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1 Introduction

This paper considers dominant strategy implementation in quasi-linear environments with

two alternatives, e.g. bilateral trading, provision of a public good, choosing one out of two

locations for locating a facility or any situation with a status-quo alternative and a new

alternative. The private information of each agent is a two dimensional vector, representing

the valuation (a real number) for each alternative. Given the reported valuations of agents,

an allocation rule chooses an alternative and a payment rule determines the payments of each

agent. The net utility of each agent is quasi-linear in the payment he makes. An allocation

rule is implementable (in dominant strategies) if there is a payment rule which makes truth-

telling a weakly dominant strategy for each agent. We answer the following fundamental

question in our model.

Which allocation rules are implementable?

We offer three main results 1.

1. Under a mild range condition, we show that a deterministic (no randomization) allo-

cation rule is implementable if and only if it is a generalized utility function (GUF)

maximizer. At every valuation profile, a GUF of an agent translates his valuation

vector to a pair of real numbers, which we call his generalized utilities for these two

alternatives at this valuation profile. At every valuation profile, a GUF maximizer

allocation rule chooses an alternative that maximizes the sum of generalized utilities

of agents.

2. Our second result shows that an implementable deterministic allocation rule satisfying

an independence condition is an affine maximizer. Affine maximizer allocation rules,

introduced in Roberts (1979), are generalizations of the efficient allocation rule. They

can be thought of as linearized GUF maximizer allocation rules.

Conversely, every affine maximizer satisfies our independence condition. It is well

known that under a mild condition, an affine maximizer is implementable.

To prove this result, we prove another result, which is of independent interest. We show

that if a deterministic implementable allocation rule satisfies unanimity and transitiv-

ity 2 in our model, then it must be a weighted efficient allocation rule. Weighted efficient

1Most of our results require some richness of the domain. We discuss these specifics of the domain

restrictions later in the paper.
2Unanimity requires that if valuation of every agent for an alternative is larger than the other alternative,

then the higher valuation alternative must be the outcome of the allocation rule. Transitivity requires that
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allocation rules are a special class of affine maximizer allocation rules.

Conversely, every weighted efficient allocation rule satisfies unanimity and transitivity.

3. Finally, we explore the implication of randomization. We show that every imple-

mentable randomized allocation rule is a convex combination of two distinct imple-

mentable allocation rules, whereas every implementable deterministic allocation rule

cannot be expressed as a convex combination of two distinct implementable allocation

rules. Mathematically, the set of implementable deterministic allocation rules consti-

tute the set of “extreme points” of the set of implementable allocation rules.

Though a mechanism design problem with two alternatives seem far-fetched, many well-

studied problems fall into this category. First, the bilateral trading problem is a problem

with two agents (a buyer and a seller) and two alternatives - trade or no trade. Second, the

non-excludable public good provision problem is a problem with two alternatives - whether

to provide the public good or not. Since the valuation for the status-quo alternative (no

trade in the case of bilateral trading problem and not providing the public good in case of

public good provision problem) is zero in these problems, the private information of each

agent is uni-dimensional here. However, there are two-dimensional problems where our

results can be applied. For instance, consider the problem of locating a facility in one of

two locations. Each agent has a two-dimensional valuation vector representing his valuation

for each location. With sufficient richness in domain, all our results can be applied to this

problem to identify the set of implementable allocation rules. Our results can also be applied

to some extensions of classical bilateral trading problem and public good provision problem.

The classical versions of these problems assume that the “status-quo” alternative (no trade

in the case of bilateral trading and not providing the public good in the case of public good

provision) has zero valuation for all the agents. Our model of two alternatives can allow

agents to have non-zero private valuation for such a status-quo alternative.

1.1 Relation to the Literature

The pursuit of identifying the set of implementable allocation rules in voting models goes

back to the seminal work of Gibbard (1973) and Satterthwaite (1975), who establish that

dictatorship is the only implementable deterministic allocation rule under a mild range con-

dition with unrestricted domain, when there are at least three alternatives. In quasi-linear

environments, the analogue of the Gibbard-Satterthwaite theorem is due to Roberts (1979).

In a remarkable result, Roberts (1979) showed that under a mild range condition, every

outcomes at three valuation profiles which are linked in a certain way must be transitive in some sense.
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implementable deterministic allocation rule is an affine maximizer if there are at least three

alternatives and the domain of valuations for each alternative is unrestricted. It is well known

that an affine maximizer is implementable using generalized Groves payment rules (Vickrey,

1961; Clarke, 1971; Groves, 1973) if it satisfies a mild tie-breaking condition.

When the domain of valuations is restricted or the number of alternatives is two, Roberts’

affine maximizer theorem is no longer true, and the set of implementable deterministic alloca-

tion rules is significantly enlarged. However, there has been very little progress in understand-

ing the extensions of Roberts’ theorem in restricted domains of valuations or in problems with

two alternatives. We note some exceptions. Jehiel et al. (2008) show that Roberts’ theo-

rem extends to certain environments with interdependent valuations. Mishra and Sen (2012)

show that in multidimensional open interval domains, every neutral and implementable de-

terministic allocation rule is a weighted efficient allocation rule if the number of alternatives

is at least three.

Carbajal et al. (2012) show that if the domain of valuation profiles is restricted to the

space of continuous functions defined on a topological space, or the space of piecewise linear

functions defined on an affine space, or the space of smooth functions defined on a compact

differentiable manifold, then a deterministic allocation rule is implementable if and only if

it is a lexicographic affine maximizer. Their results do not require the set of alternatives to

be finite. Lexicographic affine maximizers, which are defined recursively, are generalizations

of affine maximizer allocation rules. Thus, they generalize Roberts’ theorem to a restricted

environment. Lexicographic affine maximization does not require the number of alternatives

to be at least three. However, when the number of alternatives is two, lexicographic affine

maximization in Carbajal et al. (2012) is a monotonicity condition (or equivalently a cutoff

in differences condition). This monotonicity is similar to the monotonicity condition used to

characterize implementability in the single object auction setting (Myerson, 1981). Further,

this is equivalent to the 2-cycle monotonicity condition widely used in the multidimensional

mechanism design literature (Bikhchandani et al., 2006; Saks and Yu, 2005; Ashlagi et al.,

2010).

We show that such a monotonicity condition on allocation rule is necessary and sufficient

for implementability even when the allocation rule is a randomized allocation rule, and in

any arbitrary domain of valuation vectors. Our main results use this result as a building

block.

The difference between the“monotonicity”characterizations and the“maximization”char-

acterizations (a la Roberts (1979) and our GUF maximization) is significant. A monotonicity

characterization will say that for every agent and for every valuation vector of other agents,

the allocation rule must be “monotone” in some sense when the valuation vector of this agent

is changed. On the other hand, a maximization characterization is more explicit. It tells you
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the exact parameters that define an implementable deterministic allocation rule. Thus, it is

a direct prescription for designing a dominant strategy mechanism.

Because of this reason, there have been several attempts at simplifying the proof in

Roberts’ theorem - Lavi et al. (2009); Dobzinski and Nisan (2009); Vohra (2011). Dobzinski and Nisan

(2011) show that in combinatorial auction domains (a restricted domain) involving two

agents, there are non-affine maximizer deterministic allocation rules which give good ap-

proximation to efficiency. However, they do not provide any general characterization result

(except for a specific case of auction of two goods among two agents).

Our result on showing that the set of extreme points of implementable allocation rules

is the set of deterministic implementable allocation rules is analogous to a result proved in

Manelli and Vincent (2007). They show that in the single object auction with one agent,

every randomized implementable allocation rule is a convex combination of two distinct

implementable allocation rules - they state their results in terms of net utility of the agent

instead of allocation probabilities. We show that this result holds in our model with two

alternatives and any (finite) number of agents. Notice that a single object auction with

one agent is also a model of two alternatives (the agent gets the object or does not get the

object), where the valuation for one of the alternatives (where the agent does not get the

object) is always zero. Hence, we generalize the result in Manelli and Vincent (2007) to a

two-dimensional model with arbitrary number of agents.

Some specific models with two alternatives have been studied extensively in the literature.

We review them below.

• One such model is the bilateral trading model, where there is one buyer and one seller

who want to trade a good (owned by the seller). Myerson and Satterthwaite (1983)

showed that Bayes-Nash implementation, budget-balance, efficiency, and individual

rationality are incompatible in bilateral trading. Hagerty and Rogerson (1987) showed

that the only mechanisms which are dominant strategy incentive compatible, budget-

balanced, and individually rational are posted-price mechanisms.

Our GUF maximizer result applies to the bilateral trading model. Indeed, our re-

sults can be applied to the bilateral trading models where the no-trade alternative

(outside option) also has some non-zero value (which can be a private information of

the agents). Further, our characterizations are of implementable allocation rules and

not mechanisms (allocation rule and payments). Thus, we do not impose additional

properties like budget-balance and individually rationality, which are all properties of

payments.

• Another model with two alternatives is the public good provision problem, where a

planner is deciding whether to provide the public good or not. An excellent treatment
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of this problem is given in Borgers (2010) - see also Güth and Hellwig (1986). Like in

the bilateral trading problem, our results can be applied to this problem. Our results

are applicable even if agents have private valuation for the status quo alternative.

Unlike the literature, where the focus has been to find incentive compatible mechanisms

satisfying additional properties like budget-balance, individual rationality etc., our

results characterize implementable allocation rules.

We will like to note that in the voting model of Gibbard (1973) and Satterthwaite

(1975), the implications of having only two alternatives on strategy-proofness is well known

(Fishburn and Gehrlein, 1977) - see also the surveys of Moulin (1983) and Barbera (2011).

The strategy-proof rules identified in this voting model continue to be implementable in our

model. However, these allocation rules are ordinal rules - the ordinal ranking of alternatives,

and not their cardinal valuations, matter. The range condition we use in our main charac-

terization and the independence condition we use in our affine maximizer characterization

excludes such ordinal allocation rules. Hence, the allocation rules we identify in this paper

do not capture the strategy-proof allocation rules identified in the voting model.

Finally, though we characterize implementable allocation rules, we can use revenue equiv-

alence to pin down the class of payments in our model. This allows us to describe the entire

class of incentive compatible mechanisms.

2 The Model and a Preliminary Result

The set of agents is N := {1, . . . , n}. There are exactly two alternatives: a1 and a2. The

set of alternatives is denoted by A := {a1, a2}. Each agent i ∈ N has a valuation for each

alternative, and this is denoted as vi(aj) for every j ∈ {1, 2}. A valuation vector for agent i

is denoted as vi. For any agent i ∈ N , let Vi denote the set of all valuation vectors for agent

i. A valuation profile is denoted as v := (v1, . . . , vn) and the set of all valuation profiles is

V := V1 × . . . × Vn. We will use the standard notations v−i to denote a valuation profile of

agents other than agent i and V−i to denote the set of all such valuation profiles.

An allocation rule is a mapping f : V → [0, 1], where for every v ∈ V , f(v) denotes

the probability with which alternative a1 is chosen and 1−f(v) denotes the probability with

which alternative a2 is chosen. For convenience, we will denote f(v) as f1(v) and (1− f(v))

as f2(v). A deterministic allocation rule f is an allocation rule such that f(v) ∈ {0, 1}

for every v ∈ V . A payment rule of agent i is a mapping pi : V → R.
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2.1 Implementable Allocation Rules

An allocation rule f is (dominant strategy) implementable if there exists payment rules

p1, . . . , pn such that for every agent i ∈ N and for every v−i ∈ V−i the following inequality

holds for every vi, v
′
i ∈ Vi,

∑

k=1,2

vi(ak)fk(vi, v−i) − pi(vi, v−i) ≥
∑

k=1,2

vi(ak)fk(v
′
i, v−i) − pi(v

′
i, v−i).

In this case, we say that the payment rules p1, . . . , pn implement f . A mechanism is

an allocation rule f and payment rules (p1, . . . , pn). A mechanism M ≡ (f, p1, . . . , pn) is

incentive compatible if (p1, . . . , pn) implement f .

For every agent i ∈ N and for any valuation vector vi ∈ Vi, define ∂vi := vi(a1)− vi(a2).

Definition 1 An allocation rule f is monotone if for every i ∈ N , for every v−i ∈ V−i, and

for every vi, v
′
i ∈ Vi, if ∂vi > ∂v′

i, then f1(vi, v−i) ≥ f1(v
′
i, v−i).

The following preliminary result characterizes implementable allocation rules. We use

this result to prove our main results. The proof is in the Appendix.

Proposition 1 An allocation rule is implementable if and only if it is monotone.

The monotonicity condition we use to characterize implementability in Proposition 1 is

equivalent to the well-known 2-cycle monotonicity. It is a folklore that such monotonicity is

necessary and sufficient for implementability in one-dimensional value models such as single

object auctions (Myerson, 1981). Though agents have two-dimensional values in our model,

what matters for implementability is their difference of value between the two alternatives.

This ensures that monotonicity is still necessary and sufficient in our model.

Carbajal et al. (2012) show that for deterministic allocation rules, monotonicity is equiva-

lent to implementability in our model. Proposition 1 shows that it holds for non-deterministic

allocation rules as well (without any restriction on valuations).

3 Deterministic Implementation

We present our main result in this section. Our focus is on deterministic allocation rules.

We give a characterization of implementable deterministic allocation rules under a mild

condition. Before presenting this characterization, we discuss Roberts’ affine maximizer

theorem (Roberts, 1979).
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3.1 Roberts’ Affine Maximizers

In this subsection we let A to be any finite set of alternatives, and do not put the restriction

that |A| = 2. An allocation rule f is an affine maximizer if there exists non-negative real

numbers λ1, . . . , λn and a mapping γ : A → R such that at every valuation profile v, we have

f(v) ∈ arg max
a∈A

[

∑

i∈N

λivi(a) + γ(a)
]

An affine maximizer allocation rule f with weights λ1, . . . , λn ≥ 0 and γ : A → R satisfies

unresponsiveness to irrelevant agents (UIA) if for every i ∈ N such that λi = 0, we

have f(vi, v−i) = f(v′
i, v−i) for every v−i ∈ V−i and for every vi, v

′
i ∈ Vi. It is well known

that an affine maximizer which satisfies UIA can be implemented using generalized Groves

(Groves, 1973) payment rules - see for instance Mishra and Sen (2012).

Note that in the definition of an affine maximizer, we can choose, without loss of gen-

erality, λi for all i ∈ N such that
∑

i∈N λi = 1 if λi > 0 for some i ∈ N . We call such an

affine maximizer a responsive affine maximizer. Roberts (1979) showed that if |A| ≥ 3 and

Vi = R
|A| for all i ∈ N , then every onto deterministic implementable allocation rule is a

responsive affine maximizer. To remind, an allocation rule f is onto if for every a ∈ A, there

exists a valuation profile v ∈ V such that f(v) = a.

Hence, Roberts (1979) almost characterizes the set of deterministic implementable allo-

cation rules in unrestricted domains (i.e., when Vi = R
|A| for all i ∈ N) and when |A| ≥ 3.

Example 1

Roberts’ affine maximizer theorem is no longer true if |A| = 2. For instance, consider the

following allocation rule f̄ with two agents {1, 2} and V1 = V2 = R
2. For every v ∈ V ,

f̄(v) =

{

a1 if (∂v1)
3 + ∂v2 ≥ 0

a2 if (∂v1)
3 + ∂v2 < 0.

It is easy to verify that f̄ is monotone, and hence, implementable by Proposition 1. But f̄ is

not an affine maximizer. Next, we provide a characterization of deterministic implementable

allocation rules extending Roberts’ affine maximizer theorem. Our characterization covers

allocation rules of the form f̄ .

3.2 Generalized Utility Function Maximizers

The main tool of our characterization is the notion of a generalized utility function.
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Definition 2 A generalized utility function (GUF) is a mapping u : A × V → R for

all v ∈ V .

We associate a GUF with every agent. The GUF associated with agent i is denoted by ui.

At any v ∈ V , let

∂ui(v) = ui(a1, v) − ui(a2, v).

In other words, ∂ui(v) denotes the difference in “generalized utility” of agent i at valuation

profile v. We concentrate on a particular class of GUFs.

Definition 3 A GUF ui of agent i is strictly monotone if

1. for every v−i ∈ V−i, for every vi, v
′
i ∈ Vi with ∂vi > ∂v′

i, we have

∂ui(vi, v−i) > ∂ui(v
′
i, v−i).

2. for every j 6= i, for every v−j ∈ V−j, and every vj , v
′
j ∈ Vj with ∂vj > ∂v′

j, we have

∂ui(vj , v−j) ≥ ∂ui(v
′
j , v−j).

Using the notion of GUFs, we define a broad class of allocation rules. Abusing notation,

we will now let a deterministic allocation rule be a map f : V → A, i.e., f(v) ∈ A for all

v ∈ V .

Definition 4 An allocation rule f is a GUF maximizer if there exist strictly monotone

GUFs (u1, . . . , un) such that for all v ∈ V , we have

f(v) ∈ arg max
a∈A

∑

i∈N

ui(a, v).

In this case, we say that f is representable by (u1, . . . , un).

We now show that every GUF maximizer is implementable.

Lemma 1 Every GUF maximizer allocation rule is implementable.

Proof : Consider a GUF maximizer allocation rule f , and suppose f is representable by

(u1, . . . , un). Fix an agent i and v−i ∈ V−i. Consider vi, v
′
i ∈ Vi such that ∂vi > ∂v′

i. Suppose

f(v′
i, v−i) = a1. Then, by definition of f , we have

∑

j∈N

uj(a1, v
′
i, v−i) ≥

∑

j∈N

uj(a2, v
′
i, v−i).
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Hence, we get that

∑

j∈N

∂uj(v
′
i, v−i) ≥ 0.

By strict monotonicity, ∂ui(vi, v−i) > ∂ui(v
′
i, v−i) and ∂uj(vi, v−i) ≥ ∂uj(v

′
i, v−i) for all

j 6= i. Hence, we get

∑

j∈N

∂uj(vi, v−i) > 0.

This implies that

∑

j∈N

uj(a1, vi, v−i) >
∑

j∈N

uj(a2, vi, v−i).

By the definition of GUF maximizer, f(vi, v−i) = a1. Since f is deterministic, this shows

that f is monotone, and by Proposition 1, f is implementable. �

Our main result shows that under a mild range condition, GUF maximizers are the only

implementable deterministic allocation rules.

Definition 5 A deterministic allocation rule f satisfies agent sovereignty if for every

agent i ∈ N , every v−i ∈ V−i, and every a ∈ A, there is a vi ∈ Vi such that f(vi, v−i) = a. A

deterministic allocation rule f satisfies weak agent sovereignty if for every agent i ∈ N ,

every v−i ∈ V−i, there is a vi ∈ Vi such that f(vi, v−i) = a1.

Agent sovereignty requires every agent to have some decisive power irrespective of the val-

ues of other agents. It has been used extensively in public good provision problems (Moulin,

1999; Moulin and Shenker, 2001). Lavi et al. (2009) use agent sovereignty 3 to give a clean

proof of Roberts’ affine maximizer theorem (Roberts, 1979). In many settings, agent sovereignty

is a consequence of optimizing payments. For instance, Masso et al. (2011) consider the

model of choosing a binary excludable public good. They show that any mechanism that

minimizes the maximal welfare loss in their model must involve an allocation rule which

satisfies agent sovereignty.

For every i ∈ N , define Di := {∂vi : vi ∈ Vi}. Note that Di ⊆ R. Throughout, we will

make the assumption that Di is an interval.

Theorem 1 Let f be a deterministic allocation rule. Suppose one of the following conditions

hold:

Ca f satisfies agent sovereignty and for every i ∈ N , Di is an interval.

3What we call agent sovereignty, Lavi et al. (2009) refer to it as player decisiveness.
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Cb f satisfies weak agent sovereignty and for every i ∈ N , Di is an interval bounded from

below.

Then, f is implementable if and only if it is a GUF maximizer.

The natural domains where condition Ca and Cb can be satisfied are product interval

domains. Denote by V a
i the set of possible valuations on alternative a ∈ A for agent i ∈ N .

Let Vi = V a1

i ×V a2

i . Condition Ca holds if f satisfies agent sovereignty and V a
i is an interval

for every a ∈ A. Condition Cb holds if f satisfies weak agent sovereignty and V a1

i and V a2

i

are intervals, and V a1

i is bounded from below (for instance R+) and V a2

i is bounded from

above (for instance any compact interval). These domain restrictions cover the classical

problems of bilateral trading, public good provision, and their extensions.

3.3 Proof of Theorem 1

Before proving Theorem 1, we establish some claims. Suppose f is an implementable de-

terministic allocation rule. Then, for every i ∈ N and every v−i ∈ V−i, define df
i (v−i) as

follows:

df
i (v−i) = inf{∂vi ∈ Di : f(vi, v−i) = a1}.

We prove a series of claims. In each claim, we assume that f is a deterministic imple-

mentable allocation rule. Further, f satisfies agent sovereignty and for every i ∈ N , Di is an

interval.

The first claim shows when df
i (v−i) is well defined for every i ∈ N and for every v−i ∈ V−i.

Claim 1 For every i ∈ N and for every v−i ∈ V−i, df
i (v−i) is a real number.

Proof : Fix agent i and v−i ∈ V−i. Under conditions (Ca) or (Cb), there is some value

vi ∈ Vi such that f(vi, v−i) = a1.

If condition (Ca) holds, then for some v′
i, f(v′

i, v−i) = a2. Since f is implementable,

it is monotone (Proposition 1). Hence, ∂v′
i ≤ ∂vi. Since Di is an interval, we get that

inf{∂vi ∈ Di : f(vi, v−i) = a1} is a real number.

If condition (Cb) holds, then since Di is an interval bounded below, inf{∂vi ∈ Di :

f(vi, v−i) = a1} is a real number. �

We now define a payment rule. For every agent i ∈ N , define pf
i as follows:

pf
i (vi, v−i) =

{

0 if f(vi, v−i) = a2

df
i (v−i) if f(vi, v−i) = a1.
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These payments are counterparts of Myerson’s cutoff-based payments for single object auc-

tion (Myerson, 1981).

Claim 2 The payment rule (pf
1 , . . . , p

f
n) implements f .

Proof : Fix an agent i ∈ N and v−i ∈ V−i. Consider vi, v
′
i ∈ Vi. We will show that

vi(f(vi, v−i) − pf
i (vi, v−i) ≥ vi(f(v′

i, v−i)) − pf
i (v

′
i, v−i).

If f(vi, v−i) = f(v′
i, v−i), we are done. So, assume that f(vi, v−i) 6= f(v′

i, v−i). We consider

two cases.

Case 1. Suppose f(vi, v−i) = a1 and f(v′
i, v−i) = a2. Then, vi(f(vi, v−i)) − pf

i (vi, v−i) =

vi(a1)− df
i (v−i). Since df

i (v−i) ≤ ∂vi, we get that vi(a1)− df
i (v−i) ≥ vi(a2) = vi(f(v′

i, v−i))−

pf
i (v

′
i, v−i), where we used the fact that pf

i (v
′
i, v−i) = 0 since f(v′

i, v−i) = a2.

Case 2. Suppose f(vi, v−i) = a2 and f(v′
i, v−i) = a1. We argue that ∂vi ≤ df

i (v−i).

Assume for contradiction that ∂vi > df
i (v−i). By definition of df

i (v−i), there is v′′
i such that

f(v′′
i , v−i) = a1 and ∂v′′

i is arbitrarily close to df
i (v−i). Hence, ∂vi > ∂v′′

i . Then, since f is

monotone, f(vi, v−i) = a1, which is a contradiction.

Hence, vi(a2) ≥ vi(a1) − df
i (v−i). Using the fact that pf

i (vi, v−i) = 0 since f(vi, v−i) = a2

and pf
i (v

′
i, v−i) = df

i (v−i) since f(v′
i, v−i) = a1, we get that vi(f(vi, v−i)) − pf

i (vi, v−i) =

vi(a2) ≥ vi(a1) − df
i (v−i) = vi(f(v′

i, v−i)) − pf
i (v

′
i, v−i). �

Claim 2 has other implications. If Vi is connected for each i ∈ N , then by well-known

results on revenue equivalence (Heydenreich et al., 2009), we can conclude that any other

payment rule pi of agent i must look as follows: pi(v) = pf
i (v) + hi(v−i) for all v ∈ V , where

hi : V−i → R is any function.

The next claim shows a monotonicity property of df
i (·) for every i ∈ N .

Claim 3 For every i, for every j 6= i, for every vj, v
′
j ∈ Vj such that ∂vj < ∂v′

j , we have

that df
i (vj , v−ij) ≥ df

i (v
′
j , v−ij) for all v−ij ∈ V−ij.

Proof : Fix agents i and j 6= i, and consider vj , v
′
j ∈ Vj such that ∂vj < ∂v′

j . Assume

for contradiction that df
i (vj, v−ij) < df

i (v
′
j, v−ij) for some v−ij ∈ V−ij . Let vi be such that

∂vi = df
i (vj, v−ij) + ǫ < df

i (v
′
j, v−ij) for some sufficiently small ǫ > 0. Since Di is an interval,

such a vi exists. By definition, f(vi, vj , v−ij) = a1 and f(vi, v
′
j , v−ij) = a2. But ∂vj < ∂v′

j

means f(vi, v
′
j , v−ij) = a1 by monotonicity. This is a contradiction. �

This leads us to the proof of Theorem 1.
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Proof : Lemma 1 shows that every GUF maximizer is implementable. We prove the con-

verse. Let f be an implementable deterministic allocation rule, and suppose (sc Ca) or (Cb)

holds. For every i ∈ N , define the GUF of agent i as follows: for every (vi, v−i) ∈ V let

ui(a, vi, v−i) =

{

0 if a = a2

∂vi − df
i (v−i) if a = a1.

By Claim 1, the GUFs are well-defined. We show that for any i ∈ N , ui is strictly monotone.

By definition, for every v−i, ui(a1, v) = ∂vi−df
i (v−i) > ∂v′

i−df
i (v−i) if ∂vi > ∂v′

i. Now, fix any

j 6= i and consider vj, v
′
j such that ∂vj > ∂v′

j . By Claim 3, ui(a1, vj, v−j) = ∂vi−df
i (vj , v−ij) ≥

∂vi − df
i (v

′
j , v−ij) = ui(a1, v

′
j , v−j).

Now, consider any v ∈ V and suppose f(v) = a1. Then, by definition, for every

i ∈ N , df
i (v−i) ≤ ∂vi. Hence, ui(a1, v) ≥ ui(a2, v), which implies that

∑

j∈N uj(a1, v) ≥
∑

j∈N uj(a2, v). Similarly, suppose f(v) = a2. Then, for every i ∈ N , since f satisfies agent

sovereignty, there is a v′
i such that f(v′

i, v−i) = a1. But, by Claim 2, vi(a2) − 0 ≥ vi(a1) −

df
i (v−i). Hence, ui(a2, v) ≥ ui(a1, v), which implies that

∑

j∈N uj(a2, v) ≥
∑

j∈N uj(a1, v).

This shows that the f is representable by GUFs (u1, . . . , un). �

4 An Axiomatization of Affine Maximizers

Theorem 1 shows the rich class of “maximizers” that can be implemented when there are two

alternatives. However, when we have more than two alternatives, we only get affine maxi-

mizers in unrestricted domains. Then, a natural question to ask is: what extra condition(s)

besides implementability are needed to pin down the affine maximizers when there are two

alternatives? This will help us understand the case of two alternatives even further.

The aim of this section is to axiomatize the affine maximizers for the case of |A| = 2

using implementability and some additional condition(s). It turns out, we only need one

new condition besides implementability. To introduce the new condition, we will need some

notation.

We will assume that the set of possible valuations of each for each alternative is an open

interval. Hence, throughout this section, we will assume that for every i ∈ N , Vi = Li × Li,

where Li is an open interval. We will call this the open interval domain. Notice that the

valuation for every alternative lies in the same interval.

Given a profile of valuations (v1, . . . , vn), we will often be interested in the vector of

valuations associated with each alternative. In particular, for j ∈ {1, 2}, let v(aj) ∈ R
n

denote the valuation vector associated with alternative aj . Let U be the set of all valuation

vectors for alternatives given our open interval domain assumption. Note that U is an

13



open rectangle in R
n. A profile of valuations contains exactly two valuation vectors from

U , one denoting the valuations for alternative a1 and the other denoting the valuations for

alternative a2. For convenience, we will denote the profile of valuations as (v(a1), v(a2))

instead of (v1, . . . , vn). Further, for every a ∈ A, we will sometimes write (v(a), v(−a)) to

denote the profile of valuations (v(a1), v(a2)).

We are now ready to state our new condition.

Definition 6 An allocation rule f satisfies independence if for every a ∈ A and for every

pair of valuation profiles v, v′ such that f(v) = f(v′) = a, we have f(v(a) + ǫ, v′(−a)) = a

or f(v′(a) + ǫ, v(−a)) = a for all ǫ ∈ R
n
++.

An allocation rule can be thought of as evaluating valuation vectors for alternatives

at every profile of valuations, and selecting one of the valuation vectors. The independence

condition requires some consistency in such evaluations. To understand independence better,

suppose the independence condition is not satisfied by an allocation rule f . Then, there is a

pair of valuation profiles v and v′ such that

f(v(a), v(−a)) = a (1)

f(v′(a), v′(−a)) = a (2)

and for some ǫ ∈ R
n
++

f(v(a) + ǫ, v′(−a)) = b (3)

f(v′(a) + ǫ, v(−a)) = b. (4)

Now, consider Equations 1 and 4. These equations show that in the presence of v(−a), valu-

ation vector v(a) tilts the outcome in favor of a more than valuation vector v′(a). However,

Equations 2 and 3 show that in the presence of v′(−a), v′(a) tilts the outcome in favor of

a more than v(a). This is counterintuitive: the way v(a) and v′(a) compare to each other

depends on the second argument of the allocation rule 4. So, the role of Independence is

precisely to make the comparison of v(a) and v′(a) independent of the second argument.

A similar condition is used in Debreu’s theorem on the additive representation of a binary

relation over a Cartesian product (see Theorem 3 in Debreu (1960)).

We show that an affine maximizer allocation rule satisfies independence.

4If we assume f to be implementable, then this is even more counterintuitive. To see, this if f is

implementable, then it is monotone, and Equations 1 and 2 can be strengthened to say: f(v(a)+ ǫ, v(−a)) =

f(v′(a) + ǫ, v′(−a)) = a, where ǫ is as in Equations 3 and 4. This can now be directly compared with

Equations 3 and 4 to see that the comparison of v(a) + ǫ and v′(a) + ǫ depends on the second argument of

the allocation rule.
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Lemma 2 Every affine maximizer allocation rule satisfies independence.

Proof : Let f be an affine maximizer allocation rule with weights λ1, . . . , λn ≥ 0 and

γ : A → R. Consider a pair of valuation profiles v, v′ such that f(v) = f(v′) = a1 (the other

case where f(v) = f(v′) = a2 can be dealt similarly). Then, affine maximization gives us
∑

i∈N

λivi(a1) + γ(a1) ≥
∑

i∈N

λivi(a2) + γ(a2)

∑

i∈N

λiv
′
i(a1) + γ(a1) ≥

∑

i∈N

λiv
′
i(a2) + γ(a2).

Adding these two inequalities gives us
∑

i∈N

λi

[

vi(a1) + v′
i(a1)

]

+ 2γ(a1) ≥
∑

i∈N

λi

[

vi(a2) + v′
i(a2)

]

+ 2γ(a2). (5)

(6)

Now, assume for contradiction f(v(a1) + ǫ, v′(a2)) = a2 and f(v′(a1) + ǫ′, v(a2)) = a2 for

some ǫ, ǫ′ ∈ R
n
++. Then, f is a non-constant affine maximizer. Since ǫ, ǫ′ ∈ R

n
++, this implies

that
∑

i∈N

λiv
′
i(a2) + γ(a2) >

∑

i∈N

λivi(a1) + γ(a1)

∑

i∈N

λivi(a2) + γ(a2) >
∑

i∈N

λiv
′
i(a1) + γ(a1).

Adding these two inequalities gives a contradiction to Inequality 5. �

There are non-affine maximizer allocation rules which are implementable but do not

satisfy independence. For instance, consider the implementable allocation rule f̄ in Example

1. Suppose v is the valuation profile where v1(a1) = 2, v1(a2) = 0, v2(a1) = 1, v2(a2) = 4

and v′ is the valuation profile where v′
1(a1) = 0, v′

1(a2) = 1, v′
2(a1) = v′

2(a2) = 3. By

definition, f̄(v) = f̄(v′) = a1. Now, for sufficiently small ǫ ∈ R
2
++, it is easily verified that

f̄(v(a1) + ǫ, v′(a2)) = f̄(v′(a1) + ǫ, v(a2)) = a2. Hence, f̄ does not satisfy independence.

We show that amongst the implementable deterministic allocation rules, only affine max-

imizers satisfy independence.

Theorem 2 Suppose for every i ∈ N , Li is an open interval unbounded from above. If

a deterministic allocation rule is implementable and satisfies independence, then it is an

affine maximizer. Conversely, if f is an affine maximizer, then it satisfies independence,

and further, if it satisfies UIA, then it is implementable.

The proof of Theorem 2 is in the Appendix. The proof uses another interesting result on

axiomatizing weighted efficiency, which we state next.
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4.1 An Axiomatization of Weighted Efficiency

Weighted efficiency is a particular form of affine maximizer. An allocation rule f is a

weighted efficient allocation rule if there exists weights λ1, . . . , λn ≥ 0 with λi > 0 for

some i ∈ N , such that for every valuation profile v ∈ V , we have f(v) ∈ arg maxa∈A

∑

i∈N λivi(a).

Among the class of affine maximizer allocation rules, weighted efficient allocation rules do

not discriminate between alternatives. We will show that under some additional conditions,

implementability will imply weighted efficiency. To define the additional conditions, we need

some preparation. First, we introduce a well known monotonicity condition due to Roberts

(1979).

Definition 7 A deterministic allocation rule f satisfies positive association of differ-

ences (PAD) if for every pair of profile of valuations v, v′ ∈ V such that ∂vi > ∂v′
i for

every i ∈ N and f(v′) = a1 we have f(v) = a1.

Consider a pair of profile of valuations v, v′ ∈ V such that ∂vi < ∂v′
i for every i ∈ N and

f(v′) = a2. Note that PAD implies that f(v) = a2. To see this, assume for contradiction

f(v) = a1. Then, applying PAD (interchanging the role of v and v′ in above definition), we

get that f(v′) = a1, a contradiction.

Roberts (1979) showed that PAD is a necessary condition for implementability.

Lemma 3 (Roberts (1979)) If a deterministic allocation rule is implementable, then it

satisfies PAD.

It can be shown that monotonicity implies PAD, and hence, Lemma 3 is a direct conse-

quence of Proposition 1.

Given a deterministic allocation rule f , define the choice set at a profile of valuations v

as

Cf(v) = {a ∈ A : f(v(a) + ǫ, v(−a)) = a ∀ ǫ ∈ R
n
++}.

Since U is open, Cf(v) is well defined for every profile of valuations v. Using PAD, one notices

that if f is implementable, then f(v) ∈ Cf(v) for every valuation profile v ∈ V . Hence, the

choice set is non-empty. The choice set allows us to look at potential “candidates” other than

f(v) which could have been selected by the allocation rule f at valuation profile v.

We now introduce two new conditions on deterministic allocation rules. The first one is

a transitivity requirement.

Definition 8 A deterministic allocation rule f is transitive if for every x, y, z ∈ U , and

every v, v′, v′′ ∈ V such that v(a1) = x = v′′(a1), v(a2) = y = v′(a1), and v′(a2) = z = v′′(a2),

we have,
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• if Cf(v) = {a1} and Cf(v′) = {a1}, then f(v′′) = a1 and

• if Cf(v) = {a2} and Cf(v′) = {a2}, then f(v′′) = a2.

The next condition is unanimity, which is very similar in flavor to the unanimity axiom

used in the social choice theory literature.

Definition 9 A deterministic allocation rule f is unanimous if for every x, y ∈ U such

that xi > yi for all i ∈ N , we have f(v) = a if v(a) = x and v(−a) = y.

Theorem 3 Suppose for every i ∈ N , Li is an open interval. If f is a deterministic

implementable allocation rule that is unanimous and transitive, then it is a weighted efficient

allocation rule. Conversely, a weighted efficient allocation rule f is unanimous and transitive,

and further, if it satisfies UIA, then it is implementable.

The proof of Theorem 3 is in the Appendix. In Mishra and Sen (2012), it was shown that if

the number of alternatives is at least three, then in open interval domains, every neutral and

deterministic implementable allocation rule is a weighted efficient allocation rule. Neutrality

requires that the allocation rule does not discriminate between alternatives. Theorem 3

is the counterpart of this result for the two alternatives case. The proof of Theorem 3

reveals that in the presence of transitivity, unanimity is equivalent to neutrality in our

model. Hence, compared to Mishra and Sen (2012), the extra axiom required to characterize

weighted efficiency in our two alternatives model is transitivity.

5 Randomization

In the previous section, we only discussed deterministic implementable allocation rules. How-

ever, the consequence of randomization is completely unexplored in Roberts’ theorem - even

when the number of alternatives is at least three, nothing is known about the set of imple-

mentable allocation rules when one allows for randomization. In this section, we make some

progress in our model with two alternatives.

The following straightforward lemma establishes that the set of implementable allocation

rules is a convex set.

Lemma 4 Suppose f and f ′ are two implementable allocation rules, and let λ ∈ (0, 1).

Define another allocation rule f ′′ as f ′′(v) = λf(v) + (1 − λ)f ′(v) for all v ∈ V . The

allocation rule f ′′ is also implementable.
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Proof : Suppose (p1, . . . , pn) implement the allocation rule f and (q1, . . . , qn) implement f ′.

Define for every i ∈ N , ri(v) = λpi(v) + (1 − λ)qi(v) for all v ∈ V . Then, for every i ∈ N

and every v−i we have for every vi, v
′
i ∈ V ,

∑

k=1,2

f ′′
k (vi, v−i)vi(ak) + ri(vi, v−i) =

∑

k=1,2

[λfk(vi, v−i) + (1 − λ)f ′
k(vi, v−i)]vi(ak)

+ λpi(vi, v−i) + (1 − λ)qi(vi, v−i))

= λ
[

∑

k=1,2

fk(vi, v−i)vi(ak) + pi(vi, v−i)
]

+ (1 − λ)
[

∑

k=1,2

f ′
k(vi, v−i)vi(ak) + qi(vi, v−i)

]

≥ λ
[

∑

k=1,2

fk(v
′
i, v−i)vi(ak) + pi(v

′
i, v−i)

]

+ (1 − λ)
[

∑

k=1,2

f ′
k(v

′
i, v−i)vi(ak) + qi(v

′
i, v−i)

]

=
∑

k=1,2

f ′′
k (v′

i, v−i)vi(ak) + ri(v
′
i, v−i).

Hence, (r1, . . . , rn) implement f ′′. �

This leads to a natural definition of extreme point.

Definition 10 An implementable allocation rule f ′′ is an extreme point allocation rule

if there does not exist two distinct implementable allocation rules f and f ′, and λ ∈ (0, 1)

such that f ′′(v) = λf(v) + (1 − λ)f ′(v) for all v ∈ V .

It is clear that every implementable deterministic allocation rule is an extreme point

allocation rule.

Lemma 5 Every implementable deterministic allocation rule is an extreme point allocation

rule.

Proof : Let f ′′ be an implementable deterministic allocation rule. Assume for contradiction

there exist distinct implementable allocation rules f and f ′, and λ ∈ (0, 1) such that f ′′(v) =

λf(v) + (1 − λ)f ′(v) for all v ∈ V . Since f and f ′ are distinct, for some v ∈ V and for

some k ∈ {1, 2}, we have fk(v) 6= f ′
k(v). Then, f ′′

k (v) lies between fk(v) and f ′
k(v). This

contradicts the fact that f ′′ is deterministic. �

The main result of this section is that the converse of Lemma 5 is true in our model.

Theorem 4 An implementable allocation rule is an extreme point allocation rule if and only

if it is an implementable deterministic allocation rule.
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Proof : By Lemma 5, every implementable deterministic allocation rule is an extreme point

allocation rule. Now, consider an implementable allocation rule f which is an extreme point

allocation rule. Assume for contradiction that f is not deterministic. Consider the following

function g : V → [0, 1] defined as follows. For every v ∈ V ,

g(v) =

{

f(v) if f(v) ≤ 0.5

1 − f(v) if f(v) > 0.5.

Let f ′ and f ′′ be two allocation rules defined as follows. For all v ∈ V , let

f ′(v) = f(v) + g(v)

f ′′(v) = f(v) − g(v).

Note that f ′ and f ′′ are well-defined. Further, since f is not deterministic, for some v ∈ V ,

we have f(v) ∈ (0, 1), and hence, g(v) 6= 0. This further implies that f ′(v) = f(v) + g(v) 6=

f(v) − g(v) = f ′′(v). Hence, f ′ and f ′′ are two distinct allocation rules, and their convex

combination yields f .

We will show that f ′ and f ′′ are implementable, and this will give us a contradiction to

the fact that f is an extreme point. Fix an agent i and v−i ∈ V−i. Consider vi and v′
i such

that ∂vi > ∂v′
i. Since f is implementable f(vi, v−i) ≥ f(v′

i, v−i) (by Proposition 1).

Consider the allocation rule f ′. Suppose f(vi, v−i) ≤ 0.5. Then, f(v′
i, v−i) ≤ 0.5. As a

consequence, f ′(vi, v−i) = 2f(vi, v−i) ≥ 2f(v′
i, v−i) = f ′(v′

i, v−i). Suppose f(vi, v−i) > 0.5.

Then, consider the two possible cases. Suppose f(v′
i, v−i) > 0.5. In this case, f ′(vi, v−i) =

1 = f ′(v′
i, v−i). Suppose f(v′

i, v−i) ≤ 0.5. Then, f ′(vi, v−i) = 1 ≥ 2f(v′
i, v−i) = f ′(v′

i, v−i).

Hence, in all cases, we have f ′(vi, v−i) ≥ f ′(v′
i, v−i). This shows that f ′ is monotone, and

hence, implementable by Proposition 1.

Now, consider the allocation rule f ′′. Suppose f(vi, v−i) ≤ 0.5. Then, since f is monotone,

f(v′
i, v−i) ≤ 0.5. As a consequence, f ′′(vi, v−i) = 0 = f ′′(v′

i, v−i). Suppose f(vi, v−i) > 0.5.

Then, consider the two possible cases. Suppose f(v′
i, v−i) > 0.5. In this case, f ′′(vi, v−i) =

2f(vi, v−i) − 1 ≥ 2f(v′
i, v−i) − 1 = f ′′(v′

i, v−i). Suppose f(v′
i, v−i) ≤ 0.5. In this case,

f ′′(vi, v−i) = 2f(vi, v−i) − 1 ≥ 0 = f ′′(v′
i, v−i). This shows that f ′′ is monotone, and hence,

implementable by Proposition 1. �

The question we ask in Theorem 4 can be asked in general mechanism design setting (with

arbitrary number of alternatives): When is an implementable allocation rule an extreme point

allocation rule? Manelli and Vincent (2007) show the usefulness of such a result in multi-

object auction setting. In particular, they show that finding revenue maximizing mechanisms

subject to individual rationality constraint boils down to searching over extreme points of

allocation rules, which they characterize in their model (for one agent and one object auction,
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these extreme points are deterministic allocation rules in their model). We leave such an

analysis in our model for future research.

6 Conclusion

In quasi-linear private values environment, Roberts’ affine maximizer theorem is a seminal

contribution. Two crucial assumptions of this theorem are (a) there are at least three alterna-

tives and (b) the domain of valuations is unrestricted. We extend this theorem by considering

the case of two alternatives. Unlike the three or more alternatives result of Roberts (1979),

which requires the domain of valuations to be unrestricted, our results for two alternatives

hold in various restricted domains of valuations. An interesting future research direction will

be to apply these results to specific problems with two alternatives, and do some optimiza-

tion - for instance, revenue maximization or budget-balancing with minimal efficiency loss

etc.

We consider implementation in dominant strategies. One can think of weakening the

notion of equilibrium to Bayes-Nash. Gershkov et al. (2012) show that in one dimensional

models, for every allocation rule that can be Bayes-Nash implemented, there is a correspond-

ing allocation rule that can be implemented in dominant strategies such that the interim

allocation probabilities of each alternative is the same in both the allocation rules. This result

is true in models with two alternatives also - see Gershkov et al. (2011). This shows that

our restriction to dominant strategy implementation is not a significant restriction.

Finally, the notion of a GUF maximizer can be extended to environments with more than

two alternatives also. With suitable restrictions on GUFs, one can make a GUF maximizer

implementable in such environments. However, an open question remains whether such

GUF maximizers are the only implementable allocation rules (under some additional mild

conditions) in such environments.
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Appendix

Proof of Proposition 1

Proof : Suppose f is implementable. Let p1, . . . , pn implement f . Fix an agent i ∈ N ,

v−i ∈ V−i, and vi, v
′
i ∈ Vi. Note that the incentive constraint for agent i, when his true value is

vi and he deviates to v′
i, can be written as (by using the fact that f1(vi, v−i) = 1−f2(vi, v−i)),

∂vi[f1(vi, v−i) − f1(v
′
i, v−i)] ≥ pi(vi, v−i) − pi(v

′
i, v−i).

Suppose ∂vi > ∂v′
i. Writing the pair of incentive constraints for vi and v′

i, we get

∂vi[f1(vi, v−i) − f1(v
′
i, v−i)] ≥ pi(vi, v−i) − pi(v

′
i, v−i)

∂v′
i[f1(v

′
i, v−i) − f1(vi, v−i)] ≥ pi(v

′
i, v−i) − pi(vi, v−i).

Adding the constraints, we get

(∂vi − ∂v′
i)[f1(vi, v−i) − f1(v

′
i, v−i)] ≥ 0.

Using the fact that ∂vi > ∂v′
i, we immediately conclude that f1(vi, v−i) ≥ f1(v

′
i, v−i).

Now, assume that f is monotone. To show that f is implementable, we will show that

f is cyclically monotone, and by Rochet (1987), we will be done. Cycle monotonicity in

our setting is the following requirement. Fix agent i and v−i ∈ V−i. For any pair of values

vi, v
′
i ∈ Vi, let

ℓ(v′
i, vi) = ∂vi[f1(vi, v−i) − f1(v

′
i, v−i)].

Consider any finite sequence of values v1
i , v

2
i , . . . , v

h
i . The allocation rule f is cyclically

monotone if

ℓ(v1

i , v
2

i ) + ℓ(v2

i , v
3

i ) + . . . + ℓ(vh−1

i , vh
i ) + ℓ(vh

i , v1

i ) ≥ 0. (7)
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We show this using induction on h. If h = 2, then we need to show that ℓ(v1
i , v

2
i )+ℓ(v2

i , v
1
i ) ≥

0. This is equivalent to showing (∂v1
i − ∂v2

i )[f1(v
1
i , v−i) − f1(v

2
i , v−i)] ≥ 0. This follows from

the fact that f is monotone. Now, suppose Inequality 7 holds for all h < r and consider

h = r. If ∂v1
i = ∂v2

i = . . . = ∂vr
i , then

ℓ(v1

i , v
2

i ) + ℓ(v2

i , v
3

i ) + . . . + ℓ(vr−1

i , vr
i ) + ℓ(vr

i , v
1

i ) = 0.

Otherwise, there is some q ≤ r such that ∂vq
i > ∂vq−1

i (where 0 ≡ r) and ∂vq
i ≥ ∂vj

i for all

j ∈ {1, . . . , r}. Note that by monotonicity,

f1(v
q
i , v−i) ≥ f1(v

q−1

i , v−i). (8)

Consider ℓ(vq−1, vq) + ℓ(vq, rq+1) − ℓ(vq−1, vq+1), where r + 1 ≡ 1. By substituting, we get

ℓ(vq−1

i , vq
i ) + ℓ(vq

i , v
q+1

i ) − ℓ(vq−1

i , vq+1

i ) = ∂vq
i [f1(v

q
i , v−i) − f1(v

q−1

i , v−i)]

+ ∂vq+1

i [f1(v
q+1

i , v−i) − f1(v
q
i , v−i)]

− ∂vq+1

i [f1(v
q+1

i , v−i) − f1(v
q−1

i , v−i)]

= (∂vq
i − ∂vq+1

i )[f1(v
q
i , v−i) − f1(v

q−1

i , v−i)]

≥ 0,

where the last inequality comes from Inequality 8 and from the fact that ∂vq
i ≥ ∂vq+1

i . This

means that ℓ(vq−1

i , vq
i ) + ℓ(vq

i , v
q+1

i ) ≥ ℓ(vq−1

i , vq+1

i ). Then,

ℓ(v1

i , v
2

i ) + . . . + ℓ(vq−1

i , vq
i ) + ℓ(vq

i , v
q+1

i ) + ℓ(vq+1

i , vq+2

i ) + . . . + ℓ(vr
i , v

1

i )

≥ ℓ(v1

i , v
2

i ) + . . . + ℓ(vq−1

i , vq+1

i ) + ℓ(vq+1

i , vq+2

i ) + . . . + ℓ(vr
i , v

1

i )

≥ 0,

where the last inequality follows from our induction hypothesis. This concludes the proof.

�

Proofs of Theorems 2 and 3

We prove Theorems 2 and 3 in this sections. Before we do so, we comment on the method-

ology of the proof. The proof methodology is based on an ordering based approach of

Mishra and Sen (2012) (M&S from now on). M&S provide an alternate proof of Roberts’

theorem when there are at least three alternatives. The general idea of their proof is to

characterize weighted efficiency using neutrality and implementability. In the unrestricted

domain, for every implementable allocation rule, there is another implementable allocation
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rule that satisfies neutrality. This new allocation rule can be obtained by translating the

original allocation rule. One can then leverage the weighted efficiency characterization to

get a characterization of affine maximization in the unrestricted domain.

Although, we employ this methodology, our proof is different in many aspects from M&S.

This is mainly because we have two alternatives. Our characterization of weighted efficiency

requires stronger condition than the neutrality condition of M&S. Further, our affine max-

imization characterization requires implementability and a new condition called (indepen-

dence), which M&S do not require if there are more than two alternatives.

Proof of Theorem 3

Like in M&S, we start by proving the characterization of weighted efficiency first, and then

use this result to prove the affine maximizer characterization.

Fix an implementable deterministic allocation rule f . Consider the binary relation Rf

over U defined by xRfy iff a1 ∈ Cf (v), with v(a1) = x and v(a2) = y. Let P f and If

respectively denote the asymmetric and symmetric part of Rf . They are well-behaved (in a

sense made precise in Lemma 6) if f satisfies a neutrality condition.

Definition 11 An allocation rule f is neutral if for every pair of valuations v, v′ ∈ V such

that v(a1) = v′(a2) and v(a2) = v′(a1) we have

Cf(v) =

{

Cf(v′) if Cf (v) = A

A \ Cf(v) otherwise.

The usual definition of neutrality will require that for every pair of valuations v, v′ ∈ V

such that v(a) = v′(−a) and v(−a) = v′(a) with v 6= v′ we have {f(v′)} = A \ {f(v)}. One

can verify that this version of neutrality implies our version of neutrality if the allocation

rule is implementable - see Mishra and Sen (2012) for a proof.

Lemma 6 Suppose f is neutral and implementable. Then Rf is reflexive and complete.

Further, if v(a1) = x and v(a2) = y, then

• Cf(v) = {a1} implies xP fy and Cf (v) = {a2} implies yP fx, and

• Cf(v) = A implies xIfy.

Proof : Rf is reflexive. For any x ∈ U , consider the valuation profile v where v(a1) =

v(a2) = x. Since Cf (v) is non-empty and f is neutral, Cf(v) = A. Hence, xRfx.

Rf is complete. For every x, y ∈ U , we can construct a valuation profile v with v(a1) = x

and v(a2) = y. If a1 ∈ Cf(v), then xRfy. If a1 /∈ Cf (v), then a2 ∈ Cf(v). Then, by

neutrality, a1 ∈ Cf (v′), with v′(a1) = y and v′(a2) = x. Therefore, yRfx.
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We now show that Cf (v) = {a1} implies xP fy. Suppose Cf (v) = {a1}. This clearly

implies xRfy. Assume for contradiction that we also have yRfx. This implies that a1 ∈

Cf(v′), with v′(a1) = y and v′(a2) = x. Then, by neutrality, a2 ∈ Cf (v), which gives us a

contradiction.

A similar reasoning ensures that Cf (v) = {a2} implies yP fx.

Finally, we show that Cf(v) = A implies xIfy. Suppose Cf(v) = A. This clearly implies

xRfy. Neutrality implies that Cf(v′) = A, with v′(a1) = y and v′(a2) = x. So, yRfx, and

hence, xIfy. �

Lemma 7 Suppose f is a deterministic implementable and transitive allocation rule. Then,

f is unanimous if and only if it is neutral.

Proof : Suppose f is neutral and implementable. Consider x, y ∈ U such that xi > yi for all

i ∈ N . Then, due to neutrality, Cf(v) = A if v(a) = y for all a ∈ A. By PAD, Cf(v′) = {a}

if v′(a) = x and v′(−a) = y. Hence, f is unanimous.

Now, suppose f is unanimous and transitive. Assume for contradiction that f is not

neutral. Then, for some x, y ∈ U , we consider v and v′ such that v(a1) = x = v′(a2) and

v(a2) = y = v′(a1). We consider two cases.

Case 1. Assume for contradiction Cf(v) = A but Cf (v′) = {a1} (the argument does

not change if Cf(v′) = {a2}). Since a2 /∈ Cf(v′), there is some ǫ ∈ R
n
++ such that

f(v′(a1), v
′(a2) + 2ǫ) = a1. This implies that Cf(v′(a1), v

′(a2) + ǫ) = {a1}. Choose ǫ′ ∈ R
n
++

such that ǫ′i < ǫi for all i ∈ N . Since Cf(v) = A, by PAD, f(v(a1) + ǫ, v(a2) + ǫ′) = a1.

Moreover, by PAD, Cf (v(a1) + ǫ, v(a2) + ǫ′) = {a1}. Now, consider the valuation profile v′′

such that v′′(a1) = v′(a1) = y and v′′(a2) = v(a2) + ǫ′ = y + ǫ′. By transitivity, f(v′′) = a1.

But this contradicts the fact that f is unanimous.

Case 2. Assume for contradiction Cf (v) = {a1} but Cf(v′) 6= {a2} (the argument is

unchanged if Cf(v) = {a2}). If Cf(v′) = A, then we can apply the argument in Case 1 to

reach a contradiction (by interchanging the roles of v and v′). Now, assume for contradiction

Cf(v′) = {a1}. Since a2 /∈ Cf(v), there is some sufficiently small ǫ ∈ R
n
++ such that

Cf(v(a1), v(a2) + ǫ) = {a1}. Also, there is some ǫ′ such that ǫ′i < ǫi for all i ∈ N such that

f(v′(a1)+ ǫ, v′(a2)+ ǫ′) = a1. Moreover, by PAD, Cf (v′(a1)+ ǫ, v′(a2)+ ǫ′) = {a1}. Consider

a valuation profile v′′ such that v′′(a1) = v(a1) = x and v′′(a2) = v′(a2) + ǫ′ = x + ǫ. By

transitivity, f(v′′) = a1. But this contradicts the fact that f is unanimous. �

Finally, we show that if f is implementable, transitive, and unanimous, then Rf is tran-

sitive.
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Lemma 8 If a deterministic implementable allocation rule f is transitive and unanimous,

then Rf is an ordering.

Proof : By Lemmas 6 and 7, if f is a deterministic implementable allocation rule that is

transitive and unanimous, then Rf is a well-behaved binary relation. We need to show that

Rf is transitive. We will show that P f and If are each transitive, and this in turn will imply

that Rf is transitive.

P f is transitive. Consider x, y, z ∈ U such that xP fy and yP fz. Fix any ǫ ∈ R
n
++.

By definition, if v(a1) = x and v(a2) = y, then f(v(a1) + 2ǫ, v(a2) + ǫ) = a1. Moreover,

by PAD, Cf(v(a1) + 2ǫ, v(a2) + ǫ) = {a1}. Similarly, if v′(a1) = y and v′(a2) = z, then

Cf(v′(a1) + ǫ, v′(a2)) = {a1}. Consider the valuation profile v′′ such that v′′(a1) = x and

v′′(a2) = z. By transitivity, f(v′′(a1) + 2ǫ, v′′(a2)) = a1. Hence, a1 ∈ Cf (v′′).

Also, for some ǫ ∈ R
n
++, we have Cf(v(a1), v(a2) + ǫ) = {a1} and for some ǫ′ ∈ R

n
++, we

have Cf(v′(a1) + ǫ, v′(a2) + ǫ′) = {a1}. Again, by transitivity, f(v′′(a1), v
′′(a2) + ǫ′) = a1.

Hence, a2 /∈ Cf(v′′). This shows that xP fz.

If is transitive. Consider x, y, z ∈ U such that xIfy and yIfz. Fix some ǫ ∈ R
n
++. By

definition, if v(a1) = x and v(a2) = y, then (as in the earlier paragraph) Cf(v(a1)+2ǫ, v(a2)+

ǫ) = {a1}. Similarly, if v′(a1) = y and v′(a2) = z, then Cf(v′(a1) + ǫ, v′(a2)) = {a1}.

Consider the valuation profile v′′ such that v′′(a1) = x and v′′(a2) = z. By transitivity,

f(v′′(a1) + 2ǫ, v′′(a2)) = a1. Hence, a1 ∈ Cf(v′′). A similar argument shows a2 ∈ Cf(v′′).

Hence, xIfz. �

An ordering R on U satisfies weak Pareto if for any x, y ∈ U if xi > yi for all i ∈ N ,

then xPy.

An ordering R on U satisfies translation invariance (tr-invariance) if for any x, y ∈ U

and z ∈ R
n such that x+ z, y + z ∈ U , we have xPy implies (x+ z)P (y + z) and xIy implies

(x + z)I(y + z).

An ordering R on U satisfies continuity if for every x ∈ U , the sets {y ∈ U : xRy} and

{y ∈ U : yRx} are closed in U .

Lemma 9 If f is a deterministic implementable allocation rule such that Rf is an ordering,

then Rf satisfies weak Pareto, tr-invariance, and continuity.

Proof : Since f is unanimous, it is clear that Rf satisfies weak Pareto.

Further, since f satisfies PAD (by Lemma 3), Rf satisfies tr-invariance. To see this, pick

x, y ∈ U and z ∈ R
n such that x + z, y + z ∈ U . Suppose xP fy. Then, if v(a1) = x and
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v(a2) = y for every ǫ ∈ R
n
++, f(v(a1) + ǫ, v(a2)) = a1. Choose such an ǫ. By PAD, for every

ǫ′ ∈ R
n
++ such that ǫ′i > ǫi for all i ∈ N , we have f(v(a1) + z + ǫ′, v(a2) + z) = a1. Hence,

a1 ∈ Cf (v(a1)+ z, v(a2)+ z). We also know that for some ǫ ∈ R
n
++, we have f(v(a1), v(a2)+

2ǫ) = a1. By PAD, f(v(a1)+z, v(a2)+z+ǫ) = a1. Hence, a2 /∈ Cf(v(a1)+z, v(a2)+z). This

shows that (x + z)P f(y + z). A similar argument shows that xIfy implies (x + z)If (y + z).

Hence, Rf satisfies tr-invariance.

We now show that Rf satisfies continuity. To see this consider x ∈ U . We will first show

that {y ∈ U : yRfx} is closed. Consider a sequence of points {xk}k such that xkRfx and

the limit of this sequence is z ∈ U . Assume for contradiction that xP fz. Hence, if v(a1) = x

and v(a2) = z, then f(v(a1), v(a2) + ǫ) = a1 for some ǫ ∈ R
n
++. Hence, xRf (z + ǫ). Since the

sequence converges to z, there is a point z′ in the sequence arbitrarily close to z such that

z′Rfx. Since z′ is arbitrarily close to z, we know that (z + ǫ)P fz′. Hence, by transitivity of

Rf , (z + ǫ)P fx. This is a contradiction.

Next, we show that {y ∈ U : xRfy} is closed. Consider a sequence of points {xk}k such

that xRfxk and the limit of this sequence is z ∈ U . Assume for contradiction that zP fx.

Interchanging the role of x and z in the previous argument, we get that zRf (x + ǫ) for some

ǫ ∈ R
n
++. Since the sequence converges to z, there is a point in the sequence z′ arbitrarily

close to z such that xRfz′. Since z′ is arbitrarily close to z, by weak Pareto, (x + ǫ)P fz′.

This is a contradiction. �

Proof of Theorem 3

Proof : Suppose f is a deterministic implementable allocation rule that is unanimous and

transitive. By Lemmas 8 and 9, the relation Rf is an ordering on U satisfying weak Pareto,

tr-invariance, and continuity. Since U is open and convex, by Mishra and Sen (2012), there

exists λ1, . . . , λn ≥ 0 with λi > 0 for some i ∈ N , such that for every x, y ∈ U , xRfy if and

only if
∑

i∈N λixi ≥
∑

i∈N λiyi.

Now, consider any valuation profile v. Since f(v) ∈ Cf(v), we know that v(f(v))Rfv(a)

for all a ∈ A. Hence,
∑

i∈N λivi(f(v)) ≥
∑

i∈N λivi(a). So, f is a weighted efficient allocation

rule.

Clearly, a weighted efficient allocation rule is transitive and unanimous. It is well known

that if a weighted efficient allocation rule satisfies UIA, then it is implementable (Mishra and Sen,

2012). �
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Proof of Theorem 2

We now use Theorem 3 to give a proof of Theorem 2. Before, we go into the details of the

proof, we highlight the richness assumption of our domain. We assume that for every i ∈ N ,

the range of values for every alternative lies in an open interval Li, which is unbounded from

above. This implies that for every i ∈ N , Di = R
5, a fact which we will use extensively in

our proofs. Denote by D = D1 × . . . × Dn, and note that D = R
n.

We will use the standard range condition of Roberts (1979) for the proof.

Definition 12 An allocation rule f satisfies non-imposition if for every a ∈ A, there

exists v ∈ V such that f(v) = a.

Fix an implementable deterministic allocation rule f . Suppose f satisfies independence.

We first observe that the choice set only depends on differences of valuations.

Lemma 10 Suppose f is implementable. Then, for every pair of valuation profiles, v, v′ such

that ∂vi = ∂v′
i for all i ∈ N , we have Cf(v) = Cf(v′).

Proof : Choose v, v′ such that ∂vi = ∂v′
i for all i ∈ N . Pick a ∈ Cf (v) and ǫ ∈ R

n
++. By

definition, f(v(a) + ǫ
2
, v(−a)) = a. By PAD and using the fact that ∂vi = ∂v′

i for all i ∈ N ,

we have f(v′(a) + ǫ, v′(−a)) = a. Hence, a ∈ Cf(v′). Switching the role of v and v′, we can

show that if a ∈ Cf(v′), then a ∈ Cf (v). As a result, Cf(v) = Cf(v′). �

As a consequence of Lemma 10, we will define a mapping cf : D → {S ⊆ A : S 6= ∅},

such that for every x ∈ D ⊆ R
n, cf(x) = Cf(v), where v is such that ∂vi = xi for all i ∈ N .

Now, define κf as follows. For every α ∈ R, denote by 1α the vector in R
n such that each

component of 1α has value α. By our assumption on D, 10 ∈ D. If a1 ∈ cf (10), then let

κf = − sup{α ∈ R+ : a1 ∈ cf (1−α)}.

If a1 /∈ cf(10), then let

κf = inf{α ∈ R+ : a1 ∈ cf (1α)}.

Lemma 11 If f is a deterministic implementable allocation rule satisfying non-imposition,

then κf is a well defined real number.

Proof : Suppose a1 ∈ cf (10). By non-imposition (and using Lemma 10), we get that there

is some β ∈ R such that a2 ∈ cf (1−β). Since a1 ∈ cf(10), by PAD, β > sup{α ∈ R+ : a1 ∈

5To remind, Di = {∂vi : vi ∈ Vi}.

29



cf(1−α)} ≥ 0. This shows that κf exists since the set {α ∈ R+ : a1 ∈ cf(1−α)} is bounded.

So, κf is a real number. A similar proof works if a1 /∈ cf(10). �

The next lemma proves another property of cf .

Lemma 12 If f is a deterministic implementable allocation rule satisfying non-imposition,

then cf(1κf ) = A.

Proof : By our assumption on D, 1κf ∈ D. First, we show that a1 ∈ cf(1κf ). Assume

for contradiction that a1 /∈ cf(1κf ). In that case, for all v ∈ V with ∂vi = κf , we have

a1 /∈ Cf(v). This implies that there is some ǫ ∈ R
n
++ such that f(v(a1) + ǫ, v(a2)) 6= a1.

Hence, a1 /∈ cf(1κf + ǫ
2
). But, by definition of κf , for any ǫ′ ∈ R

n
++, a1 ∈ cf(1κf + ǫ′), and

this is a contradiction.

Next, we show that a2 ∈ cf(1κf ). Again, assume for contradiction that a2 /∈ cf(1κf ). As

in the previous case, there is some ǫ ∈ R
n
++ and v ∈ V such that ∂vi = κf − ǫ and f(v) 6= a2.

Hence, a2 /∈ cf(1κf − ǫ
2
). But, by definition of κf , for any ǫ′ ∈ R

n
++, a1 /∈ cf(1κf − ǫ′). Since

for any ǫ′ ∈ R
n
++, cf(1κf − ǫ′) is non-empty, a2 ∈ cf(1κf − ǫ′). This is a contradiction. �

Now, let f be a deterministic implementable allocation rule satisfying non-imposition.

Define a new allocation rule f̄ as follows. For every v ∈ V , define the valuation profile vtr

as follows: ∂vtr
i = ∂vi + κf for all i ∈ N . Note that by our assumption of D, vtr ∈ V . Now,

the allocation rule f̄ is defined as:

f̄(v) = f(vtr).

We now establish an important lemma.

Lemma 13 If f is a deterministic implementable allocation rule satisfying independence and

non-imposition, then f̄ is implementable, unanimous, and transitive.

Proof : Suppose f is a deterministic implementable allocation rule satisfying independence

and non-imposition. Let (p1, . . . , pn) be the payments that implement f . For every i ∈ N and

for every v−i, let p̄i(vi, v−i) = pi(v
tr
i , vtr

−i) − κf if f(vi, v−i) = a1 and p̄i(vi, v−i) = pi(v
tr
i , vtr

−i)

if f(vi, v−i) = a2. We will show that (p̄1, . . . , p̄n) implement f̄ . To see this, consider i ∈ N

and v−i. Also, consider vi, v
′
i such that f̄(vi, v−i) = a1 and f̄(v′

i, v−i) = a2 (a similar proof

works if f̄(vi, v−i) = a2 and f̄(v′
i, v−i) = a1). Now,

vi(a1) − p̄i(vi, v−i) = vtr
i (f(vtr

i , vtr
−i)) − pi(v

tr
i , vtr

−i)

≥ vtr
i (f(v′tr

i , vtr
−i)) − pi(v

′tr
i , vtr

−i)

= vi(f̄(v′
i, v−i)) − p̄i(v

′
i, v−i).
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Hence, (p̄1, . . . , p̄n) implement f̄ .

We show that f̄ is unanimous. Consider a valuation profile v such that v(a1) = x,

v(a2) = y, and xi > yi for all i ∈ N . We need to show that f̄(v) = a1. To see this, consider

the valuation profile v′ such that v′(a1) = y = v′(a2). But cf̄(10) = cf (1κf ) = A. Hence,

C f̄(v′) = A, and using PAD, we get that f̄(v) = a1.

Finally, we show that f̄ is transitive. For this, we consider x, y, z ∈ D and v, v′, v′′ such

that v(a1) = x = v′′(a1), v(a2) = y = v′(a1), and v′(a2) = z = v′′(a2).

Suppose C f̄(v) = {a1} and C f̄(v′) = {a1}. We will show that f̄(v′′) = a1. Note that

since C f̄(v′) = {a1}, there is some ǫ ∈ R
n
++ such that f̄(v′(a1) − ǫ, v′(a2)) = a1. To see this,

suppose for all ǫ ∈ R
n
++, we have f̄(v′(a1)− ǫ, v′(a2)) = a2. We know that for some ǫ′ ∈ R

n
++,

we have f̄(v′(a1), v
′(a2) + ǫ′) = a1 (since a2 /∈ C f̄(v′)). By PAD, f̄(v′(a1) −

ǫ′

2
, v′(a2)) = a1.

This is a contradiction. Similarly, there is an ǫ′ ∈ R
n
++ such that f(v(a1) − ǫ′, v(a2)) = a1.

Now, choose an ǫ′′ ∈ R
n
++ such that f̄(v′(a1)−ǫ′′, v′(a2)) = a1 and f̄(v(a1)−

ǫ′′

2
, v(a2)) = a1

- note that such an ǫ′′ can be chosen. In that case, by independence, either f̄(v(a1), v
′(a2)) =

a1 or f̄(v′(a1) −
ǫ′′

2
, v(a2)) = a1. Since v′(a1) = v(a2) = y and f̄ is unanimous, the latter is

not possible. Hence, f̄(v′′) = f̄(v(a1), v
′(a2)) = a1.

A similar argument shows if C f̄(v) = {a2} and C f̄(v′) = {a2}, then f̄(v′′) = a2. �

This leads to the proof of Theorem 2.

Proof of Theorem 2.

Proof : Suppose f is a deterministic implementable allocation rule. If f does not satisfy non-

imposition, then clearly it is an affine maximizer. Now, suppose f satisfies non-imposition

and independence. Then, by Lemma 13, f̄ is a deterministic implementable allocation

rule which is unanimous and transitive. By Theorem 3, there exists non-negative weights

λ1, . . . , λn such that for all v, if
∑

i∈N λi∂vi > 0, then f̄(v) = a1 and if
∑

i∈N λi∂vi < 0, then

f̄(v) = a2. Furthermore, we can choose these weights, without loss of generality, such that
∑

i∈N λi = 1.

Now, using the definition of f̄ , we get that if
∑

i∈N λi∂vi > κf , then f(v) = a1 and if
∑

i∈N λi∂vi < κf , then f(v) = a2. Setting γ(a1) = κf and γ(a2) = 0, we get that f is an

affine maximizer.

For the converse, Lemma 2 shows that an affine maximizer satisfies independence. It is

well known that an affine maximizer is implementable by generalized Groves payments if it

is UIA. �
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