Does a Legal Ban on Sex-Selective Abortions Improve Child Sex Ratios? Evidence from a Policy Change in India

Arindam Nandi* and Anil B. Deolalikar†

April, 2011

Abstract

Despite strong recent economic growth, gender inequality remains a major concern for India. This paper examines the effectiveness of a public policy geared towards the reduction of gender inequality. The national Pre-Conception and Pre-Natal Diagnostics Techniques (PNDT) Act of 1994, implemented in 1996, banned sex-selective abortions in the Indian states which hitherto had not legislated such a policy. Although demographers frequently mention the futility of the Act, this paper is among the first to evaluate the law using a treatment-effect type analysis of the pre-ban and post-ban periods. Using village-level and town-level longitudinal data from the 1991 and 2001 censuses, we find a significantly positive impact of the PNDT Act on the female-to-male child sex ratio (number of females per 1000 males below the age of 6 years). Given the almost ubiquitous decline in the observed child sex ratio during the study period, our results are interpreted as the success of the law in hindering any further worsening of the gender imbalance. We find that in the possible absence of the PNDT Act, child sex ratio would have declined by another 13-20 points, or an additional 51,000 female fetuses would have been aborted. Additional analysis using quantile regressions of the conditional distribution of the rural child sex ratio reveals the heterogeneity among communities with respect to their response to the law.

1 Introduction

The just-released data from the Indian 2011 census has refocused the world’s attention on the dark side of India’s demographic change – a low and falling ratio of girls to boys. For the last 40 years, each successive census has found the number of young girls shrinking relative to boys. Interestingly, the deterioration in the child sex ratio has occurred in the face of rising living standards and improvements in every other indicator.

* The Center for Disease Dynamics, Economics & Policy, Washington DC; nandi@cddep.org
† University of California, Riverside
of demographic change and human development – average life expectancy, infant mortality, male and female literacy, fertility rate, and schooling enrollment of children.

India is one of a handful of countries that has significantly more males than females. The problem is particularly severe at younger ages; the child sex ratio (i.e., the number of girls per 1,000 boys in the 0-6 years age group) has declined steadily – from 964 in 1971 to 962 in 1981, 953 in 1991, 927 in 2001, and 914 in 2001.\footnote{The natural sex ratio in a population typically ranges from 950 to 970 girls per 1,000 boys.} Although a distorted child sex ratio is observed in other Asian countries, including China, Taiwan, Singapore and Vietnam, India has one of the lowest child sex ratios in the world.

After abortion was legalized in India in 1971, and technologies to diagnose the sex of the fetus became widely available, the practice of sex-selective abortions became widespread. As the prices for sex-selection diagnostic tests fell during the 1980s and 1990s, the practice became even more rampant. The Indian government finally responded to this problem by passing the Pre-Conception and Pre-Natal Diagnostics Techniques (PNDT) (Prohibition of Sex Selection) Act in 1994. The PNDT Act prohibited the use of diagnostic methods to diagnose the sex of an unborn child.

The low and falling child sex ratio in the country is a matter of grave policy concern, not only because it violates the human rights of unborn and infant girls but also because it deprives the country of the potential economic and social contribution of these ‘missing women.’ In addition, there may be longer-run adverse impacts from a marriage market squeeze caused by an excess supply of male relative to female youth.\footnote{Angrist (2002) studies the long-run impact of sex imbalance on marriage and labor markets. Messner and Sampson (1991) in the context of US and Edlund et al. (2007) in the context of China associate male-biased sex ratios with increased violence. Francis (2009) examines the impact of gender imbalance on bride price and child outcomes in Taiwan. Hudson and Den Boer (2002, 2004) argue that societies with high male-to-female sex ratio have always experienced higher violent crime rates. Hesketh (2009) discusses the possible marriage market related outcomes of the gender imbalance in China.} Already, states like Haryana and Punjab, where the sex ratio has been extremely distorted for several decades, have been experiencing bride trafficking. In a recent interview, India’s home (interior) secretary, Mr. G.K. Pillai, said: “Whatever measures that have been put in over the last 40 years have not had any impact on child sex ratio and therefore that requires a complete review”\footnote{The Economic Times, 1 April 2011}.
more in the absence of policy measures, such as the PNDT Act. The problem is that while there have been a large number of empirical studies of the child sex ratio in India and in other countries in recent years, none has focused on the impact of legislation or a policy intervention on improving the boy-girl balance.5

To our knowledge, our paper is the first to explore the causal impact of a major legislation – the PNDT Act – on the child sex ratio. While the Government of India began enforcing the PNDT Act from 1996, it was non-binding for the western Indian state of Maharashtra, since that state already had its own PNDT-type law in place since 1988. Therefore, the implementation of the PNDT Act in 1996 in all the other Indian states provides us with an exogenous policy variation. We exploit this policy variation across states to analyze the causal impact of the legislation on gender imbalance, using a rigorous treatment-effect analytical framework.

Our main outcome variable of interest, the child sex ratio (number of girls per 1000 boys of age below 6 years), depends on two factors – sex ratio at birth and gender-specific mortality rates among children ever born. Preventing the abortion of girl fetuses will directly reduce the masculinity of the sex ratio at birth. However, the law might have induced an additional behavioral shift among households. Unwanted girl fetuses, if not aborted by virtue of the PNDT Act, could grow up as unwanted children in the household and be deprived of important resources such as nutrition and medical care, thus being more vulnerable to infant and child mortality. The use of the child sex ratio (instead of the sex ratio at birth) permits us to capture the effect of the PNDT Act on both the number of female babies born relative to male babies as well as on differential mortality across young boys and girls.6

There are two other ways in which our paper is unique. First, unlike previous studies on child sex ratios in India, which use highly-aggregate state or district-level data, we use disaggregated Census data on more than half a million Indian villages and 1,500 towns over two time periods – 1991 and 2001 – to evaluate the impact of the PNDT Act on child sex ratios.7 Second, using quantile regression methods, we allow for heterogeneous impacts of the PNDT Act on child sex ratios, depending upon the degree of son preference existing in a village.

To anticipate our results, we find a significant positive causal effect of the PNDT Act on the child sex ratio, with the magnitude of the effect varying across different subsamples. The positive effect of the PNDT

5For example, Arnold, Kishor and Roy (2002) use NFHS 1998-99 data to link the prenatal use of ultrasound and amniocentesis by pregnant women with sex-selective abortions and the sex ratio at birth. Visaria (2007) uses primary data from the states of Gujarat and Haryana to find evidence of sex-selective abortions, particularly for higher birth orders. Patel (2007 ed.) provides a comprehensive overview of sex-selective abortions in India. Subramanian and Selvaraja (2009) employ a logistic regression approach to analyze the odds of the birth of a boy child between the pre-ban and post-ban periods. Using five rounds of data from the National Sample Surveys (NSS), they find no significant difference in the odds of a boy-birth before and after the 1996 PNDT.

6Another factor that may differentially affect the mortality rates of young boys and girls is the access to subsidized public goods. For example, with cheap access to healthcare facilities, households may be less likely to neglect girls. Hence, our analysis uses information on the access to healthcare and other infrastructural facilities, whenever possible.

7Although the Census village-level data are in the public domain, the dataset we use in this paper were provided to us by Deolalikar et al. (2009), who spent substantial time and effort in putting them together. We are grateful to them for making these data available to us. Deolalikar et al. (2009) is a concurrent study of the impact of public goods availability on child sex ratios in India.
Act we obtain runs counter to the generally-perceived ineffectiveness of the law in the popular Indian press. One reason for the popular misperception is that the child sex ratio in much of India, including in the state of Maharashtra, worsened significantly during the 1991-2001 period. However, our empirical results suggest that the gender imbalance in India would have worsened even more in the absence of the PNDT Act.

We also find that villages in the higher quantiles of the conditional child sex ratio distribution – i.e., those with the weakest son preference – were most affected by the ban on sex-selective abortions.

Our research provides a silver lining to the generally bleak view of the 1996 PNDT Act. The significant impact of the PNDT Act in improving the child sex ratio suggests that, with better enforcement, a ban on sex-selective abortions can not only halt – but even reverse – the declining trend in the child sex ratio in India. Encouragingly, the Indian government has taken a step in the right direction by expanding the provisions of the PNDT Act in 2003 and by improving enforcement of the law in recent years.

2 Sex-selective Abortions in India

Abortion was legalized in India by the Medical Termination of Pregnancy Act of 1971. However, the law required abortions to be performed by registered medical practitioners, and only under certain acute medical conditions affecting the pregnant woman. Abortion as a choice, except for unwanted pregnancies resulting from rape, was not legalized.

Fetal sex determination techniques such as amniocentesis, originally intended for the detection of fetal abnormalities, were first introduced in 1975 (Luthra 1994). The rampant misuse of amniocentesis and other techniques, such as chorionic villas sampling and ultrasound, for aborting female fetuses rapidly became a major concern, and it remains so till this day (George and Dahiya 1998, Sudha and Rajan 1999, Arnold et al. 2002, George 2002, UNFPA 2001). The astonishing pace at which the network of private clinics providing sex determination and abortion services grew was marked by two features – the tests were cheap (Wertz and Fletcher 1993) and they were widely available, even in remote rural areas bereft of basic amenities and health facilities (possibly because of the widespread use of portable ultrasound equipments and amniocentesis kits) (Menon 1996, Ganatra et al. 2001).

Although data paucity prevents us from obtaining dependable statistics on sex-selective abortions in India, several studies have attempted to estimate the number of unborn girl fetuses from secondary sources. The results, though marked by wide variation, indicate the severity of the problem. Jayaraman (1994) and Arnold et al. (2002) estimate the number of aborted girl fetuses to be between 50,000 and 100,000 every year. Other studies suggest that the incidence rate could be even higher – e.g. using data from the Special Fertility and Mortality Survey (1998) of 1.1 million Indian households, Jha et al. (2006a) estimate that
between 450,000 to 540,000 sex-selective abortions take place in India each year.⁸ Anti-sex determination campaigns during the mid-1980s focused attention on the the vast scale of the problem, especially in the urban areas of northern and western India (Retherford and Roy 2003). Prenatal sex determination was banned in public healthcare facilities nationwide as early as 1978. However, largely due to public awareness campaigns⁹, the state government of Maharashtra was the first to impose a complete ban on all (public and private) prenatal sex determination in 1988¹⁰. The rest of the country followed suit with a similar ban by the Indian central government, known as the Pre-Conception and Pre-Natal Diagnostics Techniques (Prohibition of Sex Selection) Act of 1994 (PNDT Act, effective from 1996).¹¹

There is a general consensus (Luthra 1994, Jha et al. 2006a, Hatti and Sekhar 2004, Arnold et al. 2002, Visaria 2007) that these bans have not been very effective. This perception is likely the result of continued deterioration of the child sex ratio observed in the 2001 Census (and, most recently, the 2011 Census). Despite the ban on sex-selective abortions, the child sex ratio declined from 945 in 1991 to 927 in 2001. In the wake of these findings and the large public outcry that ensued, the Indian government amended the PNDT Act in 2003 and doubled down on the campaign against sex-selective abortions.

Our objective is to evaluate the impact of the 1996 nationwide implementation of the PNDT Act. Unlike previous studies, we use the difference in timing of the Act’s implementation in Maharashtra versus other states to identify the causal effect of the Act on the child sex ratio. The national PNDT Act was very similar to the Maharashtra Act of 1988 and thus non-binding to Maharashtra by virtue of it already being in place in that state.

3 Data

We use rural and urban data from the two decennial Indian censuses of 1991 and 2001. Our main study area is the western state of Maharashtra (MH) and its neighboring states of Gujarat, Andhra Pradesh, Karnataka, Madhya Pradesh and Chhattisgarh (Figure 1).¹²

The rural data for each census year come from two different Census sources. The Primary Census Abstract

⁸However, the estimates by Jha et al. (2006a) have been contested. See further discussions in Bhat (2006), George (2006), Jha et al. (2006b).
⁹The ‘Forum against Sex Determination and Sex Preselection’ in Maharashtra is a prominent example of such campaigns (Gangoli 1998).
¹⁰Source: “Handbook on Pre-Conception & Pre-Natal Diagnostic Techniques Act, 1994 and Rules with Amendments”, 2006, Ministry of Health and Family Welfare, Government of India. Following Maharashtra, a few other states such as Punjab, Haryana, Rajasthan, and Gujarat implemented similar bans on fetal sex determination. However, we could not find any documentation and evidence on enforcement of these bans. Also, our results are robust to the exclusion of these states from our analysis.
¹¹Under the law, first offenders face up to Rs. 10,000 fine and/or 3 year imprisonment. This includes persons or establishments performing sex-selective abortion, as well as the husband/relatives if the woman if forced to undergo the procedure. Repeat offenders are punishable with up to Rs 50,000 fine and/or 5 year imprisonment.
¹²The state of Chhattisgarh was created from Madhya Pradesh in 2000. However, the census data allow us to exactly map villages and towns in the states that were divided in between the two time periods, thus avoiding any complications arising from the division of the state of Madhya Pradesh.
(PCA) provides demographic information on each village, such as age, gender, and caste composition and labor force participation rates. These data were merged with the Census Village-Level Amenities Data (VLAD), which provide information on the availability of various infrastructural facilities and amenities, such as health and educational facilities, electricity, roads, and sources of drinking water. At the next step, we matched the villages from two census years, 1991 and 2001, creating a village-level panel dataset containing information from both the PCA and the VLAD data sets.

We also estimate second set of models using the Primary Census Abstract (PCA) data on towns from the 1991 and 2001 censuses. The town PCA data provide information on population, age, caste, employment, and education in the urban centers. Towns across the two census periods have been matched to create a panel dataset at the town level. Unlike the village data, the census town data do not provide information on the availability of facilities and amenities, presumably because of the ubiquity of these basic services in the urban areas. As a result, we have a different set of controls in our rural and urban estimations.
4 Empirical Strategy

Our empirical strategy exploits spatial variation in the timing of the ban on sex-selective abortions. Villages and towns in the state of Maharashtra, which had already passed and implemented legislation banning sex-selective abortions in 1988, were not affected by the national PNDT Act in 1996, and as such constitute the control group in our analysis. To avoid confusion with the conventional practice of referring to the group without any treatment as a ‘control group’, we will hereafter refer to villages and towns in Maharashtra as the ‘pre-treated’ group. The treatment (or the ‘newly-treated’) group consists of villages and towns in the states bordering Maharashtra – states that experienced the centrally-mandated PNDT Act during the study period 1991-2001.

Our estimating equation is:

$$y_{jt} = \tau Law_{jt} + \alpha_j + \beta_t + \gamma INF_{jt} + \delta X_{jt} + \epsilon_{jt}$$

where y_{jt} is the child sex ratio (number of females aged 0-6 per 1,000 males aged 0-6) in the j-th village at time $t = 1, 2$ (corresponding to years 1991 and 2001, respectively). On the right hand side, our main variable of interest is the treatment status indicator (PNDT implementation) Law_{jt}. For pre-treated Maharashtra villages, $Law_{jt} = 1 \forall t$, while for newly-treated non-Maharashtra villages, $Law_{j1} = 0$ and $Law_{j2} = 1$.

Among the control variables, INF is a time-varying vector of village and household infrastructure. Public healthcare infrastructure is captured by the presence of at least one public health facility – a primary health center, sub-center or a community health center. Additionally, we include the availability of a registered private doctor, a community health worker, and a maternal or child welfare center in a village. Educational facilities included in INF are the presence of a primary/middle school and a high school in a village. Other infrastructural variables include the availability of a paved road, telephone service, electricity, and clean drinking water (tap water) in a village.

A vector of village-level demographic characteristics is represented by the time-varying vector X. It includes factors that may affect the strength of son preference among parents. Parental education is measured by female and male literacy rates. To control for differences across ethnic groups, we include the percentages of a village’s population that belongs to scheduled (low) castes (SC) and scheduled tribes (ST). The standard of living in a village is captured by the mean amount of cultivated land per cultivator and the percentage of cultivable land that is irrigated. Village size is controlled for by the inclusion of total log population of a village.

Unobserved heterogeneity across villages is denoted by α_j. It captures socioeconomic and cultural dif-

13 SC and ST subpopulations are socio-economically backward groups designated by the Government of India
ferences across villages – time-invariant factors that may differentially affect the parental preference of sons over daughters. β_t denotes a time-varying intercept and ϵ_{jt} is an iid error term. Taking the first-difference of equation (1), we obtain:

$$\triangle y_{jt} = \tau \triangle Law_{jt} + \lambda_t + \gamma \triangle INF_{jt} + \delta \triangle X_{jt} + \triangle \epsilon_{jt}$$

(2)

The time effect is $\lambda_t = (\beta_t - \beta_{t-1})$, and τ is the difference-in-difference marginal effect of PNBDT. The first difference operator is \triangle, i.e. $\triangle y_{jt} = (y_{jt} - y_{j(t-1)}$ etc.

Another set of models similar to equation (4) are estimated for the census town level panel data:

$$\triangle y_{kt} = \tau \triangle Law_{kt} + \lambda_t + \delta \triangle X_{kt} + \triangle \epsilon_{kt}$$

(3)

where k denotes the k–th census town. The vector X includes town-level demographic information, e.g. total log population, female literacy rate, male and female work participation rates and the percentages of SC and ST population to total population.

Assuming that the passage of the PNBDT Act in 1996 did not have any effect on the pre-treated group, we can attribute any improvement in the child sex ratio of the newly-treated group to the 1996 PNBDT Act, ceteris paribus. Even if we assume that the 1996 PNBDT Act also affected the pre-treated group (say, by improving the enforcement of the state legislation), it will only dampen the observed impact of the PNBDT Act on the newly-treated group. Thus, the true effect of the PNBDT Act will be even larger than our estimates suggest.

Our estimates may be biased for another reason. The child sex ratio is defined over children aged 0-6 years; but children aged 4-6 years in the pre-treated group (viz., villages in Maharashtra) in 1991 were never exposed to the treatment, as they were born before Maharashtra implemented its ban on sex-selective abortions (viz., 1988). However, as in the earlier case, the inclusion of this age subgroup in the analysis will reduce the observed difference in response rates between the pre- and newly-treated groups. In other words, our estimate of the impact of the PNBDT Act in the newly-treated group is underestimated relative to the true estimate.

The validity of the so-called parallel trends assumption is crucial to any treatment-effect analysis. For our study, this implies that the child sex ratio in the pre-treated and newly-treated groups should follow a parallel time-path in the absence of a PNBDT policy. Alternatively, there should not be any systematic difference between the two groups. Figure 2 presents the decadal child sex ratio from recent Indian censuses. The child sex ratio has been declining steadily over the last three decades nationally as well as in Maharashtra and neighboring states. While the latter group has always had a higher child sex ratio than the national
average, the gap between the two has narrowed significantly since 1991.

Using data from three consecutive National Family Health surveys (NFHS) (1992-93, 1998-99 and 2005-06), Appendix Figure 3 shows the female-to-male child sex ratio by birth cohorts. The evidence is inconclusive due to the inconsistent movement of the time series – probably the result of different mortality rates affecting each age group, and the small size of the sample. Thus, none of our data sources provides reliable information on the child sex ratio for a suitable parallel-trends analysis.

4.1 Rural Areas

One common problem of a multi-state treatment-effect analysis is the heterogeneity of the pre-treated and newly-treated groups. The states in our study area are dissimilar in many respects (e.g., language). We control for time-invariant heterogeneity by estimating village fixed-effects estimates. Since these estimates do not control for time-varying heterogeneity, which may be important in our sample, we restrict our analysis to neighboring states in close proximity that are likely to share similar changes in social, cultural and linguistic traits over time. We start by restricting our study area to the villages along the administrative border of
Maharashtra and its neighboring states (Subsample I). The resulting sample includes 7,800 villages from the border taluks (sub-districts) inside Maharashtra (pre-treated group) and 9,200 villages from non-Maharashtra taluks bordering Maharashtra (newly-treated group).

One downside of this approach is that our study area is susceptible to spillover effects. In the absence of any cross-border migration restrictions, couples in the pre-treated group of villages seeking sex-selective abortions could have readily traveled to a clinic just outside Maharashtra’s border (until the national PNDT Act of 1996 was implemented in the other states). If we consider the case of complete contamination, where couples from the pre-treated area continue to obtain tests across the border until a nationwide ban is implemented, we will observe no relative improvement in the child sex ratio in the newly-treated areas as compared to the pre-treated areas. Partial spillover will attenuate the observed impact of the PNDT Act on the newly-treated group.

Next, we expand the analysis to a second subsample which is less vulnerable to contamination. Villages are drawn from all the districts located along the border of Maharashtra and neighbor states; however, we drop the villages from the immediate taluks on both sides of the Maharashtra border (Subsample II). This gives us a sample of 16,300 pre-treated and 17,500 newly-treated villages. The motivation behind choosing this subsample is that a pre-treated Maharashtra village is similar in characteristics to a newly-treated village from a neighboring non-Maharashtra district, but the two villages are still adequately distant to prevent spillovers.

To check the robustness of our results and for the sake of comparison, two additional subsamples are used – Subsample III, which includes all villages from Maharashtra and neighboring states except the ones from immediate districts on both sides of the border. This subsample contains 15,640 pre-treated and 113,900 newly-treated villages. Subsample IV includes all villages from Maharashtra and all villages from neighboring states. There are 39,711 villages in Maharashtra and 140,622 villages in all the neighboring states.

Finally, Subsample V includes villages from Maharashtra and all other major states in the country (the latter forming the newly-treated sample). The pre-treated group includes 39,711 villages from Maharashtra and 502,462 villages from the rest of the country.

Table 1 presents mean child sex ratios across various rural census subsamples. Figures 4-8 in the Appendix provide a snapshot of changes in the child sex ratio over our study period across the rural subsamples. The administrative division of rural India is as follows – each state (median population size 44.1 million) is divided into several districts (median population size 1.5 million). Each district is divided into several sub-districts or taluks (median population size 170,638). Each taluk consists of numerous villages (median population size 747). Median population sizes are based on 2001 census data of 19 major states.

District- and taluk-level administrative maps from Census 2001 were used to identify pre-treated and newly-treated villages in various subsamples. Official district maps from the Census are provided in the Appendix.

We include Maharashtra and 18 other major states in the sample. Smaller north-eastern states (except Assam), Goa, Delhi and Union Territories have been excluded from the analysis.

Brief descriptive statistics on the characteristics of all five rural subsamples are presented in Appendix Table 7.
Table 1: Child Sex Ratio in Rural India, 1991 and 2001

<table>
<thead>
<tr>
<th>Subsample (I)</th>
<th>Census 1991</th>
<th>Census 2001</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated villages from Maharashtra</td>
<td>977.7 (278.2)</td>
<td>957.4 (245.7)</td>
<td>- 20.3</td>
</tr>
<tr>
<td>Newly-treated villages from neighboring states</td>
<td>996.3 (365.1)</td>
<td>982.8 (243.2)</td>
<td>-13.5</td>
</tr>
<tr>
<td>Subsample (II)</td>
<td>Census 1991</td>
<td>Census 2001</td>
<td>Change</td>
</tr>
<tr>
<td>Pre-treated villages from Maharashtra</td>
<td>965.1 (242.7)</td>
<td>938.5 (228.4)</td>
<td>- 26.6</td>
</tr>
<tr>
<td>Newly-treated villages from neighboring states</td>
<td>989 (253.2)</td>
<td>982.2 (227.2)</td>
<td>- 6.8</td>
</tr>
<tr>
<td>Subsample (III)</td>
<td>Census 1991</td>
<td>Census 2001</td>
<td>Change</td>
</tr>
<tr>
<td>Pre-treated villages from Maharashtra</td>
<td>962.8 (236.3)</td>
<td>928.5 (219.5)</td>
<td>- 34.3</td>
</tr>
<tr>
<td>Newly-treated villages from neighboring states</td>
<td>964.5 (276.2)</td>
<td>957.3 (256.1)</td>
<td>- 7.2</td>
</tr>
<tr>
<td>Subsample (IV)</td>
<td>Census 1991</td>
<td>Census 2001</td>
<td>Change</td>
</tr>
<tr>
<td>Pre-treated villages from Maharashtra</td>
<td>966.7 (246.7)</td>
<td>938.3 (228.7)</td>
<td>- 28.4</td>
</tr>
<tr>
<td>Newly-treated villages from neighboring states</td>
<td>969.6 (272.9)</td>
<td>962.1 (252.1)</td>
<td>- 7.5</td>
</tr>
<tr>
<td>Subsample (V)</td>
<td>Census 1991</td>
<td>Census 2001</td>
<td>Change</td>
</tr>
<tr>
<td>Pre-treated villages from Maharashtra</td>
<td>966.7 (246.7)</td>
<td>938.3 (228.7)</td>
<td>- 28.4</td>
</tr>
<tr>
<td>Newly-treated villages from the rest of India</td>
<td>954.8 (294.7)</td>
<td>946 (267.8)</td>
<td>- 8.8</td>
</tr>
</tbody>
</table>

Source: Indian Census 1991 and 2001 rural data for 19 major states. Outlier observations have been dropped. Standard deviations are in parenthesis. ‘Change’ represents the difference between 1991 and 2001 values.

Kernel density plots show that the pre-treated and newly-treated villages experienced very similar changes in the child sex ratio between 1991 and 2001. The distribution of the change in child sex ratio in the newly-treated villages, however, appears marginally to the right of the distribution in the pre-treated villages.

4.2 Urban Areas

For the urban areas, we analyze four different subsamples – first, a pre-treated group of 144 towns that belong to the districts along the state border inside Maharashtra and a newly-treated group of 49 towns from districts just outside the Maharashtra border (Subsample I). A second subsample includes towns in Maharashtra and neighboring states that are not in districts immediately along both sides of the Maharashtra border (Subsample II). This sample includes 90 pre-treated towns and 252 newly-treated towns. The third subsample (Subsample III) includes all towns in Maharashtra and neighboring states – 234 pre-treated towns and 301 newly-treated towns. Finally, the fourth subsample treats all 234 towns in Maharashtra as

18Administratively, towns typically serve as taluk or district headquarters or state capitals.
19Unlike the rural analysis, the analysis is not disaggregated below the district level because the sample sizes would have been too small.
Table 2: Child Sex Ratio in Urban India, 1991 and 2001

<table>
<thead>
<tr>
<th>Subsample (I)</th>
<th>Mean Child Sex Ratio (Females per 1000 Males in 0-6 year Age Group)</th>
<th>Census 1991</th>
<th>Census 2001</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated towns from Maharashtra</td>
<td>942.8 (37.2)</td>
<td>902.7 (49.5)</td>
<td>- 40.1</td>
<td></td>
</tr>
<tr>
<td>Newly-treated towns from neighboring states</td>
<td>949.7 (28.4)</td>
<td>926.3 (32.8)</td>
<td>- 23.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsample (II)</th>
<th>Mean Child Sex Ratio (Females per 1000 Males in 0-6 year Age Group)</th>
<th>Census 1991</th>
<th>Census 2001</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated towns from Maharashtra</td>
<td>939.3 (42.9)</td>
<td>897.3 (39.6)</td>
<td>- 42</td>
<td></td>
</tr>
<tr>
<td>Newly-treated towns from neighboring states</td>
<td>944 (41.1)</td>
<td>920.2 (56.8)</td>
<td>- 23.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsample (III)</th>
<th>Mean Child Sex Ratio (Females per 1000 Males in 0-6 year Age Group)</th>
<th>Census 1991</th>
<th>Census 2001</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated towns from Maharashtra</td>
<td>941.5 (39.4)</td>
<td>900.6 (45.9)</td>
<td>- 40.9</td>
<td></td>
</tr>
<tr>
<td>Newly-treated towns from neighboring states</td>
<td>944.9 (39.3)</td>
<td>921.2 (53.7)</td>
<td>- 23.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsample (IV)</th>
<th>Mean Child Sex Ratio (Females per 1000 Males in 0-6 year Age Group)</th>
<th>Census 1991</th>
<th>Census 2001</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated towns from Maharashtra</td>
<td>941.5 (39.4)</td>
<td>900.6 (45.9)</td>
<td>- 40.9</td>
<td></td>
</tr>
<tr>
<td>Newly-treated towns from the rest of India</td>
<td>928.6 (46.7)</td>
<td>899.9 (63.7)</td>
<td>- 28.7</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 presents mean child sex ratios across the urban census subsamples. Kernel density plots of the change in child sex ratio (1991 to 2001) for the town subsamples are presented in Figure 9 through Figure 12 in the Appendix. The distributions are generally less smooth than their rural counterparts, mainly due to the smaller sample sizes. However, the distributions of the pre-treated and newly-treated are distinctly different; in most subsamples, the pre-treated group shows a stronger deterioration in the child sex ratio.

4.3 Heterogeneous Treatment Effects

The model we have outlined so far provides us with the mean effect of the PNDT Act on the child sex ratio. However, there is significant heterogeneity across communities in the degree of son preference, and it is possible that the impact of the PNDT Act may vary with the extent of son preference. In particular, communities with weaker son preference may respond more to a PNDT than those with a stronger and more entrenched preference for sons.

To allow for heterogeneity of impact, we use the quantile regression approach, which permits the estimated impact of the PNDT Act on child sex ratios to vary across every point on the conditional distribution of
the child sex ratio. There is one problem, however; first-differencing of the data, which we use in this paper to control for unobserved village fixed effects, redefines the quantiles of the underlying distribution. In other words, regression coefficients estimated at the various percentile points (say 0.25, 0.50, 0.75) of the distribution of $\triangle y$ may not be interpreted in the same way as similar coefficients obtained from quantile regressions of y.

We are interested in knowing how the treatment effect varies across the distribution of the child sex ratio in 1991 – not how it varies across the distribution of the 1991-2001 change in the child sex ratio. Thus, our objective is to first-difference the data (i.e., use $\triangle y$ as the dependent variable in our analysis), but to then estimate the regression at different points of the conditional distribution of y, not $\triangle y$. To the best of our knowledge, only Powell (2010) provides an econometric technique suitable for this framework. Following his methodology, we estimate a GMM regression model where the quantiles are defined by both observation-specific and fixed-effect residuals. The resulting coefficient can thus be interpreted in the same fashion as a regular cross-sectional quantile regression estimate. Due to space constraint, we only report 0.10, 0.25, 0.50 (median), 0.75 and 0.90 percentile regression results from village subsample (V), i.e. all villages across the country, in the Appendix. Additional results are available from the authors.

Another alternative methodology uses a sampling technique in the manner of Mata and Machado (2005). Broadly speaking, this methodology involves taking a large random sample (5000 observations in our case) from the dataset at each percentile of the conditional distribution of the child sex ratio in the base year (1991). A first-difference regression is then run on each of these 100 samples, thereby mimicking quantile regressions where the percentile points are based on the 1991 distribution of child sex ratio. The PNDT coefficients (along with 95% confidence intervals) from these regressions are presented as graphs in the Appendix.

5 Empirical Findings

The basic results from the village fixed-effects models estimated using the first two rural subsamples are presented in Table 3. Results from rural subsamples (III), (IV), and (V) serve as robustness checks. These results are presented in Appendix Table 5 and mentioned, whenever relevant, in our current discussion. All regression models correct for an unknown form of heteroskedasticity, using the Huber-White method. Results are robust to clustering at the state, district, and taluk levels.

The first row in Table 3 presents the treatment effect estimates. Results from the first subsample – pre-treated and newly-treated villages from immediate taluks on both sides of Maharashtra border – do not show any significant impact of the PNDT Act. Given that these geographically close communities are susceptible

20Koenker and Bassett (1978).
Table 3: Village Fixed-effect Regression of Child Sex Ratio

<table>
<thead>
<tr>
<th>First Difference Regression of Child Sex Ratio</th>
<th>Subsample (I)</th>
<th>Subsample (II)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No INF Variables</td>
<td>With INF Variables</td>
</tr>
<tr>
<td>PNNDT Act</td>
<td>3.44</td>
<td>3.68</td>
</tr>
<tr>
<td>Log village population</td>
<td>38.37**</td>
<td>14.85</td>
</tr>
<tr>
<td>Male literacy rate</td>
<td>0.88**</td>
<td>0.82**</td>
</tr>
<tr>
<td>Female literacy rate</td>
<td>-1.13**</td>
<td>-0.95**</td>
</tr>
<tr>
<td>Scheduled Caste (% of population)</td>
<td>1.25*</td>
<td>1.11*</td>
</tr>
<tr>
<td>Scheduled Tribe (% of population)</td>
<td>1.90*</td>
<td>0.52</td>
</tr>
<tr>
<td>Acres of cultivable land per cultivator</td>
<td>-0.99</td>
<td>-1.32</td>
</tr>
<tr>
<td>% of irrigated cultivable land</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Availability in the village of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary or Middle School</td>
<td>4.11</td>
<td>9.06</td>
</tr>
<tr>
<td>High School</td>
<td>-5.45</td>
<td>0.91</td>
</tr>
<tr>
<td>Any public health facility</td>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>Maternal/child welfare center</td>
<td>-0.87</td>
<td>-3.99</td>
</tr>
<tr>
<td>Registered medical practitioner</td>
<td>-6.50</td>
<td>-8.23**</td>
</tr>
<tr>
<td>Community health worker</td>
<td>-3.72</td>
<td>-5.64*</td>
</tr>
<tr>
<td>Tap water</td>
<td>-0.86</td>
<td>-1.32</td>
</tr>
<tr>
<td>Paved approach road</td>
<td>-4.14</td>
<td>2.20</td>
</tr>
<tr>
<td>Electricity</td>
<td>14.62</td>
<td>13.10</td>
</tr>
<tr>
<td>At least one telephone</td>
<td>-5.53</td>
<td>-4.01</td>
</tr>
<tr>
<td>Intercept term</td>
<td>-22.63**</td>
<td>-19.16**</td>
</tr>
<tr>
<td>F Statistic</td>
<td>3.18</td>
<td>1.72</td>
</tr>
<tr>
<td>R^2</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>Number of Villages</td>
<td>16,565</td>
<td>15,380</td>
</tr>
</tbody>
</table>

Note: Data are from village-level Indian Censuses 1991 and 2001. Huber-White robust standard errors have been used in all estimated models. Coefficients which are statistically significant at 10% level have been marked with * and those which are significant at 5% or below have been marked with **. Standard errors are clustered at the taluk level.

to spillover effects, a ban on sex-selective abortions is expected to be ineffective for this subsample. In contrast, the second subsample where the risk of spillovers is lower – villages in neighboring districts on both sides of the Maharashtra border but not in the taluks on either side of the border – shows an improvement of 16.6 points in the child sex ratio as a consequence of the PNDT Act. Among the rest of the rural subsamples, the positive impact of the PNDT Act ranges between 13.1 and 21.1 points, all significantly different from zero at the 5 percent level.

Table 4 presents the results for towns. All four subsamples of census towns exhibit similar positive effects of the PNDT Act. The predicted rise in child sex ratio associated with the PNDT Act varies from 19 points to 20.6 points.
Our results suggest that the 1996 PNDT was far from an utter failure. The partial effect of the Act, controlling for other factors, was an increase in the child sex ratio over our study period. Although the observed child sex ratio decreased almost across the board, the marginal effect of PNDT was positive. In other words, in the absence of this Act, the child sex ratio would have declined further.\footnote{Park and Cho (1995) have argued that similar restrictions on sex-determination tests placed in 1990 in South Korea have been effective. Chung and Das Gupta (2007) discuss the recent rise improvements in sex ratio in South Korea.}

Of course, this does not mean that the PNDT Act could not have better enforced. Among the other results we obtain are a weak but significant positive effect of the share of “backward” population (particularly the percentage of “scheduled” tribes) in a village on the child sex ratio in most of our rural subsamples and one urban subsample. Scheduled castes and tribal groups, by virtue of their difference from traditional upper-caste Hindu society, suffer less from rigid dowry norms and other rituals limiting women’s autonomy (Miller 1981, Agnihotri et al. 2002).

Another interesting finding is the negative effect of female literacy rate on the child sex ratio. The effect, although not very strong, is consistent across all rural subsamples. This is likely the result of a strong inverse association between female literacy and fertility.\footnote{See Sharma and Retherford (1990), Murthi, Giio and Dreze (1995), Parikh and Gupta (2001), Jha et al. (2006a), and Dasgupta and Bhat (1997).} As women’s schooling has expanded, fertility rates have fallen, and the pressure on a couple to have a male child has increased. As the Economist magazine noted in a special recent issue on gendercide: “in societies where four or six children were common, a boy would...
almost certainly come along eventually; son preference did not need to exist at the expense of daughters. But now couples want two children – or, as in China, are allowed only one – they will sacrifice unborn daughters to their pursuit of a son. That is why sex ratios are most distorted in the modern, open parts of China and India.23 Park and Cho (1995) also associate reduced fertility and a small-family norm to the strengthening of son preference in East Asian societies.

Two of the urban subsamples exhibit a weak negative association between female labor force participation rates and the child sex ratio. Again, this likely reflects the fact that women’s participation in the formal work force raises the opportunity cost of a child and lowers fertility. In the face of strong son preference, this induces couples to sex-select their children in favor of boys.

The availability of healthcare and educational infrastructure generally do not have significant effects on the child sex ratio, with one notable exception. We find that the presence of a registered medical practitioner – typically a private doctor – in a village is associated with a decline in the child sex ratio ranging of 6-8 points. A similar but weaker negative effect of the availability of a maternal or child welfare center is observed in one subsample. These findings are not surprising. The availability of a nurse midwife (which is the most common staffing in maternal and child welfare centers in rural India) or a registered private doctor in a village makes it easier for couples to access prenatal sex determination tests and sex-selective abortion services (Srivastava 1998, Ganatra et al. 2001, Deolalikar et al. 2009), thus skewing the child sex ratio.

5.1 Quantile Regression Results

The quantile regression results (following Powell 2010), which allow for heterogeneity in the treatment effect, are presented in Appendix Table 6. Appendix Figures 13-17 are the PNDT coefficient plots (following Mata and Machado, 2005).

Both the methodologies yield broadly similar results. The quantile regression results show a median PNDT treatment effect that is similar in magnitude to the (mean) linear effects discussed earlier. The impact of the PNDT Act is strongest for the median village. A round the left tail (0.10 percentile or lower) of the base-year distribution of child sex ratios, the estimated effect of the PNDT Act is significantly smaller, or even negative. The weaker effect of the PNDT Act is also observed in the case of villages in the right tail of the child sex ratio distribution.

These results are not unexpected. Villages at the lower end of the child sex ratio distribution have a stronger son preference, as revealed by their below-average child sex ratios in the base year. The sheer strength of the son preference in these communities will mean that legislation banning sex-selective abortions will likely not have much effect on the child sex ratio, as couples will substitute neglect of the girl child.

(which in turn would lead to excess mortality among girls) for sex-selective abortions. Likewise, at higher quantiles of the conditional distribution (corresponding to higher child sex ratios and an indication of weak son preference), the PNDT Act is also likely to have less impact, as the incidence of sex-selection practice is already very low in such villages.

It is important to qualify our empirical results. First, similar to many treatment-effect studies, we have no way to capture the regional or temporal variation in the enforcement of the PNDT Act. It is possible for a part or all of the positive impact of the PNDT to originate from differences in enforcement between the pre-treated and newly-treated communities. However, given the robustness of the results across various rural and urban subsamples, it is unlikely that this is a serious problem with our analysis.

Second, our fixed-effect estimates ignore other time-varying changes in socioeconomic and cultural factors that may differentially affect the pre-treated and newly-treated communities. This concern is mitigated by our use of several subsamples, but these unobserved changes could still alter the magnitude of the impact of the PNDT Act.

6 Conclusion

In this paper we use a policy variation to examine the causal impact of a legislative ban on sex-selective abortions in India on child sex ratios. Using village- and town-level longitudinal data from the 1991 and 2001 censuses, we find a positive and significant causal impact of the 1994 PNDT Act on child sex ratios. Our estimates suggest that, controlling for other factors, the PNDT Act accounts for an increase of 16-21 points in the child sex ratio. Our results are robust to a variety of methodologies and subsamples. While the magnitude of the estimated effect may seem small, our calculations indicate that the PNDT Act may have resulted in an additional 51,000 surviving girls aged 0-6 years in the newly-treated areas.

Our results are in stark contrast to the common perception in India that the PNDT Act has been a failure. The perception is based on the fact that the child sex ratio in the country has continued to fall even after the passage and implementation of the Act. However, our analysis suggests that in the absence of the PNDT Act, the child sex ratio in the country would have declined even more than it did. Naturally, our results say nothing about the room for improvement in the implementation of the PNDT Act. There is no question that the Act is unevenly and weakly enforced. Encouragingly, however, the Indian government expanded the provisions of the PNDT Act in 2003 and has been strengthening its enforcement.

When we allow for heterogenous impact of the PNDT Act, we find that the PNDT Act has been most effective among villages with average base-year characteristics, i.e. those around the median of the 1991 child sex ratio distribution. We find the weakest impact (or a negative impact) of the law around the left tail of
the distribution, i.e. among villages that have strong son preference. Effect of the law on villages with low initial son-preference is also weaker compared to the median village.

The PNDT Act is only one of several interventions being used to combat gender imbalance in India. Other interventions include programs such as *Balika Samriddhi Yojana*, started in 1997, which provides monetary incentives for the education of girls from poor families. Similar programs have been put in place in Tamil Nadu (the Cradle Baby Scheme in 1992), Andhra Pradesh (Girl Child Protection Scheme 1996-97), and a few other states. However, these programs have generally low population coverage rates.

In addition, the government has also been at the forefront of changing inheritance laws with a view to reducing son preference. Until recently, inheritance laws governing the transfer of resources across generations, including the Hindu Succession Act of 1956, were largely discriminatory against women. The Government amended the Succession Act in 2004 to establish equal property rights for male and female children.

Finally, the absence of formal social safety nets – particularly pension schemes – reinforces son preference, since the care of elderly parents is typically the responsibility of sons. Direct cash transfer programs, such as the National Old Age Pension Scheme (2007) for the elderly poor, can also reduce the old-age motive to prefer sons over daughters.
Figure 3: Sex Ratio by Year of Birth in India (1986-87 to 2005-06)

Source: Data on household members from the National Family Health Survey of 1992-93, 1998-99 and 2005-06. ‘MH’ denotes the state of Maharashtra. Due to low sample size at each year, a smoothing technique similar to a three-year moving average has been used to calculate sex ratio at each year. For example, sex ratio at year 2005-06 is the female-to-male sex ratio among children of age 0-2 years, while sex ratio at year 2004-05 is the sex ratio among 1-3 year old children – both calculated from the 2005-06 survey data. Figures for the years 1987-88 to 1992-93 have been generated from 1992-93 NFHS data; those from 1993-94 to 1998-99 have been computed from the 1998-99 NFHS data and the rest come from the 2005-06 NFHS data.
Figure 4: Change in Rural Child Sex Ratio, 1991-2001 [Subsample (I) - Villages from immediate taluks on both sides of Maharashtra (MH) border]

Figure 5: Change in Rural Child Sex Ratio, 1991-2001 [Subsample (II) - Villages from neighboring districts from both sides of the Maharashtra border, except the immediate neighboring taluks]
Figure 6: Change in Rural Child Sex Ratio, 1991-2001 [Subsample (III) - Villages from Maharashtra and neighboring states except from immediate districts on both sides of the MH border]

Figure 7: Change in Rural Child Sex Ratio, 1991-2001 [Subsample (IV) - All villages from Maharashtra and neighboring states]
Figure 8: Change in Rural Child Sex Ratio, 1991-2001 [Subsample (V) - All villages from Maharashtra and other major Indian states]

Figure 9: Change in Urban Child Sex Ratio, 1991-2001 [Subsample (I) - Towns from immediate districts on both sides of Maharashtra (MH) border]
Figure 10: Change in Urban Child Sex Ratio, 1991-2001 [Subsample (II) - Towns from Maharashtra and
neighboring states, except from the immediate districts on both sides of the MH border]

Figure 11: Change in Urban Child Sex Ratio, 1991-2001 [Subsample (III) - All towns from Maharashtra
and neighboring states]
Figure 12: Change in Urban Child Sex Ratio, 1991-2001 [Subsample (IV) - All towns from Maharashtra and the rest of the country]

Source (Figure 4 through Figure 12): Calculated from Census of India, 1991 and 2001 Primary Census Abstract. ‘Change’ denotes the difference between 1991 and 2001 values.

Figure 13: Quantile Regression Coefficient Plot [Subsample (I) - Villages from immediate taluks on both sides of Maharashtra (MH) border]
Figure 14: Quantile Regression Coefficient Plot [Subsample (II) - Villages from neighboring districts from both sides of the Maharashtra border, expect the immediate neighboring]

Figure 15: Quantile Regression Coefficient Plot [Subsample (III) - Villages from Maharashtra and neighboring states except from immediate districts on both sides of the MH border]
Figure 16: Quantile Regression Coefficient Plot [Subsample (IV) - All villages from Maharashtra and neighboring states]

Figure 17: Quantile Regression Coefficient Plot [Subsample (V) - All villages from Maharashtra and other major Indian states]
Table 5: Village Fixed-effect Regression of Child Sex Ratio

<table>
<thead>
<tr>
<th></th>
<th>Subsample (III)</th>
<th>Subsample (IV)</th>
<th>Subsample (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Difference Regression of Child Sex Ratio</td>
<td>Coeff.</td>
<td>Coeff.</td>
<td>Coeff.</td>
</tr>
<tr>
<td>PNDT Act</td>
<td>21.05**</td>
<td>16.81**</td>
<td>13.08**</td>
</tr>
<tr>
<td>Log village population</td>
<td>44.75**</td>
<td>33.23**</td>
<td>50.79**</td>
</tr>
<tr>
<td>Male literacy rate</td>
<td>0.77**</td>
<td>0.79**</td>
<td>0.56**</td>
</tr>
<tr>
<td>Female literacy rate</td>
<td>-0.82**</td>
<td>-0.83**</td>
<td>-0.81**</td>
</tr>
<tr>
<td>Scheduled Caste (% of population)</td>
<td>0.09</td>
<td>0.00</td>
<td>0.27**</td>
</tr>
<tr>
<td>Scheduled Tribe (% of population)</td>
<td>0.34**</td>
<td>0.29**</td>
<td>0.29**</td>
</tr>
<tr>
<td>Acres of cultivable land per cultivator</td>
<td>0.68</td>
<td>0.55</td>
<td>0.14</td>
</tr>
<tr>
<td>% of irrigated cultivable land</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03**</td>
</tr>
<tr>
<td>Availability in the village of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary or Middle School</td>
<td>-4.75</td>
<td>-2.43</td>
<td>-4.27**</td>
</tr>
<tr>
<td>High School</td>
<td>0.63</td>
<td>-0.20</td>
<td>-0.42</td>
</tr>
<tr>
<td>Any public health facility</td>
<td>0.43</td>
<td>1.04</td>
<td>2.52**</td>
</tr>
<tr>
<td>Maternal/child welfare center</td>
<td>-3.42</td>
<td>-3.37</td>
<td>-2.21*</td>
</tr>
<tr>
<td>Registered medical practitioner</td>
<td>-6.06**</td>
<td>-6.65**</td>
<td>-6.61**</td>
</tr>
<tr>
<td>Community health worker</td>
<td>0.63</td>
<td>-1.21</td>
<td>0.06</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.87</td>
<td>-0.02</td>
<td>2.29**</td>
</tr>
<tr>
<td>Paved approach road</td>
<td>0.04</td>
<td>0.08</td>
<td>1.90**</td>
</tr>
<tr>
<td>Electricity</td>
<td>-2.06</td>
<td>1.42</td>
<td>1.84</td>
</tr>
<tr>
<td>At least one telephone</td>
<td>0.71</td>
<td>-0.70</td>
<td>-7.85**</td>
</tr>
<tr>
<td>Intercept term</td>
<td>-38.95</td>
<td>-32.95**</td>
<td>-30.92**</td>
</tr>
<tr>
<td>F Statistic</td>
<td>13.34</td>
<td>17.03</td>
<td>52.3</td>
</tr>
<tr>
<td>R^2</td>
<td>0.003</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>Number of Villages</td>
<td>123,107</td>
<td>170,937</td>
<td>519,502</td>
</tr>
</tbody>
</table>

Note: Data are from village-level Indian Censuses 1991 and 2001. Huber-White robust standard errors have been used in all estimated models. Coefficients which are statistically significant at 10% level have been marked with * and those which are significant at 5% or below have been marked with **. Standard errors are clustered at the taluk level.

Table 6: Village Fixed-effect Quantile Regression of Child Sex Ratio Rural Subsample (V) - Villages from immediate taluks on both sides of Maharashtra (MH) border

<table>
<thead>
<tr>
<th></th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Difference Regression of Child Sex Ratio</td>
<td>Quantile</td>
<td>Quantile</td>
<td>Quantile</td>
<td>Quantile</td>
<td>Quantile</td>
</tr>
<tr>
<td>Coefficient</td>
<td>25.9**</td>
<td>39.6**</td>
<td>38.8**</td>
<td>35.3**</td>
<td>33.7**</td>
</tr>
<tr>
<td>Standard Error</td>
<td>11.92</td>
<td>6.33</td>
<td>4.26</td>
<td>6.59</td>
<td>14.23</td>
</tr>
</tbody>
</table>

Note: Data are from village-level Indian Censuses 1991 and 2001. Quantile regression methodology suggested by Powell (2010) has been used. Standard errors are bootstrapped. Coefficients which are statistically significant at 10% level have been marked with * and those which are significant at 5% or below have been marked with **
Table 7: Descriptive Statistics of Rural Subsamples: Average Change from 1991 to 2001

<table>
<thead>
<tr>
<th>First-difference (change from 1991 to 2001)</th>
<th>Subsample (I)</th>
<th>Subsample (II)</th>
<th>Subsample (III)</th>
<th>Subsample (IV)</th>
<th>Subsample (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MH</td>
<td>Non MH</td>
<td>MH</td>
<td>Non MH</td>
<td>MH</td>
</tr>
<tr>
<td>Log village population</td>
<td>0.17</td>
<td>0.18</td>
<td>0.14</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>Male literacy rate</td>
<td>16.97</td>
<td>19.05</td>
<td>13.46</td>
<td>20.34</td>
<td>13.45</td>
</tr>
<tr>
<td>Female literacy rate</td>
<td>19.58</td>
<td>20.00</td>
<td>18.23</td>
<td>19.81</td>
<td>19.36</td>
</tr>
<tr>
<td>Scheduled Caste (% of population)</td>
<td>-0.58</td>
<td>-0.48</td>
<td>-0.55</td>
<td>-0.54</td>
<td>-0.45</td>
</tr>
<tr>
<td>Scheduled Tribe (% of population)</td>
<td>0.06</td>
<td>0.78</td>
<td>-0.82</td>
<td>0.62</td>
<td>-0.24</td>
</tr>
<tr>
<td>Acres of cultivable land per cultivator</td>
<td>0.60</td>
<td>0.03</td>
<td>0.49</td>
<td>0.04</td>
<td>0.29</td>
</tr>
<tr>
<td>% of irrigated cultivable land</td>
<td>4.99</td>
<td>9.30</td>
<td>5.07</td>
<td>16.94</td>
<td>4.77</td>
</tr>
<tr>
<td>Share of villages that have:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary or Middle School</td>
<td>0.06</td>
<td>0.08</td>
<td>0.02</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>High School</td>
<td>0.09</td>
<td>0.06</td>
<td>0.10</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Any public health facility</td>
<td>0.08</td>
<td>0.12</td>
<td>0.08</td>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>Maternal/child welfare center</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Registered medical practitioner</td>
<td>0.03</td>
<td>0.07</td>
<td>-0.01</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>Community health worker</td>
<td>0.13</td>
<td>0.25</td>
<td>0.18</td>
<td>0.18</td>
<td>0.10</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.19</td>
<td>0.16</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Paved approach road</td>
<td>0.43</td>
<td>0.12</td>
<td>0.40</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>Electricity</td>
<td>-0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>At least one telephone</td>
<td>0.26</td>
<td>0.23</td>
<td>0.39</td>
<td>0.26</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Source: Data are from village-level Indian Censuses 1991 and 2001. Maharashtra and non-Maharashtra villages are denoted by ‘MH’ and “non-MH”, respectively. Subsamples are – (I) Villages from taluks along the administrative border of Maharashtra and its neighboring states, (II) Villages from MH and neighboring state districts along the state border, except the villages from taluks immediately on both sides of the border, (III) All villages from Maharashtra and neighboring states except the ones from immediate districts on both sides of the border, (IV) All villages from Maharashtra and all villages from neighboring states.
<table>
<thead>
<tr>
<th>First-difference (change from 1991 to 2001)</th>
<th>Subsample (i)</th>
<th>Subsample (ii)</th>
<th>Subsample (iii)</th>
<th>Subsample (iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MH</td>
<td>Non MH</td>
<td>MH</td>
<td>Non MH</td>
</tr>
<tr>
<td>Log town population</td>
<td>0.23</td>
<td>0.19</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>Female literacy rate</td>
<td>10.87</td>
<td>11.45</td>
<td>10.84</td>
<td>10.83</td>
</tr>
<tr>
<td>Scheduled Caste (% of population)</td>
<td>-0.41</td>
<td>0.34</td>
<td>-0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>Scheduled Tribe (% of population)</td>
<td>-0.42</td>
<td>0.75</td>
<td>-0.12</td>
<td>0.35</td>
</tr>
<tr>
<td>Male work force participation rate</td>
<td>0.51</td>
<td>-0.05</td>
<td>0.25</td>
<td>0.90</td>
</tr>
<tr>
<td>Female work force participation rate</td>
<td>1.73</td>
<td>2.81</td>
<td>1.21</td>
<td>3.62</td>
</tr>
</tbody>
</table>

Source: Data are from town-level Indian Censuses 1991 and 2001. Maharashtra and non-Maharashtra towns are denoted by ‘MH’ and ‘non-MH’, respectively. Subsamples are – (i) Towns from districts along the administrative border of Maharashtra and its neighboring states, (ii) All towns from MH and neighboring states except the districts along the state border of MH, (iii) All towns from MH and neighboring states, (iv) All towns from MH and the rest of India.
References

