Cricket interruptus: fairness and incentive in interrupted cricket matches

Michael Carter and Graeme Guthrie†

October 26, 2002

Abstract

We present a new adjustment rule for interrupted cricket matches that equalizes the probability of winning before and after the interruption. Our proposal differs from existing rules in the quantity preserved (the probability of winning), and also in the point at which it is measured (the time of interruption). We claim this is both fair and free of incentive effects. We give several examples of how our rule could have been applied in past matches, including some in which the ultimate result might have been different.

The game of cricket is an immensely popular participatory and spectator sport in Britain and its former colonies in Africa (South Africa and Zimbabwe), Australasia (Australia and New Zealand), the Indian subcontinent (Bangladesh, India, Pakistan, Sri Lanka), and the West Indies. Traditionally, an international cricket match (“test match”) is played over five days and, more often than not, it ends in a draw. It is a game for afficionados. Recognising the potential popular appeal of a shorter game that provided a decisive result, the Australian media magnate Kerry Packer pioneered the introduction of a one-day game in the 1970s. Since then, the game has flourished commercially as a television sport, becoming the second most popular (after football) spectator sport. International teams travel the world, playing a mixture of one-day games and the traditional test matches. Annual one-day tournaments are held in Australia and Sharjah. Every four years, all major cricketing nations compete in the World Cup to produce an international champion.

A one-day game typically lasts about seven hours, during which the two opposing teams each complete a single innings with a limit of 50 overs. Even over this short period, it is not unusual for a game to be interrupted by rain, especially in temperate countries such as England, Australia and New Zealand.1 Typically, the duration of the game must be reduced. Since the

*We gratefully acknowledge the helpful comments of Sanghamitra Das and Paul Walker, and the research assistance of Gareth Stiven and Steen Videbeck.

†Corresponding author: School of Economics and Finance, Victoria University of Wellington, Wellington, New Zealand. Email: graeme.guthrie@vuw.ac.nz Phone: 64-4-4635763 Fax: 64-4-4955014

1In the 1999 World Cup in England, eight of the 42 matches were affected by rain.
basic objective of the short game is to produce a clear winner, some rule must be applied to adjust for the shorter duration. This adjustment is called a rain rule.

In an uninterrupted match, the team batting first has 50 overs from which to score as many runs as possible. Its 11 players bat successively in pairs until either ten of the 11 are given out or 50 overs have been bowled.² The total runs scored becomes the target for the second team, which in turn has 50 overs and 10 wickets in which to score more runs than the first team to win the match. Should the game be interrupted by rain during the innings of the second team, it faces a lower number of deliveries and hence its winning target has to be adjusted.

A variety of rain rules have been suggested, including:

Average run rate (ARR) Team 2’s target is to achieve a higher run rate per over than team 1 irrespective of the number of overs faced by the two teams.

Most productive overs (MPO) Team’s 2 target is the total scored by team 1 in its \(n \) highest scoring overs, where \(n \) is the number of overs faced by team 2.

Duckworth-Lewis rule Team 2’s target is adjusted by the expected number of runs scored in the lost overs (where the expectation is based on a sample of prior games of all teams).

At first, the simple ARR rule was used. Because it was perceived to favour the team batting second, it was replaced by the MPO rule in the 1992 World Cup. MPO strongly favours the team batting first, and the weather appeared to be the decisive determinant in a number of matches in this tournament. The apparent unfairness of this situation inspired the work of Duckworth and Lewis and the current authors.³

The most obvious criterion for a rain rule is that it be perceived to be “fair”. As economists, we suggest another criterion is also important.⁴ Ideally, the rain rule should not affect the incentives of either team. Existing rules distort the behaviour of the batting team — inducing the team to play more aggressively when an interruption is anticipated.⁵ We propose a new rain rule that is both fair and free of incentive effects.

²The over is the conventional unit of account in cricket. Each over comprises 6 deliveries or balls bowled by a single bowler. Consequently, there are 300 deliveries in an innings. Each bowler can bowl a maximum of 10 overs in the innings. A bowler cannot bowl consecutive overs.

³Another rule, the modified PARAB method, was used in the 1996 World Cup. It has since been supplanted by the Duckworth-Lewis rule. Duckworth and Lewis (1998) provide a brief description. Further material on this and other rain rules is available on the internet at www.cricket.org.

⁴Other economists to analyze sporting situations include Chiappori, et al. (2000), Romer (2002), and Walker and Wooders (1998).

⁵This was particularly apparent in practice under the ARR rule, stimulating its replacement by the MPO rule and then ultimately the Duckworth-Lewis rule.
1 The Duckworth-Lewis rule

Currently, the most widely used rain rule is that proposed by Duckworth and Lewis, introduced in 1997. It was applied in the 1999 World Cup in England, and is now used almost universally. Using data from a large number of past matches, Duckworth and Lewis estimated the exponential decay function

\[Z(n, w) = A(w)(1 - e^{-b(w)n}) \]

where \(Z \) is the number of runs scored with \(n \) overs and \(w \) wickets remaining.\(^6\) The estimated function is then tabulated, and the tables used to calculate the necessary adjustment in the target. We believe it is more insightful to present the Duckworth-Lewis rule graphically.\(^7\)

Application of the Duckworth-Lewis rule is most straightforward when the target is equal to the average number of runs scored in one-day internationals (223). Figure 1 shows the expected number of runs as a function of overs assuming no wickets have been lost, as estimated from the data. It is the graph of the estimated function \(Z(n, 10) \).

Consider 3 different scenarios, in each of which there is a single interruption of 20 overs.

Interruption at the beginning — 30 overs remaining The average number of runs scored with 30 overs and 10 wickets remaining is 172. This becomes the revised target required of the second team to win the match.

Interruption at the end — last 20 overs lost The average number of runs scored in the last 20 overs (assuming 10 wickets intact) is 131. The interruption costs the second team the opportunity to score these runs, so that the target is reduced by 131 runs. The revised

\(^6\)Duckworth and Lewis (1998) use \(w \) to denote wickets lost rather than wickets remaining. They did not publish their estimated parameters claiming commercial sensitivity. However, we have been able to reconstruct their estimates from the published tables.

\(^7\)Adjustment is more complicated when there is an interruption in the first innings. For this reason, we confine our attention to second innings interruptions in this paper.
target is $223 - 131 = 92$. The second team wins provided it has scored this many runs when the game is interrupted.

Interruption in the middle — overs 20 to 40 are lost On average, teams score $172 - 76 = 96$ runs in this middle period. Therefore, after the interruption, the second team’s target is reduced by 96 runs. The revised target is $223 - 96 = 127$. If the second team has scored s runs at the time of the interruption, it requires an additional $127 - s$ runs in the remaining 10 overs to win the match.

Where wickets have been lost, the Duckworth-Lewis rule uses the corresponding function $Z(n, w)$ to calculate the revised target. For example, the expected runs function with eight wickets in hand $Z(n, 8)$ is depicted in Figure 2. On average, a team with 8 wickets remaining will score 120 runs in the last 20 overs. Consequently, if the game finishes prematurely with 8 wickets remaining, the second team’s target is reduced by 120 runs, from 223 to 103. Similarly, on average, such a team will score $152 - 72 = 80$ runs in the middle 20 overs. If the game is interrupted after 20 overs, and resumes with 10 overs remaining, the second team’s target is reduced by 80 runs, from 223 to 143.

To cope with targets which differ from the average (223), Duckworth-Lewis simply scale the adjusted target proportionately. For example, if team 2’s initial target is 250 runs, each of the revised targets is scaled by $250/223$. Alternatively, we can represent the Duckworth-Lewis rule as scaling the expected runs function proportionately. For example, suppose the target is 250. Figure 3 shows the expected number of runs (scaled proportionately), assuming that team 2 has 1, 6, 8 and 10 wickets in hand. Target revisions can be read directly from this diagram. For example, if the first 20 overs are lost, the revised target is read from the top curve at 30 overs, namely 193. If the last 20 overs are lost, the target is reduced by 147 runs. The revised target is 103.

It is instructive to think of the various alternative rules in terms of opportunity cost. Each adjusts the target by the opportunity cost of the interruption, but the rules vary in the way in
which they measure the opportunity cost. Average run rate (ARR) measures the opportunity cost on the basis of the average number of runs scored by the opposing team in the missing overs. Most productive overs (MPO) measures the opportunity cost on the basis of the least productive overs of the opposing team. The Duckworth-Lewis rule measures the opportunity cost on the basis of the number of runs scored on average in the missing overs. It improves on the earlier adjustment rules in recognising that the opportunity cost of an interruption varies with the stage of the innings and number of wickets in hand. But it makes no provision for the opportunity cost of the interruption to vary with the performance of the team in the innings prior to the interruption.

2 A new proposal

We propose an alternative adjustment rule which aims to reduce the net cost of an interruption to zero, by preserving each team’s chances of winning the match. As the second innings evolves, the probability that team 2 will win fluctuates. A sequence of high-scoring overs increases the probability of a win. On the other hand, if several wickets fall in a short space of time, a win becomes less likely. Our proposal is to adjust the target after an interruption so as to preserve the probability of team 2 winning the match. We claim that this is both fair and free of incentive effects.

2.1 The new rule explained

The batting team has two resources, overs and wickets, with which to score runs. Suppose that team 2 has n overs remaining in its innings and has w wickets in hand. We denote by $F(r; n, w)$ the cumulative distribution function for the number r of runs which the team will score in the remainder of its innings; that is, team 2 will score r runs or less with probability $F(r; n, w)$.

Suppose that team 1 scores t runs in its innings. This means that team 2 must score more than t runs to win the match. Suppose that the game is interrupted when there are n overs
remaining in its innings, at which point team 2 has scored s runs and has w wickets in hand. At that point, assuming the remainder of its innings is uninterrupted, team 2 will win the match if and only if it scores more than $t - s$ additional runs. This will occur with probability

$$1 - F(t - s; n, w).$$

Suppose that the second innings is interrupted at this point. When the innings resumes, team 2 will still have w wickets in hand, but now it will be able to face just n' overs. That is, the interruption has shortened the innings by $n - n'$ overs. Suppose that team 2’s target is reset so that it must score more than t' runs in total in order to win the match. It will achieve this target with probability

$$1 - F(t' - s; n', w).$$

Provided that the adjusted target t' satisfies the equation

$$F(t - s; n, w) = F(t' - s; n', w)$$

the interruption has not changed the probability that team 2 will win the match. This is our proposed adjustment rule.

The new rule is illustrated in Figure 4.8 The horizontal axis represents the number of overs remaining in team 2’s innings, while the vertical axis represents the remaining runs required to win the match. The dimensions of the box are therefore determined by the total number of overs to be bowled in team 2’s innings (the width of the box) and by initial target number of runs required for team 2 to win the match (the height of the box).

The progress of team 2’s innings can be traced by a path (the ‘worm’) starting at the top right hand corner of the figure. The path moves left (as overs are bowled) and downwards (as

8This figure is based on data from a 1992 World Cup match between England and South Africa, which will be discussed in Section 5.
runs are scored). Provided the innings is not interrupted, this curve must eventually reach either the left or the bottom boundary of the box. If it terminates on the bottom boundary, team 2 wins the game since it has achieved its target. On the other hand, if the curve terminates on the left boundary, team 2 has failed to achieve its target in the allotted number of overs. If the curve reaches the point (0,1), the game is a draw. Otherwise, team 1 wins the match.

The smooth curves are iso-probability loci, the shape of which varies with the number of wickets in hand. The top curve connecting the bottom-left and top-right corners of the box is the initial iso-probability of victory curve. At each point on this curve, team 2 has the same probability of winning the match and this equals the probability of victory as measured at the start of the second innings. If, as shown here, the ‘worm’ moves below this curve (from point A to point B), team 2 is becoming more likely to win the match; if it moves above this curve, team 2 is becoming less likely to win.

Suppose that the second innings is interrupted at point B, when n overs remain and the score is s. When play resumes, the innings is shortened to n’ overs. The curve connecting the origin and point B is another iso-probability curve, this time corresponding to the probability measured immediately before the interruption. Under our proposal, the game is restarted at point C — the point on the new iso-probability curve where n’ overs remain in the innings, so that the probability of team 2 winning the match is unaffected by the interruption. That is, the revised target is set at t’, where (n’, t’ − s) are the coordinates of point C.

Our proposal differs from the existing alternatives in two respects:

Quantity preserved The quantity preserved is the probability of winning, rather than the required run rate (ARR) or the expected number of runs (Duckworth-Lewis).

Point of preservation This quantity is preserved at its value at the point of interruption, rather than its value at the beginning of the match.9 In this way, the revised target takes account of team 2’s performance prior to the interruption. A good start to the second innings is not punished by an interruption. Similarly, an interruption does not allow team 2 to escape the consequences of a poor start.

The impact of this fundamental difference can be illustrated by the following hypothetical but plausible example. Suppose that team 2, chasing 250 runs, gets off to a flying start and scores 143 without loss in the first 20 overs.10 Clearly, at this point, team 2 is in a strong position and has a high probability of winning. But, victory is not certain. The match is not over and fortunes may change.

Now, suppose the game is interrupted by rain, and 20 overs are lost. When play resumes, only 10 overs remain. Under the ARR rule, team 2’s target would be reduced to 150 off 30

9. Analogous to ARR and Duckworth-Lewis, restarting the game at point D would preserve the probability of winning at the start of the game, taking no account of team 2’s performance prior to the interruption.

10. Chasing a target of 214, South Africa reached 143 without loss in the 21st over in their match against Zimbabwe on 28 September 1999.
overs. Having scored 143, play resumes with team 2 requiring only 7 runs off 10 overs. Victory is almost assured. Under the Duckworth-Lewis rule, victory is fully assured. The revised target is 143 and team 2 is declared the winner without batting again. Neither of these adjustments seems fair.

Indeed, based on the estimates presented later in the paper, we calculate that team 2 has a 98.8 percent chance of winning when the game is interrupted. To preserve this probability, team 2 should be set the task of scoring 61 runs off the last 10 overs (with 10 wickets in hand) to win the match. Not only is this fair, it would make the remainder of the game much more entertaining.

To make the point in another way, consider the fates of two teams chasing identical targets. Suppose that their games are interrupted after 20 overs, at which point team A has scored 20 more runs than team B. Suppose further that 20 overs are lost due to rain. Under the existing rules, when play resumes, team B will still have to score 20 more runs than A to win their match, but now with only 10 overs in which to do it. The interruption weighs differently on teams A and B. When there are 30 overs remaining a 20 run difference is not particularly significant, but it becomes very significant with only 10 overs to go.

2.2 The modified ARR and DL rules

The innovation of changing the time of evaluation could also be applied to other quantities, giving the following variants of the existing rules.

Modified ARR (mARR) rule. The mARR rule preserves the average run rate required during the remainder of the innings. The adjusted target \(t' \) is set such that

\[
\frac{t' - s}{n'} = \frac{t - s}{n}
\]

or

\[
t' = t - (n - n') \frac{t - s}{n}
\]

In comparison, the standard ARR uses the required run rate from the beginning of the innings, that is

\[
t' = t - (n - n') \frac{t}{50}
\]

If the mARR rule is applied to the innings shown in Figure 4, the point at which the innings is restarted can be found by drawing a straight line from point B to the origin. The innings resumes at the point on this line where \(n' \) overs remain in the innings. Similarly, the revised target under the ARR rule would lie on a straight line from the point A to the origin.

Applied to the hypothetical example above, the required run rate at the time of interruption is 107 runs off 30 overs, or 3.6 runs per over. Consequently, the mARR rule would require that team 2 score 36 runs off the remaining 10 overs when play resumes.
Modified DL (mDL) rule. The mDL rule preserves the ratio of the average score in the remainder of the innings to the number of runs required in the remainder of its innings. The adjusted target t' is set such that

$$\frac{Z(n', w)}{t' - s} = \frac{Z(n, w)}{t - s}$$

or

$$t' = t - \frac{Z(n, w) - Z(n', w)}{Z(n, w)}(t - s)$$

(1)

In comparison, the standard DL rule gives a revised target of

$$t' = t - \frac{Z(n, w) - Z(n', w)}{Z(50, 10)}t$$

(2)

Note that the existing Duckworth-Lewis tables can be used to compute the mDL rule.

On average, teams with 10 wickets in hand score 172 runs off the last 30 overs ($Z(30, 10)$), and 72 off the last 10 overs ($Z(10, 10)$). At the point of interruption in the hypothetical example, team 2 requires only 107 runs or $107/172 = 0.62$ or 62 percent of the average achievement. Consequently, the modified Duckworth-Lewis requirement for the 10 overs remaining after the interruption is 62 percent of 72 runs, or 45 runs.

2.3 The fairness of alternative rain rules

Taking for granted that a fair rule preserves the probability of winning, we can ask the question: when are other rain rules “fair”? In other words, what property of the probability distribution of runs would ensure that a particular rule preserves the probability of the team 2 winning.

When is the DL rule fair? The Duckworth-Lewis rule is fair provided the distribution of the number of runs scored about its mean is independent of the number of overs n. To see this, let $\tilde{r}(n, w)$ denote the random variable representing the number of runs scored given n overs and w wickets remaining. The mean of $\tilde{r}(n, w)$ is $Z(n, w)$. Assume that the distribution of \tilde{r} around its mean, $\tilde{r}(n, w) - Z(n, w)$, is independent of n, and let $G(r; w)$ denote its distribution function. Since

$$\tilde{r}(n, w) \leq r \iff \tilde{r}(n, w) - Z(n, w) \leq r - Z(n, w)$$

the distribution function of $\tilde{r}(n, w)$ is $F(r, n, w) = G(r - Z(n, w), w)$. Under our proposed adjustment rule, the revised target t' satisfies $F(t - s, n, w) = F(t' - s, n', w)$ which implies

$$G(t - s - Z(n, w), w) = G(t' - s - Z(n', w), w)$$

or

$$t - s - Z(n, w) = t' - s - Z(n', w)$$

so that the revised target is

$$t' = t - Z(n, w) + Z(n', w)$$
which is just the standard Duckworth-Lewis rule (2) for the average target \(t = Z(50, 10) \).\(^{11}\) Therefore, the Duckworth-Lewis rule is “fair” provided the distribution of \(\tilde{r}(n, w) \) about its mean is independent of \(n \). In particular, fairness of the Duckworth-Lewis rule requires that the variance of \(\tilde{r}(n, w) \) be independent of the number of overs \(n \), an implausible distributional restriction.\(^{12}\)

When is the mDL rule fair? Suppose that the distribution of \(\tilde{r}(n, w)/Z(n, w) \) is independent of \(n \), with distribution function \(G(r; w) \). Since

\[
\tilde{r}(n, w) \leq r \iff \frac{\tilde{r}(n, w)}{Z(n, w)} \leq \frac{r}{Z(n, w)}
\]

the distribution function of \(\tilde{r}(n, w) \) is

\[
F(r, n, w) = G\left(\frac{r}{Z(n, w)}, w \right)
\]

Under our proposed adjustment rule, the revised target \(t' \) satisfies

\[
F(t-s, n, w) = F(t'-s, n', w)
\]

which implies

\[
G\left(\frac{t-s}{Z(n, w)}, w \right) = G\left(\frac{t'-s}{Z(n', w)}, w \right)
\]

or

\[
\frac{t-s}{Z(n, w)} = \frac{t'-s}{Z(n', w)}
\]

so that the revised target is

\[
t' = s + \frac{Z(n', w)}{Z(n, w)}(t-s) = t - \frac{Z(n, w) - Z(n', w)}{Z(n, w)}(t-s)
\]

which is the modified Duckworth-Lewis rule (1). Therefore, the modified Duckworth-Lewis rule is “fair” provided that the distribution of \(\tilde{r}(n, w)/Z(n, w) \) is independent of \(n \). This seems a more reasonable assumption than the distributional assumption implicit in the standard Duckworth-Lewis rule, since the variance of \(\tilde{r}(n, w) \) can now depend on \(n \).\(^{13}\)

2.4 Dealing with variation in targets

The early rules ARR and MPO depend solely on data from the match in question. In contrast, both our proposal and Duckworth-Lewis use estimates derived from statistical analysis of past games. In so doing, we both need to make allowance for games in which the actual target differs from the average. The method in which we do this is fundamentally different to that adopted by Duckworth and Lewis.

\(^{11}\)For a non-average target \(t \neq Z(50, 10) \), the analogous distributional assumption is that the distribution of \(\tilde{r}(n, w) - \lambda Z(n, w) \) is independent of \(n \), where \(\lambda = t/Z(50, w) \) is the ratio of the actual target to the average expected score.

\(^{12}\)In terms of Figure 4, the iso-probability curves for this distribution are vertical translations of the expected run curves, implying a positive probability of negative scores for low \(n \).

\(^{13}\)In fact, \(\tilde{r}(n, w) \) has variance \(Z(n, w)^2 \varphi(w) \) for some function \(w \). The iso-probability curves are scalar multiples of the expected runs curve.
To compute the opportunity cost of an interruption, Duckworth and Lewis scale the average number of runs scored in the lost overs $Z(n, w) - Z(n', w)$ by the ratio of the actual target t to the average target $Z(50, 10)$. In so doing, they effectively ascribe all the variation of the actual score from the average to the “quality of the pitch”. We do precisely the opposite — all variation in scores is assumed to be entirely due to chance or superior performance of the opposing team.

While undoubtedly all three factors — pitch, teams’ ability and performance, and luck — contribute to the total scored by team 1 and hence the target facing team 2, it is impossible to determine the relative contribution of these factors. Consequently, we refrain from making any adjustment in the rule to allow for targets which differ from average. In defence of this decision, we note that it is the shapes of the iso-probability contours and not their levels which are relevant in determining the revised target. Provided that the shapes of these contours do not vary systematically with either the quality of the pitch or the performance and ability of the teams, our conclusions regarding fairness and incentives will not be undermined by variation in target scores.

3 A model of the run-scoring process

To analyse the impact of interruption on incentives, and also to estimate the probability distribution $F(r; n, w)$, we build a simplified model of the run-scoring process. Let b denote the number of deliveries remaining and w the number of wickets in hand. We assume that the next delivery results in one of the following three outcomes:

Extra: With probability p_x, the outcome is a no-ball or wide and the ball must be bowled again. In this event, the team’s score is increased by one run, while the number of deliveries remaining and wickets in hand are unchanged.14

Wicket: Conditional on the event ‘Extra’ not occurring, the batting team loses a wicket with probability $p(b, w)$. In this event, the score is unchanged, while both the number of deliveries and the number of wickets remaining are reduced by one.15

Runs: If neither of the events ‘Extra’ nor ‘Wicket’ occurs, then the batting team scores $i \in \{0, 1, \ldots, 6\}$ runs with probability $q(i; b, w)$. The batting team’s score is increased by i, the number of deliveries remaining in its innings is reduced by one, while the number of wickets in hand is unchanged.16

14For simplicity, we assume p_x is a constant independent of n and w, and overlook the possibility of runs being scored, or a player being run out, off a no-ball. Similarly, we ignore the possibility of a misdirected delivery going to the boundary for four wides.

15While not strictly necessary, the assumption that no runs are scored when a wicket is lost simplifies both construction of F and estimation of the model. In our sample of 26 innings from the 1999 World Cup, 198 wickets fell. In only 6 of these events was a run scored.

16Byes and leg-byes are treated just like any legitimate delivery from which runs are scored. That is, they
The distribution function for the number of runs \(r \) scored off \(b \) balls with \(w \) wickets in hand satisfies the recursion

\[
F(r; b, w) = p_x F(r - 1; b, w) + (1 - p_x) p(b, w) F(r; b - 1, w - 1) \\
+ (1 - p_x) (1 - p(b, w)) \sum_{i=0}^{6} q(i; b, w) F(r - i; b - 1, w)
\]

(3)

together with the boundary conditions\(^{17}\)

\[
F(r, 0, w) = F(r, b, 0) = 1, \quad r \geq 0 \quad \text{and} \quad F(r, n, w) = 0, \quad r < 0.
\]

(4)

3.1 Incentives

In practice, the batting team has some control over the distribution of runs scored. By batting more aggressively, it can increase the rate at which it expects to score runs. Of course, this greater aggression also increases the probability of losing wickets. The task of the batting team is to select the level of aggression which achieves the optimal trade-off between risk and return (see Clark 1988).

Existing rules change the trade-off faced by the batting team. When an interruption is anticipated, team 2 can afford to bat more aggressively, since the opportunity cost of losing a wicket is lower. In contrast, our proposal is free of such incentive effects.

To show this, we modify the model to allow the transition probabilities \(p \) and \(q \) to depend upon an aggression parameter \(\alpha \in A \), the choice of which can depend upon \(b \) and \(w \). With a score of \(s \), the probability of team 2 failing to achieve a target of \(t \) is

\[
F(t - s; b, w) = p_x F(t - s - 1; b, w) + (1 - p_x) p(\alpha) F(t - s; b - 1, w - 1) \\
+ (1 - p_x) (1 - p(\alpha)) \sum_{i=0}^{6} q(i; \alpha) F(t - s - i; b - 1, w).
\]

(5)

To maximize its chances of winning the game, team 2 chooses \(\alpha \) to minimize the quantity on the right-hand side of (5), so that \(F \) satisfies Bellman’s equation

\[
F(t - s; b, w) = \min_{\alpha \in A} \ p_x F(t - s - 1; b, w) + (1 - p_x) p(\alpha) F(t - s; b - 1, w - 1) \\
+ (1 - p_x) (1 - p(\alpha)) \sum_{i=0}^{6} q(i; \alpha) F(t - s - i; b - 1, w).
\]

(6)

fall into the category ‘Runs.’ We distinguish no-balls and wides from other extras since these do not reduce the number of deliveries remaining in an innings.

\(^{17}\)There is zero probability of winning once 50 overs have been completed (\(b = 0 \)). That is, \(1 - F(r, 0, w) = 0 \) which implies \(F(r, 0, w) = 1 \). Similarly, when 10 wickets have fallen (\(w = 0 \)), \(1 - F(r, b, 0) = 0 \) which implies \(F(r, b, 0) = 1 \).
Suppose that an interruption is anticipated after the next ball. Further, suppose that team 2 expects it will face an adjusted target of \(t' \) off \(b' \) deliveries when play resumes. At this point, it will choose \(\alpha \) to minimize

\[
F(t' - s, b', w) = p_x F(t' - s - 1; b', w) \\
+ (1 - p_x) p(\alpha) F(t' - s; b' - 1, w - 1) \\
+ (1 - p_x)(1 - p(\alpha)) \sum_{i=0}^{6} q(i; \alpha) F(t' - s - i; b' - 1, w).
\]

Under our proposal, the adjusted target will be chosen such that

\[
F(t' - s - 1; b', w) = F(t - s - 1; b, w)
\]

if this last ball prior to the interruption results in an extra. Similarly, the target will satisfy

\[
F(t' - s; b' - 1, w - 1) = F(t - s - b - 1, w - 1)
\]

if the last ball claims a wicket and

\[
F(t' - s - i; b' - 1, w) = F(t - s - i; b - 1, w), \quad i = 0, 1, \ldots, 6
\]

if runs are scored. Substituting these conditions in (7), team 2 will choose \(\alpha \) in order to minimize

\[
F(t' - s, b', w) = p_x F(t - s - 1; b, w) \\
+ (1 - p_x) p(\alpha) F(t - s; b - 1, w - 1) \\
+ (1 - p_x)(1 - p(\alpha)) \sum_{i=0}^{6} q(i; \alpha) F(t - s - i; b - 1, w)
\]

the right-hand side of which is identical to (6). Therefore, the probability of victory \(F(t - s; b, w) \) and the level of aggression \(\alpha \) is invariant to the threat of interruption. Even when team 2 anticipates an interruption to its innings, it will not modify its batting approach if the adjusted total is calculated according to our rule. Our proposal is both fair and free of incentive effects.

4 Estimation

We estimate the distribution function \(F(r, b, w) \) by separately estimating the transition probabilities \(p_x, p(b, w) \) and \(q(i; b, w) \), and then constructing \(F \) recursively using (3) and the boundary conditions (4).

4.1 Data

We estimate the transition probabilities using data from the 1999 World Cup. All matches involving two teams from nations with test-playing status (that is, Australia, England, India, New Zealand, Pakistan, South Africa, Sri Lanka, West Indies and Zimbabwe) are included in
Table 1: Distribution of scoring

<table>
<thead>
<tr>
<th></th>
<th>0 wicket lost</th>
<th>1 wicket lost</th>
<th>All obs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq</td>
<td>%</td>
<td>Freq</td>
</tr>
<tr>
<td>0</td>
<td>4250</td>
<td>56.68</td>
<td>192</td>
</tr>
<tr>
<td>1</td>
<td>2192</td>
<td>29.23</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>448</td>
<td>5.97</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>0.89</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>483</td>
<td>6.44</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>0.76</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7498</td>
<td>198</td>
<td>7696</td>
</tr>
</tbody>
</table>

the sample. Each delivery in the first innings of each of these matches was classified according to the scheme above (that is, ‘extra’, ‘wicket’, or ‘r runs’) using the ball-by-ball commentaries available at the CricInfo website.\(^\text{18}\) We exclude two innings for which data for the complete innings was unavailable, leaving 26 innings in all.\(^\text{19}\)

The shortest innings in our sample lasted just 234 deliveries. Other innings which saw the batting team dismissed lasted 280, 289, 296 and 297 deliveries. All of the remaining 21 innings lasted the maximum possible 300 deliveries. The frequency distributions of runs scored off each delivery are reported in Table 1. The first pair of columns report the outcomes for deliveries where the batting team did not lose a wicket, and the second pair of columns report the outcomes where a wicket was lost. The final pair of columns gives the distribution of runs scored off all legitimate deliveries.

4.2 Estimating the probability of a wide or no-ball

In the 26 innings in the sample, 6480 runs were scored in total, and 6027 of these runs were scored from the 7696 legitimate deliveries which were bowled. Given our assumptions regarding no-balls and wides, it is as if 6480 – 6027 = 453 extra deliveries were bowled, each adding one run to the batting team’s total. That is, 453 out of 7696 + 453 deliveries would be either no-balls or wides. Thus, we set

\[
p_x = \frac{453}{7696 + 453} = 0.05559.
\]

4.3 Estimating the wickets process

Suppose the batting team has \(b\) deliveries remaining in its innings, and \(w\) wickets in hand. We estimate the probability of losing a wicket \(p(b, w)\) using a probit model. The unobserved variable

\(^\text{18}\)http://www-aus.cricket.org/link_to_database/ARCHIVE/WORLD_CUPS/WC99

\(^\text{19}\)There are several instances of five- and seven-ball overs in the tournament. We treat all five-ball overs as though the batting team scored no runs, and did not lose a wicket, off the sixth delivery. That is, the sixth delivery is treated as being of type ‘0 runs.’ For seven-ball overs, we ignore all deliveries after the sixth legitimate delivery.
$y_{b,w}^*$ is defined by

$$y_{b,w}^* = \alpha_0 + \alpha_1 b + \alpha_2 w + \theta_{b,w},$$

where α_0, α_1 and α_2 are constants, and $\theta_{b,w}$ is a random variable drawn from the standard normal distribution. We suppose that a wicket falls if and only if $y_{b,w}^* < 0$, which occurs with probability $p(b, w) = \Phi(-\alpha_0 - \alpha_1 b - \alpha_2 w)$ where Φ is the cumulative distribution function for the standard normal distribution. We expect that $\alpha_1 > 0$, so that a wicket is more likely to fall as the innings progresses (as the batting team adopts more aggressive tactics), and $\alpha_2 > 0$, so that a wicket is more likely to fall as lower-order batsmen come to the crease.

Let y_b be an indicator variable which takes the value 1 if a wicket falls and 0 if a wicket does not fall. If, as we assume, the outcomes of different deliveries are independent, the likelihood function is

$$\prod_{n=1}^{300} \Phi(-\alpha_0 - \alpha_1 b - \alpha_2 w)^{y_b}(1 - \Phi(-\alpha_0 - \alpha_1 b - \alpha_2 w))^{1-y_b}.$$

Taking logs gives us the log-likelihood function

$$LLF = \sum_{n=1}^{300} (y_b \log \Phi(-\alpha_0 - \alpha_1 b - \alpha_2 w) + (1 - y_b) \log(1 - \Phi(-\alpha_0 - \alpha_1 b - \alpha_2 w))).$$

We assume that outcomes are independent across different innings and choose $(\alpha_0, \alpha_1, \alpha_2)$ in order to maximize $\sum_{i=1}^{26} LLF_i$, where LLF_i is the log-likelihood function for innings i. Results of the estimation are shown in Table 2. The asymptotic standard errors are given in brackets under each estimate. Using a likelihood ratio test, we cannot reject the hypothesis that $H_0: \alpha_2 = 0$ at a 10% significance level, and thus settle on the model

$$y_{b,w}^* = 1.632 + 0.002325 b + \theta_{b,w}, \quad \theta_{b,w} \sim N(0, 1)$$

to describe the wickets process. That is, based on the data, we assume that the probability of losing a wicket p is independent of w. Specifically, we estimate

$$p(b) = \Phi(-1.632 - 0.002520b)$$

where Φ is the cumulative distribution function for the standard normal distribution. This is illustrated in Figure 5. These estimates suggest that there is a probability of 0.01 of losing a wicket from each delivery in the first over, rising gradually to a probability of 0.05 per delivery in the last over.

4.3.1 Estimating the runs process

Suppose the batting team has b deliveries remaining in its innings, and w wickets in hand. We estimate the distribution of runs scored off the next legitimate delivery $q(i; b, w)$ using an ordered

20 We use the Hessian of the LLF, evaluated at the MLE, to estimate the asymptotic variance-covariance matrix for the MLE.
Table 2: Estimates of the wickets process

<table>
<thead>
<tr>
<th></th>
<th>α₀</th>
<th>α₁</th>
<th>α₂</th>
<th>LLF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.673</td>
<td>0.002520</td>
<td>-0.00960</td>
<td>-898.6</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.000540)</td>
<td>(0.01894)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.632</td>
<td>0.002325</td>
<td></td>
<td>-898.7</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.000363)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.948</td>
<td></td>
<td></td>
<td>-920.1</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: The probability of losing a wicket

The unobserved variable $i_{b,w}^*$ defined by

$$i_{b,w}^* = \beta_0 + \beta_1 b + \beta_2 w + \epsilon_{b,w},$$

where $\epsilon_{b,w}$ is a random variable drawn from the standard normal distribution. The relationship between $i_{b,w}^*$ and the number of runs scored is determined by the constants $\mu_0 \leq \mu_1 \leq \ldots \leq \mu_5$. (We can set $\mu_0 = 0$ without loss of generality.) The batting team scores no runs if $i_{b,w}^* \leq \mu_0$, and six runs if $i_{b,w}^* > \mu_5$. It scores i runs, for each $i = 1, 2, \ldots, 5$, if $\mu_{i-1} < i_{b,w}^* \leq \mu_i$. It follows that, conditional on no wicket being lost, the probability of scoring i runs is

$$q(i; b, w) = \begin{cases}
\Phi(\mu_0 - \beta_0 - \beta_1 b - \beta_2 w), & \text{if } i = 0, \\
1 - \Phi(\mu_5 - \beta_0 - \beta_1 b - \beta_2 w), & \text{if } i = 6, \\
\Phi(\mu_r - \beta_0 - \beta_1 b - \beta_2 w) - \Phi(\mu_{r-1} - \beta_0 - \beta_1 b - \beta_2 w), & \text{otherwise}.
\end{cases}$$

The ordered probit model is appropriate when the dependent variable has a natural order — a six is better than a four, which is better than a single. However, at first glance, it might seem more sensible to use a Poisson model, or a similar model appropriate for count data. After all, the dependent variable is counting the number of runs scored by the batsman. However, the cardinal nature of the dependent variable is really limited to the scoreboard. Put simply, the event known as a ‘six’, is not the same as six events each known as a ‘single.’ This is clear when we consider shots which cross the boundary: a ‘six’ is a quite distinct outcome from a ‘four’, with the assignment of runs to the two events depending only on whether the ball bounced before crossing the boundary.
Table 3: Estimates of the runs process

<table>
<thead>
<tr>
<th>β_0</th>
<th>β_1</th>
<th>β_2</th>
<th>μ_1</th>
<th>μ_2</th>
<th>μ_3</th>
<th>μ_4</th>
<th>μ_5</th>
<th>LLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1780</td>
<td>-0.004907</td>
<td>0.1028</td>
<td>0.941</td>
<td>1.264</td>
<td>1.326</td>
<td>2.317</td>
<td>2.324</td>
<td>-8075.78</td>
</tr>
<tr>
<td>(-0.0022)</td>
<td>(0.0000)</td>
<td>(0.0001)</td>
<td>(0.0003)</td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0025)</td>
<td>(0.0026)</td>
<td></td>
</tr>
<tr>
<td>0.2488</td>
<td>-0.002787</td>
<td>0.931</td>
<td>1.251</td>
<td>1.313</td>
<td>2.291</td>
<td>2.298</td>
<td>-8142.33</td>
<td></td>
</tr>
<tr>
<td>(0.0008)</td>
<td>(0.0000)</td>
<td>(0.0003)</td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0024)</td>
<td>(0.0025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.1682</td>
<td></td>
<td>0.909</td>
<td>1.229</td>
<td>1.292</td>
<td>2.253</td>
<td>2.259</td>
<td>-8298.55</td>
<td></td>
</tr>
<tr>
<td>(0.0002)</td>
<td></td>
<td>(0.0003)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0023)</td>
<td>(0.0024)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Selected values of $q(i; b, w)$

<table>
<thead>
<tr>
<th>Runs</th>
<th>50 overs 20 overs 20 overs 1 over</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 wickets 10 wickets 3 wickets 3 wickets</td>
</tr>
<tr>
<td>0</td>
<td>0.733 0.397 0.677 0.460</td>
</tr>
<tr>
<td>1</td>
<td>0.208 0.355 0.242 0.340</td>
</tr>
<tr>
<td>2</td>
<td>0.029 0.090 0.038 0.078</td>
</tr>
<tr>
<td>3</td>
<td>0.004 0.014 0.005 0.012</td>
</tr>
<tr>
<td>4</td>
<td>0.024 0.124 0.034 0.097</td>
</tr>
<tr>
<td>5</td>
<td>0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.002 0.020 0.003 0.013</td>
</tr>
</tbody>
</table>

We expect that $\beta_1 < 0$, so that scoring accelerates as the innings progresses (as the batting team adopts more aggressive tactics), and $\beta_2 > 0$, so that scoring slows down as lower-order batsmen come to the crease.

Let i_b equal the number of runs scored off the delivery. We continue to assume that the outcomes of different deliveries are independent, giving a log-likelihood function of

$$LLF = \sum_{\{i_b: w_{b-1} = w_b\}} \log q(i_b; b, w_b).$$

Notice that we only include (legitimate) deliveries in which a wicket did not fall. We maximize the sum of the log-likelihood functions subject to the constraints $0 = \mu_0 \leq \mu_1 \leq \ldots \leq \mu_5$. Results are shown in Table 3. Given the significance of all the parameters, we adopt the model

$$i_{b,w}^* = -0.1780 - 0.004907 b + 0.1028 w + \epsilon_{b,w}, \quad \epsilon_{b,w} \sim N(0, 1),$$

to describe the run-scoring process.

Table 4 gives selected values of the implied density function $q(i; b, w)$. For example, in the first over, the probability of scoring a single is 0.208, while the probability of a 4 is 0.024.

4.4 Constructing the distribution function $F(r, b, w)$

Equipped with the transition probabilities, construction of the distribution function using recursion (3) and boundary conditions (4) is straightforward. Figure 6 shows the estimated density
function of total scores, superimposed on the histogram of observed scores in our sample of 26 innings. The mean and standard deviation of the estimated distribution $F(r; 300, 10))$ are 227.1 and 50.0 runs respectively, while the sample mean and standard deviation are 231.8 and 56.3. Figure 6 shows that there was one match with an exceptionally high score. If we omit this outlier, the sample mean and standard deviation fall to 226.2 and 49.4, which are very close to the estimated values.

Figure 7 plots the contours of $F(r; b, 10)$, which would form the basis for our adjustment rule (compare with Figure 4). Based on this graph, neither the quasilinear property which implies the Duckworth-Lewis rule is fair, nor the homothetic property which implies the modified Duckworth-Lewis is fair, hold for the innings in our sample.

Figure 8 compares the expected runs function implied by our estimated distribution function

22In the Group A match between India and Sri Lanka, India scored 373/6 off 50 overs. In reply, Sri Lanka was dismissed in the 43rd over for 216.
Figure 8: Expected runs $Z(n, 10)$ implied by F and estimated by Duckworth and Lewis

F with the function $Z(n, 10)$ underlying the Duckworth-Lewis rule (see Figure 1). We observe that our estimated function is significantly more concave that of Duckworth-Lewis. Without further research, it is unclear to what extent this is due to the different estimation method as opposed to the different data sets used.\(^{23}\)

5 Examples of our rule in action

We now give several examples of our rule applied to actual games. The results of alternative adjustment rules are summarized in Table 5. We compute two versions of the Duckworth-Lewis rule — the rule currently used in practice (DL) and an equivalent calculation (eDL) based on the Duckworth-Lewis method but computed using the expected runs function implied by our estimated distribution F. The latter affords a more appropriate comparison between our proposal and Duckworth-Lewis.

In the first two examples, the outcome was decided according to the Duckworth-Lewis rule. In both cases, it is plausible that our rule would have given a different and fairer outcome. It is purely fortuitous that most of these examples involve New Zealand.

New Zealand v. Sri Lanka, 8 February 2001 The game was reduced to 35 overs after rain delayed start of play. Batting first, New Zealand scored 182 for 9. In reply, Sri Lanka were 155 for 5 when bad light stopped play, needing a further 28 runs from 4 overs to win the match. Under the Duckworth-Lewis rule, Sri Lanka was declared the winner,\(^{24}\) whereas our rule

\[^{23}\text{It was not possible for us to use the same data as Duckworth and Lewis, since (1) they do not identify their data and (2) we require ball-by-ball scores to estimate } F \text{ recursively.}\]

\[^{24}\text{On average, teams with 5 wickets in hand score } Z(4, 5) = 30 \text{ runs in the last 4 overs. Adjusting for the ratio of the actual target 183 to the average target in 35 overs } (Z(35, 10) = 188), \text{ Sri Lanka is deemed to have forfeited the opportunity to score a further } 183 \times Z(4, 5)/Z(35, 10) = 29 \text{ runs. Its target is reduced from 183 to 154. For comparison in Table 5, we have computed the revised CG target as minimum score required at the time of interruption to give a better than 50% chance of obtaining the remaining runs if the game continued.}\]
Table 5: Revised targets under various adjustment rules

<table>
<thead>
<tr>
<th>Match</th>
<th>Date</th>
<th>ARR</th>
<th>DL</th>
<th>eDL</th>
<th>mARR</th>
<th>mDL</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ v. Sri Lanka</td>
<td>8 February 2001</td>
<td>162</td>
<td>154</td>
<td>159</td>
<td>155</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>India v. NZ</td>
<td>9 Jan 1999</td>
<td>202</td>
<td>200</td>
<td>203</td>
<td>206</td>
<td>217</td>
<td>218</td>
</tr>
<tr>
<td>NZ v. England</td>
<td>23 Feb 1997</td>
<td>133</td>
<td>164</td>
<td>183</td>
<td>142</td>
<td>177</td>
<td>195</td>
</tr>
</tbody>
</table>

eDL = Duckworth-Lewis method using the expected-runs functions estimated from our data; mDL = modified Duckworth-Lewis method; CG = our proposed rule.

would have awarded the match to New Zealand. Although Sri Lanka started their innings with a probability of winning of 0.7375, this had fallen to 0.4268 when bad light stopped play. From this point, New Zealand is more likely to have won the match. Fairness dictates it be declared the winner.

In our next example, the rain rule worked to New Zealand’s advantage.

India v. New Zealand, 9 January 1999 India batted first, scoring 257 for 5 off 50 overs. New Zealand’s innings was interrupted in the 30th over when a fuse blew in a lighting tower, when the score was 168/3, and 11 overs were lost. On resumption, New Zealand’s target was reduced to 200 off 39 overs under the Duckworth-Lewis rule, which it achieved in the 38th over for the loss of 5 wickets, winning the match.

In other words, the Duckworth-Lewis rule required New Zealand to score 32 runs off the final 8.2 overs with 7 wickets in hand, a run rate of slightly under 3.9 per over. In this case, our rule would have imposed the more realistic demand of scoring 51 off the remaining 50 balls with 7 wickets in hand. The probability of New Zealand winning at the point of interruption was 0.82. The revision of the target according to the Duckworth-Lewis rule increased this probability to 0.99. In fact, NZ scored only 32 runs off the final 50 deliveries losing two wickets. It is possible that the fuse and the rain rule decided the match. Note that the estimated DL method eDL gives a very similar revised target (203) to the actual DL rule (200). Consequently, the difference between Duckworth-Lewis and our rule in this case cannot be attributed to differences in estimation.

The next example was decided by the average run rate rule.

New Zealand v. England, 23 February 1997 New Zealand made 253 for 8 off 50 overs. Rain interrupted England’s innings after the 6th over when England were 47 without loss. When play resumed with 20 overs remaining, the target was reduced by ARR to 132 off 26 overs. England reached this very comfortably in the 20th over with 6 wickets in hand.

It is impossible to determine how the game would have turned out if a different rule were applied. We can say with confidence that other rain rules would have provided a much stiffer target. The Duckworth-Lewis rule would give England the more reasonable task of scoring
164 – 47 = 117 off the last 20 overs with 10 wickets in hand (6 runs per over). Our rule would increase this task to 195 – 47 = 148 runs off 20 overs (7.4 runs per over). While this may appear an unreasonable target, it recognizes England’s commanding position having all ten wickets in hand. At the beginning of their innings, England’s chances of winning the match are only 0.30. Their excellent start increases this to 0.64 at the point of interruption. The CG rule preserves this probability, while the Duckworth-Lewis rule increases the probability of winning to 0.94. England would obtain a significant boost from the Duckworth-Lewis rule.

Our final example comes from the 1992 World Cup, where the most productive overs method (MPO) was used.

South Africa v. England, 12 March 1992 Batting first, South Africa scored 236 for 4 off 50 overs. Rain disrupted England’s reply at the end of 12 overs when they were 62 without loss. Nine overs were lost. When play resumed, England’s target was reduced by 10 to 226, the total scored in the 41 most productive overs of the South African innings. The revised target required England to score 164 off the remaining 29 overs (5.7 runs per over) with 10 wickets in hand. England achieved this off the penultimate ball of its 41 overs, winning the match.

Since other rain rules would have given lesser targets, it is almost certain that the rain rule was not decisive in this game. However, it is worthwhile to consider what the alternative rules would imply. MPO was adopted in the 1992 World Cup because of dissatisfaction with the prevailing ARR method, which in this case would have given England the meagre target of 195 off 41 overs, or 4.6 runs per over off the remaining 29 overs with 10 wickets in hand. The Duckworth-Lewis and CG rules would give revised targets of 208 and 223 respectively. In this particular case, the revised target generated by the CG rule is close to that given by the MPO rule. Since England ultimately achieved the higher MPO target of 226, it cannot be claimed that the CG target was unreasonable. At the point of interruption, England’s chances of winning were 0.82. The CG rule would preserve this probability, Duckworth-Lewis would increase England’s chances to 0.91, the estimated Duckworth-Lewis rule (eDL) would increase it to 0.87, while the MPO rule reduced their probability of winning to 0.79.

6 Conclusion

We present a new adjustment rule for interrupted cricket matches that equalizes the probability of winning before and after the interruption. Our proposal differs from existing rules in the quantity preserved (the probability of winning), and also in the point at which it is measured (the time of interruption). We claim this is both fair and free of incentive effects. We give several examples of how our rule could have been applied in past matches, including some in which the ultimate result might have been different.

Once the distribution function $F(r, n, w)$ has been estimated, application of the rule is straightforward. This could be done using tables as is currently done for the Duckworth-Lewis
rule. Alternatively, the rule could be applied using the simple computer program we used to analyze the examples in the paper.

References

25Our tables would need an extra dimension compared to Duckworth and Lewis. In practice, ten tables would be required, each table specifying $F(r, n; w)$ for w wickets in hand.