Suppose now that no set of goods is overdemanded and no set of goods is underdemanded

at price vector p. By Lemma 1 there is a non-empty set of feasible allocations Γ∗ that

allocates every buyer a good from his demand set. Choose an allocation µ ∈ Γ∗ for which

the number of goods from N+(p) that is allocated in µ is maximal over all the allocations in

Γ∗. Let us call such an allocation a maximal allocation in Γ∗. Let T 0 = {j ∈ N+(p) : µi 6=

j ∀ i ∈ M}. If T 0 = ∅, then by definition (p, µ) is a WE. We will show that T 0 is empty.

Assume for contradiction that T 0 is not empty.

We first show that for every buyer i ∈ M , if µi /∈ N+(p) then T 0∩Di(p) = ∅. Assume for

contradiction that for some i ∈ M with µi /∈ N+(p) there exists j ∈ T 0∩Di(p). In that case,

we can construct a new allocation µ′ in which µ′
i = j and µ′

k = µk for all k 6= i. Allocation

µ′ is in Γ∗ and assigns one good more from N+(p) than µ does. This is a contradiction since

µ is a maximal allocation in Γ∗. As a result of this, the demanders of T 0 are assigned to

goods in N+(p) \ T 0. Let X0 = U(T 0, p). So, X0 ⊆ {i ∈ M : µi ∈ N+(p) \ T 0}. Now, for

any k ≥ 0, consider a sequence (T 0, X0, T 1, X1, . . . , T k, Xk), where for every 1 ≤ q ≤ k, T q

is the set of goods assigned to buyers in Xq−1 in µ and Xq = U(∪q
r=0T

r, p) \ U(∪q−1
r=0T

r, p).

Note that by definition T q ∩ T r = ∅ for every q 6= r.

We show that if T q 6= ∅ and T q ⊆ N+(p) for all 0 ≤ q ≤ k, then there exists T k+1 6= ∅

such that T k+1 ⊆ N+(p) and T k+1∩T q = ∅ for all 0 ≤ q ≤ k. By definition of Xq, 0 ≤ q ≤ k,

and T q, 1 ≤ q ≤ k,

#U(∪k
q=0T

q, p) = #U(∪k−1
q=0T

q, p) + #Xk

=
k

∑

q=0

#Xq

=

k
∑

q=1

#T q + #Xk. (1)

Since T 0, . . . , T k are disjoint and ∪k
q=0T

q ⊆ N+(p) is not underdemanded, we have

#U(∪k
q=0T

q, p) ≥
k

∑

q=0

#T q. (2)

Using (1) and (2), we get #Xk ≥ #T 0. Since T 0 is non-empty, Xk is non-empty. Define

T k+1 as the set of goods assigned to buyers in Xk in µ. Clearly, T k+1 is non-empty and

T k+1 ∩ T q = ∅ for every 0 ≤ q ≤ k. To show that T k+1 ⊆ N+(p), assume for contradiction

that there exists a buyer ik ∈ Xk such that µik /∈ N+(p). By definition of Xk, ik should

demand some good jk ∈ T k. Now consider the sequence (ik, jk, ik−1, jk−1, . . . , i0, j0), where

for every 0 ≤ q ≤ k − 1, iq−1 is the buyer assigned to good jq in µ (note that iq−1 ∈ Xq−1

by definition) and jq−1 is a good demanded by iq−1 from T q−1 (such a good exists by the

definition of Xq−1 and T q−1). Now, construct an allocation µ′ with µ′
iq

= jq for all 0 ≤ q ≤ k

9



and µ′
i = µi for any i /∈ {i0, . . . , ik}. Clearly, µ′ ∈ Γ∗. By assigning ik to jk, µ′ assigns one

good more from N+(p) than µ does, contradicting the fact that µ is a maximal allocation in

Γ∗. Hence T k+1 ⊆ N+(p). This process can be repeated infinitely many times starting from

T 0. So (T 0, T 1, . . .) is an infinite sequence such that T q ∩ T r = ∅ for every q 6= r, T q 6= ∅ for

all q, and T q ⊆ N+(p) for all q. This is a contradiction since N+(p) is finite. So, T 0 = ∅,

and therefore (p, µ) is a WE. �

The characterization in Theorem 1 shows that given a price vector and the demand sets

of buyers, it is possible to check if the given price vector is a WE price vector by checking

for the existence of overdemanded and underdemanded sets of goods. In some sense this is

a generalization of Hall’s theorem (Hall, 1935) for our model.

In contrast to Definition 1, the characterization in Theorem 1 does not require to compute

a feasible allocation to check if a price vector is a WE price vector. Theorem 1 uses only

demand set information of buyers to characterize the WE price vectors.

Notice that absence of overdemanded goods requires that there is no excess demand in

a weak sense, since we only count the exclusive demanders in checking for overdemanded

goods. Similarly, absence of underdemanded goods requires that there is no excess supply

in a weak sense, since zero priced goods are not counted while checking for underdemanded

goods. Theorem 1 assures the existence of a Walrasian equilibrium at a price vector if there

is neither excess demand nor excess supply. This provides a direct economic interpretation

of our result.

4 Potentials of Graphs and Walrasian Equilibrium Prices

In this section, we interpret Walrasian equilibrium prices as potential functions of an appro-

priate directed graph. Such an interpretation helps us prove several new results, and gives

a graph theoretic interpretation to several known results. We begin by defining and proving

some concepts related to graph theory.

4.1 Potentials of Strongly Connected Graphs

A graph is defined by a triple G = (N, E, l), where N = {0, 1, . . . , n} is the set of n + 1

nodes, E ⊆ {(i, j) : i, j ∈ N} is a set of ordered pairs of different nodes, called edges, and l

is a vector of weights on the edges in E with lij ∈ R denoting the length of edge (i, j) ∈ E.

As before denote N0 = N \ {0}. A graph is complete if there is an edge between every pair

of different nodes.

A path is a sequence of distinct nodes (i1, . . . , ik) such that (ij, ij+1) ∈ E for all 1 ≤

j ≤ k − 1. If (i1, . . . , ik) is a path, then we say that it is a path from i1 to ik. A graph is

strongly connected if there is a path from every node in N to any other node in N .
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A cycle is a sequence of nodes (i1, . . . , ik, ik+1) such that (i1, . . . , ik) is a path, (ik, ik+1) ∈

E, and i1 = ik+1. The length of a path or a cycle P = (i1, . . . , ik, ik+1) is the sum of the edge

lengths in the path or cycle, and is denoted as l(P ), i.e., l(P ) = li1i2 + . . . + likik+1 . When

there is at least one path from node i to node j, then a shortest path from node i to node

j is a path from i to j having minimum length over all paths from i to j. We denote the

length of a shortest path from i to j as s(i, j). For convenience we define s(i, i) = 0 for all

i ∈ N .

Definition 4 A potential of a graph G = (N, E, l) is a function p : N → R such that

p(j)−p(i) ≤ lij for all (i, j) ∈ E. For any j ∈ N , a j−potential of a graph G is a potential

p of graph G such that p(j) = 0.

Lemma 3 ((Gallai, 1958)) There exists a potential of graph G if and only if G has no

cycles of negative length.

Lemma 4 The set of potentials of a graph form a lattice.

Proof : Let p1 and p2 be two potentials of a graph G. Define p3 = (p1∨p2) and p4 = (p1∧p2).

Now, consider p3 and any (i, j) ∈ E. Without loss of generality suppose that p3(j) = p1(j),

then p3(j) − p3(i) = p1(j) − p3(i) ≤ p1(j) − p1(i) ≤ lij. This proves that p3 is a potential of

graph G. Similarly it can be shown that p4 is a potential of graph G. �

In case the graph is strongly connected, the lengths of the shortest paths from and to

node 0 determine the components of the maximum and minimum 0-potential of the complete

lattice set of 0-potentials, respectively.

Lemma 5 ((Duffin, 1962)) Suppose G is a strongly connected graph with no cycle of neg-

ative length. Then the set of 0−potentials of G form a complete lattice. The maximum

0−potential of G is given by pmax(j) = s(0, j) for all j ∈ N and the minimum 0−potential

of G is given by pmin(j) = −s(j, 0) for all j ∈ N .

Proof : First we show that pmax(·) and pmin(·) are 0−potentials. Consider any edge (i, j) ∈

E, and the shortest path from 0 to j and from 0 to i. If the shortest path from 0 to i does not

include node j, then s(0, j) ≤ s(0, i) + lij and therefore s(0, j) − s(0, i) ≤ lij. If the shortest

path from 0 to i includes node j, then s(0, j) ≤ s(0, j) + s(j, i) + lij = s(0, i) + lij, where

the inequality comes from the assumption that G has no negative cycle and the equality

comes from the fact that the shortest path from 0 to i includes node j. Hence, pmax(·) is a

0−potential. A similar argument shows that pmin(·) is a 0−potential.

Let p be any 0−potential of G - such a 0−potential exists since G has no cycle of negative

length. Consider the shortest path from 0 to j, and let it be (0, i1, . . . , ik, j). We can write

11



the following set of inequalities for every edge in this path:

p(i1) − p(0) ≤ l0i1

p(i2) − p(i1) ≤ li1i2

. . . ≤ . . .

p(j) − p(ik) ≤ likj.

Adding up all inequalities we get p(j)− p(0) ≤ s(0, j). Since p(0) = 0, we get p(j) ≤ s(0, j).

A similar argument by using the shortest path from j to 0 shows that p(j) ≥ −s(j, 0). This

shows that pmax(·) is the maximum 0−potential and pmin is the minimum 0−potential. By

Lemma 4, the set of 0−potentials form a complete lattice. �

We denote the set of 0−potentials of a graph G as P0(G). Notice that P0(G) is a polytope,

defined by the linear inequalities of the potentials and the equality that the potential of node

0 is equal to zero. Next, we characterize the extreme points of this polytope. For j ∈ N ,

define the potentials pj and pj as

pj(i) = s(0, j) − s(i, j) ∀ i ∈ N

pj(i) = s(j, i) − s(j, 0) ∀ i ∈ N.

Notice that p0 = pmin and p0 = pmax. Also, pj(j) = pmax(j) and pj(j) = pmin(j) for any

j ∈ N .

Lemma 6 Suppose G is a strongly connected graph with no cycles of negative length. Then,

for every j ∈ N , pj and pj are 0−potentials of graph G.

Proof : Using a proof similar to Lemma 5, one can show that for any j ∈ N , the vector p

with p(i) = −s(i, j) for all i ∈ N is a j−potential of graph G. Hence, p is a potential of

graph G. Clearly, by adding any α ∈ R to p(i) for all i ∈ N , we will get another potential

of graph G. So, by adding s(0, j) to p(i) for all i ∈ N , we get potential pj of graph G. Since

pj(0) = 0, pj is a 0−potential of graph G. A similar proof shows that pj is a 0−potential of

graph G. �

For ∅ 6= S ⊆ N0, define the potential pS as pS(i) := maxj∈S pj(i) for all i ∈ N and the

potential pS as pS(i) := minj∈S pj(i) for all i ∈ N . By definition of pj(·) and pj(·), and using

the fact that pi(i) = pmax(i) and pi(i) = pmin(i), we can rewrite pS(·) and pS(·) for every

∅ 6= S ⊆ N0 as

pS(i) =

{

s(0, i) = pmax(i) if i ∈ S

maxj∈S

[

s(0, j) − s(i, j)
]

otherwise

and

pS(i) =

{

−s(i, 0) = pmin(i) if i ∈ S

minj∈S

[

s(j, i) − s(j, 0)
]

otherwise.
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Next, we show that these potentials are precisely the extreme points of the lattice defined

by all potential functions. Define Pe(G) := {pS : ∅ 6= S ⊆ N0} ∪ {pS : ∅ 6= S ⊆ N0}. The

next theorem says that for every S, ∅ 6= S ⊆ N0, both vectors pS and pS are extreme points

of the lattice set P0(G) and, conversely, that every extreme point of the lattice set P0(G) is

equal to pS or pS for some S, ∅ 6= S ⊆ N0.

Theorem 2 Suppose G is a strongly connected graph with no cycles of negative length. Then

Pe(G) is the set of extreme points of the polytope P0(G).

Proof : Consider any ∅ 6= S ⊆ N0. Due to the lattice structure of the set P0(G) ( Lemma 4),

both vectors pS and pS are 0−potentials of graph G.

Now, consider the linear programming problem

min θ−
∑

i∈S

p(i) −
∑

i∈N0\S

p(i)

s.t. (P1)

p ∈ P0(G),

for some θ− > 0. By Lemma 5, for every p ∈ P0(G) it holds that p(i) ≥ pmin(i) = −s(i, 0) ≥

0 for all i ∈ N . Hence, for large enough θ−, at any optimal solution of (P1) we have

p(i) = −s(i, 0) for all i ∈ S. For i ∈ N0 \ S, take any j ∈ S. Let a shortest path from j to i

in G be (j, j1, . . . , jk, i). We can write for any p ∈ P0(G),

p(i) − p(j) ≤ ljj1 + lj1j2 + . . . + ljki = s(j, i)

and so, for large enough θ−, at an optimal solution it holds that

p(i) ≤ s(j, i) − s(j, 0).

Since this holds for all j ∈ S, we obtain that at the optimal solution it holds that for every

i ∈ N0 \ S that

p(i) ≤ min
j∈S

[

s(j, i) − s(j, 0)
]

, (3)

when θ− is large enough. Hence, the maximum value of p(i) for all i ∈ N0\S is minj∈S

[

s(j, i)−

s(j, 0)
]

. Thus, pS ∈ P0(G) is the unique optimal solution to (P1) for large θ−. Hence, pS is

an extreme point of P0(G).

Now, consider the linear programming problem

max
∑

i∈S

θ+p(i) −
∑

i∈N0\S

p(i)

s.t. (P2)

p ∈ P0(G),
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for some θ+ > 0. By Lemma 5, for every p ∈ P0(G) we have p(i) ≤ pmax(i) = s(0, i) for

all i ∈ N . Hence, for sufficiently large θ+, at the optimal solution of (P2) it holds that

p(i) = s(0, i) for all i ∈ S. For i ∈ N0 \ S, consider any j ∈ S. We can write for any

p ∈ P0(G),

p(j) − p(i) ≤ s(i, j)

and so, for large enough θ+, at an optimal solution it holds that

p(i) ≥ s(0, j) − s(i, j).

Therefore, for all i ∈ N0 \ S,

p(i) ≥ max
j∈S

[

s(0, j) − s(i, j)
]

. (4)

Hence, for large enough θ+, the minimum value of p(i) for all i /∈ S is maxj∈S

[

s(0, j)−s(i, j)
]

.

Thus, pS ∈ P0(G) is the unique optimal solution to (P2) for sufficiently large θ+. Hence, it

is an extreme point of P0(G).

It remains to be proved that the elements of Pe(G) are the only extreme points of P0(G).

Assume for contradiction that there exists an extreme point p /∈ Pe(G). Let X := {j ∈

N0 : p(j) = pmax(j) or p(j) = pmin(j)}. We argue that X 6= ∅. Assume for contradiction

X = ∅. Then, none of the constraints in P0(G) involving p(0) can be tight. This is because

p(j)− p(0) = l0j implies p(j) = pmax(j) and p(0)− p(j) = lj0 implies p(j) = pmin(j). Hence,

there exists p′, p′′ ∈ P0(G) such that p′(j) = p(j) + ε and p′′(j) = p(j) − ε for all j 6= 0 for

sufficiently small ε > 0. Hence, p(j) = p′(j)+p′′(j)
2

for all j ∈ N , contradicting the fact that p

is an extreme point. So, X 6= ∅.

Define S := {j ∈ X : p(j) = pmax(j)}. Suppose S is non-empty. Then for all i ∈ N0 \ S,

we have p(i) < pmax(i). By our argument earlier, p(i) ≥ maxj∈S

[

s(0, j) − s(i, j)
]

for all

i ∈ N0 \ S. Let T = {i ∈ N0 \ S : p(i) > maxj∈S

[

s(0, j) − s(i, j)
]

}. Since p /∈ Pe(G),

T is non-empty. Also, by definition of T , p(i) < pmax(i) for all i ∈ T . Hence, for any

i ∈ T and any j /∈ T , the two constraints between i and j in P0(G) are not tight. Hence,

we can construct two 0−potentials p′ and p′′ as follows: p′(i) = p′′(i) = p(i) if i /∈ T and

p′(i) = p(i) + ε and p′′(i) = p(i) − ε for all i ∈ T for sufficiently small ε > 0. Clearly,

p(i) = p′(i)+p′′(i)
2

for all i ∈ N , contradicting the fact that p is an extreme point. A similar

argument works if X \ S is non-empty. Hence, every extreme point of P0(G) is in Pe(G). �

From the proof of Theorem 2, the potentials that define the extreme points of the lattice

can be interpreted as follows. For the potential pS, the potential of nodes in S is fixed at

pmax(·), whereas the potential of nodes in N \S is at the minimum possible value given that

the nodes in S has maximum potential. Similarly, for pS , the potential of nodes in S is fixed

at pmin(·), whereas the potential of nodes in N \ S is at the maximum possible value given

that the nodes in S has minimum potential.
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Goods

Buyers 0 1 2 3

1 0 3 4 5

2 0 7 3 6

3 0 7 6 4

4 0 4 2 1

5 0 3 4 2

Table 1: The values of the buyers

4.2 Potentials as Walrasian Equilibrium Prices

We now interpret the Walrasian equilibrium prices as potentials in an appropriate directed

graph. Corresponding to an efficient allocation µ we describe a graph Gµ. The graph Gµ,

called the allocation graph corresponding to µ, has the set of goods N as its set of nodes,

and is complete. Let µj be the buyer allocated to good j ∈ N \Nµ in allocation µ. As before

µi denotes the good allocated to buyer i ∈ M in allocation µ. For j, k ∈ N , we define the

length from node j to node k, ljk, for three possible different cases.

1. The value of ljk is set equal to zero if k ∈ Nµ.

2. The value of ljk is set equal to vµkk − vµkj if k ∈ N0 \ Nµ.

3. The value of lj0 is set equal to mini:µi=0 −vij if Mµ 6= ∅.

We illustrate the construction of the allocation graph for an example. Suppose there are

five buyers and three goods (excluding the dummy good), with values given in Table 1. The

unique efficient allocation in this example is: µ1 = 3, µ2 = 1, µ3 = 2, µ4 = µ5 = 0. The

allocation graph corresponding to µ is shown in Figure 2. In this example, Nµ = ∅ and

Mµ = {4, 5}. For a price vector p to be a WE price vector, and thus (p, µ) to be a WE,

we need the following inequalities, three each for every buyer, to hold. For example, the

payoff of buyer 1 from good 3 should be maximum over all goods. This gives the first three

inequalities. Similarly, writing the inequalities for the other buyers, gives us the following
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set of inequalities:

5 − p(3) ≥ 4 − p(2) ⇔ p(3) − p(2) ≤ 1

5 − p(3) ≥ 3 − p(1) ⇔ p(3) − p(1) ≤ 2

5 − p(3) ≥ 0 − p(0) ⇔ p(3) − p(0) ≤ 5

p(1) − p(2) ≤ 4

p(1) − p(3) ≤ 1

p(1) − p(0) ≤ 7

p(2) − p(1) ≤ −1

p(2) − p(3) ≤ 2

p(2) − p(0) ≤ 6

p(0) − p(1) ≤ min{−4,−3}

p(0) − p(2) ≤ min{−2,−4}

p(0) − p(3) ≤ min{−1,−2}.

The right hand side of these inequalities define the edge lengths in the allocation graph Gµ.

0 1

23
1

2

5

7

−1

2

6

−4

1
−4

4−2

Figure 2: Allocation graph for the example in Table 1

Theorem 3 If p is a Walrasian equilibrium price vector, then p is a 0−potential of Gµ for

any efficient allocation µ, and if p is a 0−potential of Gµ for some efficient allocation µ,

then (p, µ) is a Walrasian equilibrium.
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Proof : Suppose p is a WE price vector. Consider any efficient allocation µ and the allocation

graph Gµ corresponding to µ. So, (p, µ) is a WE. Consider any edge (j, k) of Gµ. Now,

consider the next three possible cases.

1. If k ∈ Nµ, then p(k) = 0. Hence p(k) − p(j) = −p(j) ≤ 0 = ljk.

2. If k ∈ N0 \Nµ, then vµkk − p(k) ≥ vµkj − p(j) (since (p, µ) is a WE). This implies that

p(k) − p(j) ≤ vµkk − vµkj = ljk.

3. If k = 0 and Mµ 6= ∅, then consider any buyer i allocated to 0 in µ. Then, vi0 − p(0) ≥

vij − p(j). Hence, p(0) − p(j) ≤ −vij. Since this is true for all i such that µi = 0, we

can write p(0) − p(j) ≤ mini:µi=0 −vij = lj0.

This shows that p is a potential of Gµ. Since p(0) = 0 in a WE price vector, we get that p

is a 0−potential of Gµ.

Now, suppose that p is a 0−potential of Gµ for some efficient allocation µ. By definition,

p(0) = 0. For every j ∈ N , p(0) − p(j) ≤ lj0 ≤ 0. Using p(0) = 0, we get p(j) ≥ 0. Hence,

p is a price vector. Consider any j ∈ Nµ. By definition of a 0−potential, we can write

p(j) − p(0) ≤ l0j = 0. Using p(0) = 0, we get p(j) ≤ 0. Hence, p(j) = 0 for all j ∈ Nµ.

Now, consider any i ∈ M . If i ∈ Mµ, then µi = 0. By definition of potential, p(µi) −

p(j) = p(0)− p(j) ≤ lj0 ≤ vi0 − vij for all j ∈ N . Hence, vi0 − p(0) ≥ vij − p(j) for all j ∈ N .

So, 0 ∈ Di(p). If i /∈ Mµ, then by definition of potential, p(µi) − p(j) ≤ ljµi
= viµi

− vij for

all j ∈ N . This gives µi ∈ Di(p). Therefore, p is a WE price vector. �

We now give necessary and sufficient conditions for the existence of a unique Walrasian

equilibrium price vector in terms of the shortest paths in the underlying graph.

Proposition 1 The following statements are equivalent.

1. There is a unique Walrasian equilibrium price vector.

2. There exists an efficient allocation µ, such that for the graph Gµ it holds that s(0, j) +

s(j, 0) = 0 for all j ∈ N0.

3. pmin = pmax.

Proof : Existence of a unique Walrasian equilibrium price vector is equivalent to the min-

imum and the maximum Walrasian equilibrium price vectors being equal. Then, the proof

of 1 ⇔ 2 follows from Theorem 3 and Lemma 5. �

We remark that the equality of pmin and pmax is equivalent to the existence of a price

vector where the prices are non-manipulable by both the buyers and the seller, which is

called perfect competition (see Gretsky et al. (1999)). In their work, Gretsky et al. (1999)
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give several equivalent characterizations for perfect competition. Proposition 1 provides

an alternate characterization in terms of shortest paths in the graph Gµ for some efficient

allocation µ.

We say that the set of Walrasian equilibrium price vectors is a 45-degree line if, for all

j, k ∈ N0, p(j) − p(k) is a constant for all WE price vectors p.

Proposition 2 The set of Walrasian equilibrium price vectors is a 45-degree line if and

only if for all j, k ∈ N0 it holds that s(j, k) + s(k, j) = 0 in the graph Gµ for some efficient

allocation µ. 4

Proof : Fix an efficient allocation µ, and the corresponding graph Gµ. Suppose the set of

WE price vectors is a 45-degree line. Consider pj and pj for any j ∈ N0, which are WE price

vectors by Theorem 3 and Lemma 6. Hence, we can write for any k ∈ N0 \ {j},

pj(k) − pj(j) = pj(k) − pj(j).

Therefore, s(j, k) = −s(k, j), i.e., s(j, k) + s(k, j) = 0, for any j, k ∈ N0.

Now, suppose s(j, k) + s(k, j) = 0 for all j, k ∈ N0. Let (j, j1, . . . , jq, k) be a shortest

path from j to k. For any WE price vector p, which is a 0−potential, by Theorem 3 we can

write

s(j, k) = ljj1 + . . . + ljqk

≥ (p(j1) − p(j)) + . . . + (p(k) − p(jq))

= p(k) − p(j).

Similarly, when the shortest path from k to j is (k, k1, . . . , kr, j), we have

s(k, j) = lkk1 + . . . + lkrj

≥ (p(k1) − p(k)) + . . . + (p(j) − p(kr))

= p(j) − p(k).

From this it follows that

0 = s(j, k) + s(k, j) ≥ (p(k) − p(j)) + (p(j) − p(k)) = 0.

This implies that (p(k) − p(j)) + (p(j) − p(k)) = s(j, k) + s(k, j). But p(k) − p(j) ≤ s(j, k)

and p(j) − p(k) ≤ s(k, j). Hence, p(k) − p(j) = s(j, k) and p(j) − p(k) = s(k, j). Thus, for

any WE price vector p it holds that p(j) − p(k) is a constant, for all j, k ∈ N0. �

4It is possible that s(0, j) + s(j, 0) 6= 0 for some j ∈ N .
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5 Interior Walrasian Equilibrium Prices

The results on potentials of strongly connected graphs and potentials as Walrasian equilib-

rium prices help us in characterizing extreme and interior points of Walrasian equilibrium

price space. In this section, we characterize the interior points of the Walrasian equilibrium

price vector space. Notice that the interior may be empty in some instances. For instance,

suppose there are two identical goods, i.e., values for these two goods are equal for every

buyer. In any WE price vector, prices of these two goods must be equal. This reduces the

dimension of the WE price vector space, making the interior empty.

We find necessary and sufficient conditions under which the interior is non-empty. By

the definition of the interior, an interior Walrasian equilibrium price vector is robust to small

changes in prices, i.e., even if the price vector is changed by small amounts, it still remains

a Walrasian equilibrium price vector. We show that such robustness extends to valuations,

i.e., an interior Walrasian price vector remains a Walrasian equilibrium price vector even if

the valuations of buyers are changed by small amounts. This gives us a characterization of

the interior Walrasian equilibrium price vectors.

Definition 5 A Walrasian equilibrium price vector p is an interior Walrasian equilib-

rium price vector if it is an interior point of the set of Walrasian equilibrium price vectors

in Rn. 5

Theorem 4 A price vector p is an interior Walrasian equilibrium price vector if and only

if every non-dummy good has positive price and is demanded by a unique buyer and every

buyer demands exactly one good, i.e., N+(p) = N0 and #U(p, {j}) = #O(p, {j}) = 1 for all

j ∈ N0.

Proof : For the proof of the theorem, we use the following claim.

Claim 1 Let (p, µ) be a Walrasian equilibrium. p is an interior Walrasian equilibrium price

vector if and only if Di(p) = {µi} for all i ∈ M and N+(p) = N0.

Proof : Since every WE price vector is a 0−potential (Theorem 3), the set of WE price

vectors is a polytope in Rn defined by p(k) − p(j) ≤ ljk for all j, k ∈ N with p(0) = 0. An

interior point of this polytope is a point p∗ satisfying p∗(k)− p∗(j) < ljk for all j, k ∈ N with

p∗(0) = 0.

Suppose p is an interior WE price vector. Clearly N+(p) = N0, since otherwise some

goods will have zero prices only. Now, consider the allocation graph Gµ. Since p is an interior

WE price vector, it is a 0−potential of Gµ (by Theorem 3), and for every j, k ∈ N , j 6= k,

we have p(k) − p(j) < ljk. Now consider any buyer i ∈ M . Let buyer i be assigned to good

5Note that we draw the set of Walrasian equilibrium price vectors in Rn, and not in Rn+1, since the price

of the dummy good is always zero.
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j ∈ N . By definition, j ∈ N \ Nµ. Hence, p(j) − p(k) < lkj = vij − vik for all k ∈ N \ {j}.

This gives, vij − p(j) > vik − p(k) for all k ∈ N \ {j}. Hence, Di(p) = {j}.

Now, suppose Di(p) = {µi} for all i ∈ M and N+(p) = N0. Since N+(p) = N0, we

get that every good in N0 is assigned to some buyer in µ. Consider any j ∈ N0. Let j be

assigned to i in µ. Since Di(p) = {j}, we get vij − p(j) > vik − p(k) for all k ∈ N \ {j}.

So, p(j) − p(k) < vij − vik for all k ∈ N \ {j}. If j 6= 0, then we get vij − vik = lkj and

p(j) − p(k) < lkj. If j = 0, then, consider i′ such that −vi′k ≤ vik for all i with µ0 = i. By

assumption Di′(p) = {0}. Hence, we can write 0 − p(j) > vi′k − p(k) for all k ∈ N . This

gives, p(j) − p(k) < −vi′k = mini:µi=0 −vik = lkj. This shows that p(j) − p(k) < lkj for all

j, k ∈ N , j 6= k. Hence, p is an interior WE price vector. �

Suppose p is an interior WE price vector. Let µ be an efficient allocation. Then (p, µ)

is a WE. By Claim 1, N+(p) = N0 and Di(p) = {µi} for every i ∈ M . Since N+(p) = N0,

every j ∈ N0 is allocated in µ. Hence, U({j}, p) = O({j}, p) = {µj}. Since N+(p) = N0, we

can equivalently say that {j} is weakly overdemanded and weakly underdemanded at p for

all j ∈ N0.

Suppose #U({j}, p) = #O({j}, p) = 1 for every j ∈ N0 and N+(p) = N0. Therefore,

every good in N+(p) = N0 is demanded by a unique buyer. Hence, these goods can be

assigned to those corresponding unique buyers, and the remaining buyers can be assigned to

the dummy good (notice that these buyers must be demanding the dummy good). Let this

allocation be µ. So, (p, µ) is a Walrasian equilibrium and Di(p) = {µi} for all i ∈ M . Using

Claim 1, p is an interior WE price vector. �

Remark: By Claim 1, an interior WE price vector is characterized by single demand sets

for all buyers. A consequence of this result is that even if valuations of buyers are perturbed

by a small amount, an interior WE price vector remains a WE price vector after the pertur-

bation. Hence, interior WE price vectors are robust against changes in valuations of buyers.

Remark: By Theorem 4, the set of interior WE price vectors is fully characterized by the

property that every set of goods is weakly overdemanded but not overdemanded and weakly

underdemanded but not underdemanded.

5.1 Existence of Interior Walrasian Equilibrium Prices

We now identify conditions under which the interior of the Walrasian equilibrium price vector

space is non-empty. We identify two equivalent conditions, one of which is a condition on

the allocation graph.

Theorem 5 The following statements are equivalent.
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1. An interior Walrasian equilibrium price vector exists.

2. There is a unique efficient allocation and n ≤ m.

3. For any efficient allocation µ it holds that every cycle in Gµ has positive length.

Proof : (2 ⇔ 3): Suppose µ is the only efficient allocation and n ≤ m. Consider any cycle

(j1, . . . , jk, j1). By Theorem 3, and the fact that a WE price vector exists, this cycle has

non-negative length. Since n ≤ m and there is a unique efficient allocation µ, every good in

N0 is allocated in µ, i.e., Nµ = ∅. If Mµ = ∅, then assume the existence of a dummy buyer

µ0 who values all goods at zero and who is assigned the dummy good. If Mµ 6= ∅ and the

dummy good 0 is in the cycle right after good j, then let lj0 = −vµ0j for some µ0 ∈ Mµ.

Denote µjl = il for all 1 ≤ l ≤ k.

Now, the length of the cycle (j1, . . . , jk, j1) can be written as

lj1j2 + . . . + ljk−1jk + ljkj1 = vi2j2 − vi2j1 + vi3j3 − vi3j2 + . . . + vikjk − vikjk−1 + vi1j1 − vi1jk

=

k
∑

l=1

viljl −
[

vi1jk +

k
∑

l=2

viljl−1

]

.

Consider the allocation µ′ where µ′
i = µi if i /∈ {i1, . . . , ik}, µ′

i1
= jk, and µ′

il
= jl−1 for

2 ≤ l ≤ k. Since µ is the unique efficient allocation and µ 6= µ′, the expression
∑k

l=1 viljl −
[

vi1jk +
∑k

l=2 viljl−1

]

=
∑k

l=1 vii
lµil −

∑k

l=1 viµ′

il
> 0. Hence, the cycle (j1, . . . , jk, j1) is of

positive length.

Now, suppose every cycle is of positive length. When n > m, Nµ 6= ∅. Consider any

k ∈ Nµ. Notice that either 0 is unassigned in µ or there exists j ∈ Nµ \ {k}. Hence,

either the cycle (k, 0, k) or (k, j, k) is of zero length (by definition of edge lengths). This is

a contradiction. So, n ≤ m.

Suppose that µ′ 6= µ is another efficient allocation. Let N ′ be the set of goods such that

µj 6= µ′j for all j ∈ N ′. Clearly, #N ′ ≥ 2. Now, consider the following cycle: start from any

good j1 in N ′, and set j2 = µ′
µj1

. Repeat this procedure, i.e., set jk = µ′

µjk−1 for k = 2, 3, . . ..

Since N ′ is finite, this procedure will be finite. Moreover, it will be a cycle of the form

(j1, . . . , jk, j1). Since n ≤ m, we can apply the earlier argument of proving positive length

cycle in reverse direction to prove that the total value of buyers from µ and µ′ are different

due to the positive length of the cycle.

(1 ⇔ 2): Suppose an interior WE price vector p exists. Assume for contradiction that µ

and µ′ 6= µ are two efficient allocations. Then, (p, µ) and (p, µ′) are two Walrasian equilibria.

Since p is an interior WE price vector, N+(p) = N0, and hence, every good in N0 is assigned

in µ and µ′. Since µ 6= µ′, for some good j ∈ N0, µi = µ′
i′ = j where i 6= i′. This means

{i, i′} ⊆ U({j}, p), which implies that #Di(p) ≥ 2 and #Di′(p) ≥ 2. This is a contradiction

by Theorem 4.
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Also, by definition N+(p) = N0 for every interior price vector p. By definition of WE, no

good from N0 is unassigned. Hence, n ≤ m.

Suppose there is a unique efficient allocation µ and n ≤ m. Let (p, µ) be any WE. First,

we prove the following claim.

Claim 2 Every good in N0 is assigned in µ.

Proof : Suppose some good j ∈ N0 is not assigned in µ. Hence, p(j) = 0. Since n ≤ m,

some buyer i ∈ M is assigned the dummy good. But vij − p(j) = vij ≥ 0. This means

j ∈ Di(p). Therefore, assigning i to j gives another allocation that is efficient, which is a

contradiction since µ is the unique efficient allocation. Hence, every good in N0 is assigned

in µ. �

Consider the minimum WE price vector pmin. Let M+ be the set of buyers assigned to

goods from N0 in µ.

Claim 3 For every buyer i ∈ M+, viµi
− pmin(µi) > 0.

Proof : Assume for contradiction that for some buyer i ∈ M+, viµi
− pmin(µi) = 0. Since

every set of goods S ⊆ N0 is not overdemanded and every S ⊆ N+(pmin) is not weakly

underdemanded at pmin (Theorem 1), by removing buyer i from the economy, it is still not

overdemanded and not underdemanded at pmin. This means, we can find a WE allocation

µ′ without buyer i. By assigning buyer i to the dummy good, which is in his demand set at

pmin, we get an efficient allocation different from µ. This is a contradiction. �

Now, construct a price vector p̄ by increasing the prices of goods in N0 by sufficiently

small amount from pmin. Every good in N0 is assigned by Claim 2 to buyers in M+. By

increasing prices by sufficiently small amount from pmin, and using Claim 3, every buyer in

M+ continues to demand µi at p̄, and buyers in M \ M+ demand only the dummy good.

Hence, p̄ is a WE price vector, and N+(p̄) = N0. Further, for sufficiently small price increase

from pmin, we can have for every buyer i ∈ M+, viµi
− p̄(µi) > 0 by Claim 3. Now, consider

the following claim.

Claim 4 Consider a WE (p, µ) such that O(N0, p) = M+ and N+(p) = N0. Consider a set

of goods S ⊆ N0 with #S ≥ 2. Define T = {i ∈ M : µi ∈ S}. Then, there exists some buyer

i ∈ T such that Di(p) = {µi}.

Proof : Suppose #Di(p) ≥ 2 for all i ∈ T . Consider any good j0 ∈ S. We construct a

sequence of pairs of buyers and goods. Initially set K = {j0} and L = {i0}, where µi0 = j0.

Consider some j1 ∈ Di0(p) \ {j0} (such a j1 exists since #Di0(p) ≥ 2). Set K := K ∪ {j1}

and L := L ∪ {i1}, where µi1 = j1. If some j2 ∈ Di1(p) \ {j1} also belongs to K, then stop.

Else, update K := K ∪ {j2} for some j2 ∈ Di1(p) \ {j1} and L := L ∪ {i2}, where µi2 = j2.
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We repeat this process. At any stage of the process, we have K = {j0, j1, . . . , jk−1} and

L = {i0, i1, . . . , ik−1}. If some jk ∈ Dik−1(p) \ {jk−1} belongs to K, where jk−1 = µik−1 , then

we stop. Otherwise, we set K := K ∪{jk} for some jk ∈ Dik−1(p)\{jk−1} and L := L∪{ik},

where µik = jk. The process is finite, since when we reach L = T , we have K = S.

Now, at the end of the process, let the final buyer to be inserted to L be ik. Let ik demand

jk′

6= µik from K at p. By the definition of the sequence above, there exists an assignment

µ′ where µ′
ik

= jk′

and µ′
il

= jl+1 with µ′
il
∈ Dil(p) for all k′ ≤ l < k, and µ′

i = µi otherwise.

Clearly, (p, µ′) is a WE. Hence, µ′ is an efficient allocation, contradicting the fact the µ is

unique. �

The proof is done by repeatedly applying Claim 4. First, set p = p̄, S = N+(p) = N0,

and T = M+ in Claim 4. Then, we get a buyer i ∈ M+ such that Di(p) = {µi}. Since

viµi
− p(µi) > 0, we can increase the price of µi by sufficiently small amount to get a

new WE price vector p′ such that Di(p
′) = {µi} and U({µi}, p

′) = {i}. Now, set p = p′,

S = N+(p′) \ {µi}, and T = M+ \ {i}, and apply Claim 4 again. After repeating this

procedure for all the buyers, we get a WE price vector p̂ where for every buyer i ∈ M ,

Di(p̂) = {µi}. By Theorem 4, p̂ is an interior WE price vector. �

Remark: Given the demand set information of buyers at a WE price vector p, we can verify

if an allocation µ is such that (p, µ) is a WE. Every such allocation is an efficient allocation.

If there is a unique µ such that (p, µ) is a WE and n ≤ m, then we can conclude that

the interior of WE price vector space is non-empty. Thus, given demand set information

of buyers at any WE price vector, it is possible to verify whether the interior of WE price

vector space is non-empty.

6 Extreme Walrasian Equilibrium Prices

We now characterize the extreme points of Walrasian equilibrium price space. The central

result that we use from Section 4 is Theorem 2, which shows that every extreme point of

the lattice corresponding to potentials of a strongly connected graph is one of the following

forms:

1. The prices of some set of goods is equal to the minimum WE prices and the prices of

the other goods are as high as possible.

2. The prices of some set of goods is equal to the maximum WE prices and the prices of

the other goods are as low as possible.

Our characterization of extreme Walrasian equilibrium price vectors is a careful interpretation

of this result in terms of potentials of the allocation graph.
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At price vector p and set S ,∅ 6= S ⊆ N0, define

K(p, S) = {j ∈ S : T is not weakly overdemanded at p for any T satisfying j ∈ T ⊆ S}.

The set K(p, S) is the subset of goods in S that are not contained in some weakly

overdemanded subset of S at p. Every good in the set S \ K(p, S) is contained in some

weakly overdemanded subset of goods of S at p.

Similarly, at price vector p and set S, ∅ 6= S ⊆ N0, define

L(p, S) = {j ∈ S : p(j) = 0} ∪

{j ∈ S : T is not weakly underdemanded at p for any T satisfying j ∈ T ⊆ S+(p)}.

Every good in L(p, S) either has price zero or has the property that any subset of S+(p) that

contains j is not weakly underdemanded. Every good in the set S \ L(p, S) is contained in

some weakly underdemanded subset of goods of S at p.

Of particular interest to us are the sets K(p, N0) and L(p, N0) for any p. The set K(p, N0)

contains all goods that are not part of any weakly overdemanded set at p, while L(p, N0)

contains all goods with zero price and all goods with positive price that are not part of any

weakly underdemanded set at p. The following two lemmas characterize the sets L(p, N0)

and K(p, N0) when p is a WE price equilibrium vector.

Lemma 7 At a Walrasian equilibrium price vector p it holds that L(p, N0) = {j ∈ N0:

p(j) = pmin(j)}.

Proof : If p(j) = 0, then by definition j ∈ L(p, N0). Suppose p(j) = pmin(j) for some

j ∈ N+(p). Then pmin(j) > 0 and for any T ⊆ N+(p) containing j all goods in T are assigned

in a WE at p. Let T ′ be the set of buyers assigned to those goods in T in a WE at p. Since p

is a WE price vector, by Theorem 1 T is not underdemanded, i.e., #U(p, T ) ≥ #T = #T ′.

Assume for contradiction that T is weakly underdemanded at p, i.e., #U(p, T ) = #T = #T ′.

Then, prices of goods in T can be lowered from p by a sufficiently small amount to get

another WE price vector, contradicting the fact that p(j) = pmin(j). Hence, T is not weakly

underdemanded at p, and therefore j ∈ L(p, N0).

Suppose j ∈ L(p, N0). If p(j) = 0, then p(j) = pmin(j). Assume for contradiction

p(j) > 0 and p(j) > pmin(j). Let X = {k ∈ N0 : p(k) > pmin(k)}. Notice that j ∈ X and

X ⊆ N+(p). By definition, X is not weakly underdemanded at p. Comparing p and pmin, all

prices of goods in the set X decrease, from p to pmin, whereas prices of other goods remain

the same. Hence, buyers in U(p, X) will become exclusive demanders of X at pmin. Since

#U(X, p) > #X, we get #O(X, pmin) ≥ #U(X, p) > #X. Hence X is overdemanded at

pmin, a contradiction by Theorem 1. So, for every j ∈ L(p, N0), p(j) = pmin(j). �
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Lemma 8 At a Walrasian equilibrium price vector p it holds that K(p, N0) = {j ∈ N0 :

p(j) = pmax(j)}.

Proof : The proof is similar to the proof of Lemma 7. �

So, the set K(p, N0) denotes the set of goods whose prices are at the maximum WE price

and the set L(p, N0) denotes the set of goods whose price are at the minimum WE price.

We denote the set N0 \ K(p, N0) as So(p). The set So(p) contains all goods that are part of

some weakly overdemanded set of goods at p. Similarly, we denote the set N0 \ L(p, N0) as

Su(p). The set Su(p) contains all goods that are part of some weakly underdemanded set of

goods at p.

Theorem 6 Suppose p is a price vector at which there is no set of goods that is overde-

manded and no set of goods that is underdemanded. Then p is an extreme Walrasian equi-

librium price vector if and only if L(p, N0) ∪ K(p, N0) 6= ∅ and L(p, So(p)) = So(p) if

K(p, N0) 6= ∅ and K(p, Su(p)) = Su(p) if L(p, N0) 6= ∅.

Proof : Since there is no set of goods that is overdemanded and no set of goods that is

underdemanded, p is a WE price vector by Theorem 1. We begin the proof with two claims.

Claim 5 For any WE price vector p satisfying K(p, N0) 6= ∅, L(p, So(p)) = So(p) if and

only if, for all j ∈ So(p), p(j) = maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

, where shortest paths s(·, ·)

are computed in an allocation graph corresponding to any efficient allocation.

Proof : Suppose L(p, So(p)) = So(p) and K(p, N0) 6= ∅. By Lemma 8, p(j) = pmax(j)

for all j ∈ K(p, N0). By Theorem 2, p(j) ≥ maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

≥ 0 for all

j ∈ N0 \ K(p, N0). Let

X = {j ∈ N0 \ K(p, N0) : p(j) > max
k∈K(p,N0)

[

s(0, k) − s(j, k)
]

}.

Assume for contradiction that X is non-empty. Clearly X ⊆ N+(p). Since L(p, N0 \

K(p, N0)) = N0 \K(p, N0), X is not weakly underdemanded at p. Hence, #U(p, X) > #X.

Consider the price vector p′ where prices of all goods except goods in X remain the same

as in p, but for all j ∈ X, p′(j) = maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

< p(j). Hence, buyers in

U(p, X) become exclusive demanders of X at p′. So, #O(p′, X) ≥ #U(p, X) > #X. Hence,

X is overdemanded at p′. Since p′ is a WE price vector by Theorem 2, we get a contradiction

by Theorem 1.

Suppose for all j ∈ So(p), we have p(j) = maxk∈K(p,N0)[s(0, k) − s(j, k)]. Assume for

contradiction that there exists j ∈ N0 \K(p, N0) such that j /∈ L(p, N0 \K(p, N0)). Clearly,

p(j) > 0. This means that for some T ⊆ N+(p) \ K(p, N0) containing j the set T is

weakly underdemanded. Consider a price vector p′ where prices of goods in T are lowered by
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sufficiently small amount, whereas prices of other goods remain the same. Since T is weakly

underdemanded, p′ is a WE price vector. By (4), p′(j) ≥ maxk∈K(p,N0)[s(0, k) − s(j, k)] for

all j ∈ N0 \ K(p, N0). This gives us a contradiction. �

Claim 6 For any WE price vector p satisfying L(p, N0) 6= ∅, K(p, Su(p)) = Su(p) if and

only if, for all j ∈ Su(p), p(j) = mink∈L(p,N0)

[

s(k, j) − s(k, 0)
]

, where shortest paths s(·, ·)

are computed in an allocation graph corresponding to any efficient allocation.

Proof : The proof is similar to the proof of Claim 5. �

Suppose p is an extreme WE price vector. Then, by Theorem 2 and Lemmas 7 and

8, L(p, N0) ∪ K(p, N0) 6= ∅. If K(p, N0) 6= ∅, then by Theorem 2 and Claim 6, we have

that L(p, So(p)) = So(p). Similarly, if L(p, N0) 6= ∅, then by Theorem 2 and Claim 6, we

have that K(p, Su(p)) = Su(p). The converse statement also follows from Theorem 2 and

Claims 5 and 6. �

The characterization above says that at an extreme Walrasian equilibrium price vector

no subset of the goods that are part of some weakly overdemanded set of goods can be

weakly underdemanded and that simultaneously no subset of the goods that are part of some

weakly underdemanded set of goods can be weakly overdemanded. As a consequence of this

characterization, we get the following characterization of the minimum and the maximum

Walrasian equilibrium price vectors.

Theorem 7 A price vector p is equal to pmin if and only if no set of goods is overdemanded

and no set of goods is weakly underdemanded at p. Similarly, a price vector p is equal to pmax

if and only if no set of goods is underdemanded and no set of goods is weakly overdemanded

at p.

Proof : Suppose p = pmin. By Theorem 1, no set of goods is overdemanded and no set of

goods is underdemanded at p. By Lemma 7, L(p, N0) = N0. By definition of L(·, ·), no set

of goods is weakly underdemanded at p.

Suppose no set of goods is overdemanded and no set of goods is weakly underdemanded

at p. Then, L(p, N0) = N0, and again by Lemma 7 p = pmin.

A similar proof using Lemma 5 proves that p = pmax if and only if no set of goods is

overdemanded and no set of goods is weakly underdemanded at p. �

Remark: Theorem 7 can be used to give a necessary and sufficient condition for the existence

of a unique WE price vector. The condition is that there exists some price vector at which

no set of goods is weakly overdemanded and no set of goods is weakly underdemanded at

that price vector.
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The characterization of the minimum WE price vector gives an idea about the existence

of overdemanded and weakly underdemanded sets of goods in other regions of the price

vector space.

Corollary 1 If p � pmin, then there exists an overdemanded set of goods. Further, if

p � pmin, then there exists a weakly underdemanded set of goods.

Proof : Suppose p � pmin. Let S = {j ∈ N : pj < pmin
j }. Since p � pmin, S 6= ∅. Further,

because pmin
j > pj ≥ 0 for all j ∈ S, S ⊆ N+(pmin). Since prices of goods in S decrease

from pmin to p while prices of goods in N \ S do not decrease, U(S, pmin) ⊆ O(S, p). So,

#O(S, p) ≥ #U(S, pmin) > #S, where the last inequality follows from Theorem 7 (S is not

weakly underdemanded at pmin). Hence S is overdemanded at p.

Now, suppose p � pmin. Define S ′ = {j ∈ N : pj > pmin
j }. Because p � pmin, S ′ 6= ∅.

Further, since pj > pmin
j ≥ 0 for all j ∈ S ′, S ′ ⊆ N+(p). Since prices of goods in S ′ decrease

from p to pmin while prices of goods in N \ S ′ do not decrease, U(S ′, p) ⊆ O(S ′, pmin). So,

#U(S ′, p) ≤ #O(S ′, pmin) ≤ #S ′, where the last inequality follows from Theorem 7 (S ′ is

not overdemanded at pmin). Hence S ′ is weakly underdemanded at p. �

In every region of the price vector space with respect to pmin, Corollary 1 shows if an

overdemanded set of goods or a weakly underdemanded set of goods always exists in that

region. A similar result holds with respect to pmax.

Corollary 2 If p � pmax, then there exists a weakly overdemanded set of goods. Further,

if p � pmax, then there exists an underdemanded set of goods.

Proof : The proof is analogous to Corollary 1. �

The results in Theorem 7 and Corollary 1 and Corollary 2 are illustrated in Figure 3 for

the example in Figure 1. The labelling in various regions of the figure indicates whether

(weakly) overdemanded sets of goods ((W)OD) and (weakly) underdemanded sets of goods

((W)UD) exist at all price vectors in these regions. By Theorem 1, there is no set of overde-

manded or underdemanded goods in the lattice corresponding to the WE price vector re-

gion in Figure 3. The minimum and the maximum WE price vectors are characterized by

Theorem 7. The interior of WE price vector space is chracterized by Theorem 4. In any

price vector inside the rectangle generated by drawing parallel lines to axes at the minimum

and the maximum WE price vectors, we can find a weakly overdemanded and a weakly un-

derdemanded set of goods. The other regions in Figure 3 are labelled using Corollary 1 and

Corollary 2. For example, for every price vector in the upper-right corner, an underdemanded

set of goods exists, whereas for every price vector in the lower-left corner, an overdemanded

set of goods exists. Notice that once every set of goods is weakly underdemanded, then no set

of goods can be overdemanded. This happens, for example when all prices are set equal or
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Price of Good 2
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WOD
UD
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UDOD

WUD

OD
WUD

UD
WOD

No OD and no WUD

WOD
WUD

WOD
WUD

No UD and no WOD

No OD and no UD
Every set is WOD and WUD

Figure 3: Various regions of the price vector space for the example in Figure 1

above the highest valuation of the goods. Also, there exist regions (upper-left and lower-right

corners in Figure 3) where sets of underdemanded and overdemanded goods co-exist.

We can say something more about various price vectors than what the results in Corollary 1

and Corollary 2 seem to indicate. If we decrease the prices of positive price goods at the

minimum WE price vector by an equal amount such that no price goes below zero, then at

the new price vector no weakly underdemanded goods exist. But, by Corollary 1, some set

of goods is overdemanded. So, if pmin 6= 0, then there is some non-zero price vector p � pmin

where no set of goods is weakly underdemanded but some set of goods is overdemanded.

This argument illustrates that we can draw a piecewise linear path from the minimum WE

price vector to the zero price vector along which no set of goods is weakly underdemanded

but some set of goods is overdemanded.

Similarly, if we increase the prices of positive price goods by an equal amount from the

maximum WE price vector, no set of goods is weakly overdemanded at the new price vector,

but some set of goods is underdemanded. So, the 45 degree straight line from the maximum

WE price vector in the north-east direction is a set of (infinite) price vectors where no set
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of goods is weakly overdemanded but some set of goods is underdemanded.

6.1 Design of Iterative Auctions

Iterative auctions, where prices monotonically increase (ascending auctions) or decrease (de-

scending auctions) are practical and transparent methods to sell goods. The design of it-

erative auctions for our model has been studied earlier - ascending auctions can be found

in Demange et al. (1986) and Sankaran (1994), whereas descending auctions can be found

in Sotomayor (2002). These auctions terminate at a WE price vector - the auctions in

Demange et al. (1986) and Sankaran (1994) terminate at the minimum WE price vector,

while the auction in Sotomayor (2002) terminates at the maximum WE price vector.6 More-

over, the underlying price adjustment in these auctions is based on the ideas of overdemanded

and underdemanded sets of goods. Interestingly, the papers on ascending auctions do not

talk about underdemanded sets of goods and use the notion of (weakly) overdemanded sets

of goods only. Similarly, the papers on descending auctions do not talk about overdemanded

sets of goods and use the notion of (weakly) underdemanded sets of goods only. The termi-

nating conditions in these auctions are absence of overdemanded sets of goods for ascending

auctions and absence of underdemanded sets of goods for descending auctions. Still, these

auctions terminate at an extreme WE price vector. Our results can be used to explain why

this is possible. In the rest of this section, we assume valuations of buyers and prices to be

integers.

Consider the following class of ascending auctions:

S0 Start the auction at a price vector p where no set of goods is weakly underdemanded

(by Corollary 1, p ≤ pmin);

S1 Collect demand sets of buyers and check if an overdemanded set of goods exist;

S2 If no overdemanded set of goods exist, then stop (by Theorem 7, this is the minimum

WE price vector);

S3 Else increase prices of goods such that no set of goods is weakly underdemanded at

the new price vector, and repeat from step S1.

The auctions in Demange et al. (1986) and Sankaran (1994) are such auctions, though

they do not mention this explicitly. Both these auctions start from the zero price vector.7 At

6Since minimum WE price vector corresponds to the VCG payments, the auctions in Demange et al.

(1986) and Sankaran (1994) have truthful bidding in an equilibrium, whereas buyers can manipulate the

auction in Sotomayor (2002).
7To be precise, they use the reserve price of every good as the starting price, which is assumed to be zero

in our model.
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the zero price vector, no set of goods is weakly underdemanded. In step S3, Demange et al.

(1986) increase prices by unity for goods in a minimal overdemanded set, whereas Sankaran

(1994) increases prices by unity for goods in an overdemanded set, which he finds using a

labeling algorithm of graph theory. Both the price adjustments ensure that no set of goods

is weakly underdemanded after the price increase (i.e., satisfy the condition in step S3), and

we stay below the minimum WE price vector (by Corollary 1).

The descending auctions share an analogous feature. Consider the following class of

descending auctions:

T0 Start the auction at a price vector p where no set of goods is weakly overdemanded

(by Corollary 2, p ≥ pmax);

T1 Collect demand sets of buyers and check if an underdemanded set of goods exist;

T2 If no underdemanded set of goods exist, then stop (by Theorem 7, this is the maximum

WE price vector);

T3 Else decrease prices of goods such that no set of goods is weakly overdemanded at the

new price vector, and repeat from step T1.

The auction in Sotomayor (2002) starts from a very high price vector where every buyer

demands only the dummy good. Hence no set of goods is weakly overdemanded. By de-

creasing prices by unity for goods in a minimal underdemanded set, no set of goods is weakly

overdemanded after the price decrease, and the price in the auction stays above the maximum

WE price vector.

This class of descending auctions can be modified to terminate at the minimum WE price

vector. Such auctions have to start from a price vector where no set of goods is overdemanded

(by Corollary 2 such a price vector is above the minimum WE price vector). These auctions

should stop if no set of goods is weakly underdemanded, and price decrease should be such

that no set of goods is overdemanded at the new price vector.

Thus, our characterization results unify the existing iterative auctions by bringing them

under a broad class of auctions. We hope that this will be useful in identifying more iterative

auctions from this class which are easier to implement in practice than the auctions known

in the literature.

Finally, a note on the incentive properties of these auctions. It is well known that submit-

ting true demand sets in each iteration of ascending and descending auctions that terminate

at the minimum WE price vector is an ex post Nash equilibrium (Bikhchandani and Ostroy,

2006). This can be reconciled from the fact that the minimum WE price vector corresponds

to the VCG payments of buyers in our setting (Leonard, 1983). Hence, all auctions discussed

in this section that terminate at the minimum WE price vector share this incentive property.

30



7 Conclusions

We characterized the extreme and interior points of the set Walrasian equilibrium price

vectors for the assignment model. As a corollary, we also characterized the minimum and the

maximum Walrasian equilibrium price vectors. Our characterizations indirectly characterize

all Walrasian equilibrium price vectors that lie on any face of the Walrasian equilibrium price

vector space. All characterizations involve conditions on the demand sets of buyers only. A

future research direction is to extend these characterizations to a model where a buyer can

be assigned more than one good with combinatorial values.

Another interesting direction of future research is to understand the structures of (weakly)

overdemanded and (weakly) underdemanded sets, and design computationally efficient pro-

cedures to compute these sets. We conclude the section with a result which may help in

this regard. For this, define a minimal (weakly) overdemanded set of goods at a price

vector as a set of goods that is (weakly) overdemanded at that price vector but every subset

of this set of goods is not (weakly) overdemanded at this price vector. Similarly, we define a

minimal (weakly) underdemanded set of goods. We now conclude with the following result.

Theorem 8 Let Go be a minimal overdemanded set of goods and Gu a minimal underde-

manded set of goods at a price vector p. For any minimal weakly overdemanded set of goods

Ho and any minimal weakly underdemanded set of goods Hu at p, the following holds:

1. Go ∩ Hu = ∅.

2. Gu ∩ Ho = ∅.

Proof : We first show that Go ∩ Hu = ∅. Assume for contradiction Go ∩ Hu 6= ∅. Since Hu

is weakly underdemanded at p, #O(Hu, p) ≤ #U(Hu, p) ≤ #Hu. This shows that Hu is not

overdemanded at p. So, Hu 6= Go. There are three cases to consider.

Case 1: Go ( Hu. Since Hu is minimal weakly underdemanded at p and Hu \ Go is

non-empty, Hu \ Go is not weakly underdemanded. So, we can write

#U(Hu \ Go, p) > #(Hu \ Go). (5)

Since Hu is weakly underdemanded we get

#U(Hu, p) ≤ #Hu. (6)

Since Go is overdemanded we get

#O(Go, p) > #Go. (7)
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Now, since Go ( Hu and using equations (6) and (7)

#(Hu \ Go) = #Hu − #Go

> #U(Hu, p) − #O(Go, p)

≥ #U(Hu \ Go, p).

The last inequality comes from the fact that O(Go, p) ∪ U(Hu \ Go, p) ⊆ U(Hu, p). Using

equation (5), we get a contradiction.

Case 2: Hu ( Go. Since Go is minimal overdemanded and Go \Hu is not empty, Go \Hu

is not overdemanded. This gives us

#O(Go \ Hu, p) ≤ #(Go \ Hu). (8)

Now, since Hu ( Go and using equations (6) and (7)

#(Go \ Hu) = #Go − #Hu

< #O(Go, p) − #U(Hu, p)

≤ #O(Go \ Hu, p).

The last inequality comes from the fact that O(Go, p) ⊆ O(Go \ Hu, p) ∪ U(Hu, p). Using

equation (8), we get a contradiction.

Case 3: Hu ∩ Go = T , T 6= Hu, T 6= Go, and T is non-empty. Since Hu is minimal

weakly underdemanded, Hu \ T is not weakly underdemanded. This gives us

#U(Hu \ T, p) > #(Hu \ T ). (9)

Similarly, Go \ T is not overdemanded, which gives us

#O(Go \ T, p) ≤ #(Go \ T ). (10)

Denote Y = O(Go, p) \ O(Go \ T, p). From the definition of Y , every buyer in Y demands

goods from Go only but at least some good from T . Hence, Y ∩ U(Hu \ T, p) = ∅. This

results in the following set of inequalities by the definition of Y and using equations (7), (9)

and (10)

#U(Hu, p) ≥ #U(Hu \ T, p) + #Y

> #(Hu \ T ) + #O(Go, p) − #O(Go \ T, p)

> #Hu − #T + #Go − #(Go \ T )

= #Hu.

The last inequality follow from the fact that T ( Go and T ( Hu. It implies that Hu is not

weakly underdemanded. This is a contradiction.

Using an analogous proof, it can be shown that Gu ∩ Ho = ∅. �

32



References

Arrow, K. J. and G. Debreu (1954): “Existence of an Equilibrium in a Competitive

Economy,” Econometrica, 22, 265–290.

Balinski, M. L. and D. Gale (1990): “On the Core of the Assignment Game,” in Func-

tional Analysis, Optimization and Mathematical Economics, ed. by L. J. Leifman, Oxford

University Press, 274–289.

Bikhchandani, S. and J. Ostroy (2006): “From the Assignment Model to Combinatorial

Auctions,” in Combinatorial Auctions, ed. by P. Cramton, Y. Shoham, and R. Steinberg,

MIT Press.

Clarke, E. (1971): “Multipart Pricing of Public Goods,” Public Choice, 11, 17–33.

Crawford, V. P. and E. M. Knoer (1981): “Job Matching with Heterogeneous Firms

and Workers,” Econometrica, 49, 437–450.

de Vries, S., J. Schummer, and R. V. Vohra (2007): “On Ascending Vickrey Auctions

for Heterogeneous Objects,” Journal of Economic Theory, 132, 95–118.

Demange, G. and D. Gale (1985): “The Strategy Structure of Two-Sided Matching

Markets,” Econometrica, 53, 873–888.

Demange, G., D. Gale, and M. Sotomayor (1986): “Multi-item Auctions,” Journal

of Political Economy, 94, 863–872.

Duffin, R. J. (1962): “The Extremal Length of a Network,” Journal of Mathematical

Analysis and Applications, 5, 200–215.

Gallai, T. (1958): “Maximum-Minimum Sätze Über Graphen,” Acta Mathematica
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