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1 Introduction

We revisit a classical model of auction theory - single object auctions when agents have

private values. We restrict attention to deterministic single object auctions, i.e., auctions

where the probability of allocating the object to any agent is either zero or one. An allocation

rule for single object auction is implementable if we can find payments such that truth-telling

is a dominant strategy for every agent. We provide new characterizations of deterministic

implementable allocation rules in this setting.

The underlying theme of our characterizations is the following: implementability involves

a form of maximization at every valuation profile involving valuations at that profile. First,

we show that implementability alone is equivalent to generalized utility maximization. A

generalized utility function maps the set of valuation profiles of agents to the set of real

numbers. A generalized utility maximizer allocation rule chooses a generalized utility func-

tion for every agent which satisfies a form of the single-crossing condition. Then, at every

valuation profile (a) it does not allocate the object if every agent has negative generalized

utility and (b) if at least one agent has positive generalized utility, then it allocates the object

to the agent with the highest generalized utility.

For our second characterization, we generalize the virtual utility idea in Myerson (1981).

A virtual utility function is any monotone function that maps the set of possible valuations

of an agent to the set of real numbers. Contrast this with a generalized utility function which

maps the set of valuation profiles to the set of real numbers. Hence, a virtual utility function

is a simpler generalized utility function. A virtual utility maximizer is a generalized utility

maximizer where every agent’s generalized utility function is a virtual utility function. We

show that if an allocation rule satisfies a mild continuity condition, then it is implementable

and non-bossy if and only if it is a virtual utility maximizer allocation rule with an appropriate

tie-breaking. We discuss non-bossiness and our continuity condition in detail later.

Our characterization of virtual utility maximizers bears resemblance to the virtual utility

maximizing optimal auction in Myerson (1981), but has no direct relation. Myerson (1981)

shows that if the auctioneer wants to choose a mechanism that maximizes his expected

revenue, then, under independence, he must use a specific virtual utility maximizer. In

Myerson’s optimal auction, agent i with valuation vi is assigned a virtual utility of vi −
1−Fi(vi))

fi(vi)
, where Fi is the cumulative distribution function of the valuation of agent i and fi

is his density function 1. For us, a virtual utility function of agent i is any monotone map

of the form Ui : Vi → R, where Vi is the set of valuations of agent i. Notice that none of our

characterizations require any distributional information. By focusing on expected revenue

maximization, Myerson (1981) derives one particular virtual maximizer. On the other hand,

1This result requires that Fis are independent and hazard rate of each distribution is non-decreasing.
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by focusing solely on implementability (and some additional conditions), we characterize a

class of allocation rules.

Our axiomatization of virtual utility maximizers using implementability and familiar con-

ditions like non-bossiness and continuity captures the widely prevalent virtual utility maxi-

mizers in practice and theory - like the efficient allocation rule (Vickrey, 1961), the efficient

allocation rule with a reserve price (Hartline and Roughgarden, 2009; Dhangwatnotai et al.,

2010) for approximate optimal auction design, and Myerson’s virtual utility maximizer allo-

cation rule (Myerson, 1981) for optimal auction design.

1.1 Relationship with Literature

A central result in mechanism design is that the efficient allocation rule in the single object

auction private values model is implementable using the Vickrey auction (Vickrey, 1961;

Clarke, 1971; Groves, 1973). However, the set of implementable allocation rules is very rich.

As shown by Myerson (1981), implementability is equivalent to a monotonicity property of

the allocation rules 2. The monotonicity property is equivalent to requiring that for every

agent i and for every valuation profile of other agents, there is a cutoff valuation of agent i

below which he does not get the object and above which he gets the object. Myerson (1981)

uses this characterization to show that the expected revenue maximizing allocation rule is a

particular type of virtual utility maximizer 3.

While the description of the efficient allocation rule and Myerson’s virtual utility maxi-

mizer allocation rule is an explicit prescription for designing a mechanism, the description of

implementable allocation rules using the monotonicity property is indirect. To understand

this better, consider a setting with two agents. Suppose both the agents have valuations

in [0, 1]. According to the monotonicity property, an implementable allocation rule must

specify cutoff valuations. How does one go about designing such an allocation rule? For

instance, if we fix the valuation of agent 2 at 0.5 and then fix the cutoff valuation of agent

1 at 0.5, this means that for any valuation profile (v1, 0.5), the allocation rule must allocate

the object to agent 1 if v1 > 0.5 and must not allocate the object to agent 1 if v1 < 0.5.

But this already puts restrictions on what can be done at many other valuation profiles. For

instance, fix the valuation of agent 1 at 0.8, then the cutoff of agent 2 must be greater than

0.5 - otherwise we violate monotonicity since we allocate the object to agent 1 at (0.8, 0.5).

2 See also extensions of this characterization to the multidimensional private values models in

Bikhchandani et al. (2006); Saks and Yu (2005); Ashlagi et al. (2010); Cuff et al. (2012); Mishra and Roy

(2012).
3The results in Myerson (1981) are more general. In particular, he considers implementation in Bayes-

Nash equilibrium and allows for randomization. But the expected revenue maximizing allocation rule is a

deterministic and dominant strategy implementable allocation rule.
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It is in this sense that the monotonicity (or cutoff based) characterization of implementable

allocation rule is an implicit characterization.

The relationship between our results and the monotonicity characterization can best be il-

lustrated by reference to parallel results in strategic voting literature. Muller and Satterthwaite

(1977) show that Maskin monotonicity 4 is necessary for dominant strategy implementation,

and if the domain is unrestricted then it is also sufficient. However, the seminal results

of Gibbard (1973) and Satterthwaite (1975) show that dictatorship is the only dominant

strategy implementable voting rule.

In a very general quasi-linear private values (and multidimensional type space) set up,

Roberts (1979) shows that if there are at least three alternatives and the type space of

every agent is unrestricted, then every onto implementable allocation rule is an affine maxi-

mizer. An affine maximizer is a (linear) generalization of the efficient allocation rule. With

some mild restriction on affine maximizers, it can be shown that every affine maximizer is

implementable 5.

Roberts’ theorem can be thought of as the counterpart of the Gibbard-Satterthwaite

theorem (Gibbard, 1973; Satterthwaite, 1975) in quasi-linear private values environments.

After the seminal result of Gibbard (1973) and Satterthwaite (1975), a vast literature in

social choice theory has pursued the characterization of implementable allocation rules in

restricted “voting” domains, e.g., the median voting rule and its generalizations character-

ize implementable allocation rules in single-peaked domains (Moulin, 1980; Barbera et al.,

1993). Indeed, these characterizations of implementable allocation rules are all in the spirit

of Roberts’ theorem - they describe the precise parameters that are required to design an

implementable allocation rule.

A single object auction domain is a restricted domain - every agent gets positive utility

from only one alternative, the alternative where he gets the object. Consequently, the result

in Roberts (1979) does not apply in this domain. There have been extensions of Roberts’

theorem to certain environments. For instance, Mishra and Sen (2012) show that Roberts’

theorem holds in certain bounded but full dimensional type spaces under an additional

condition of neutrality. Their neutrality condition is vacuous in the single object auction

model. Moreover, the type space in the single object auction model is not full dimensional.

Carbajal et al. (2012) extend Roberts’ theorem to certain restricted type spaces which satisfy

some technical conditions. Though it covers many interesting models, including those with

4Maskin monotonicity can be thought of as the counterpart of monotonicity in strategic voting models.
5 Carbajal et al. (2012) show that if there are at least three alternatives and the type space of every

agent is unrestricted, then an onto allocation rule is implementable if and only if it is a lexicographic affine

maximizer. Lexicographic affine maximizers contain a particular class of affine maximizers where ties are

broken carefully.
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infinite set of alternatives, the single object auction model does not satisfy their technical

conditions. Marchant and Mishra (2012) extend Roberts’ theorem to the case of two alterna-

tives. Since the number of alternatives in the single object auction model is more than two,

their results do not hold in our model. One particular characterization of Lavi et al. (2003)

in a restricted domain stands out. They focus on a particular restricted domain, which they

call order-based domains (this includes some auction domains). Under various additional

restrictions on the allocation rule (which includes an independence condition), they show

that every implementable allocation rule must be an “almost” affine maximizer - roughly,

almost affine maximizers are affine maximizers for large enough values of types of agents.

Finally, there have been many simplifications of the original proof of Roberts (Jehiel et al.,

2008; Lavi, 2007; Dobzinski and Nisan, 2009; Vohra, 2011; Mishra and Sen, 2012). But none

of these proofs show how Roberts’ theorem can be extended to a restricted domain like the

single object auction model. Unlike most of the literature, our goal is not to characterize

“affine maximizers” - indeed, all our characterizations capture a larger class of implementable

allocation rules than affine maximizers.

A feature of our virtual utility maximizer characterization is the use of the non-bossy

axiom. Non-bossiness requires that if agent i is not getting the object at a valuation profile,

and he changes his valuation such that he continues to not get the object at the new valuation

profile, then the allocation of no agent must change between these two profiles. The use of

non-bossiness axiom in social choice theory with private good allocations, specially matching

problems, is extensive - it was first used by Satterthwaite and Sonnenschein (1981). For

instance, Svensson (1999) characterizes the serial dictatorship allocation rules in the context

of matching problems (without monetary transfers) using strategy-proofness, non-bossiness,

and neutrality. Similarly, Papai (2000) characterizes the set of hierarchical exchange rules in

the context of matching problems using strategy-proofness, non-bossiness, Pareto optimality,

and reallocation-proofness - see also Ehlers (2002); Hatfield (2009) 6. Non-bossiness has also

been used in quasi-linear environments. In the context of cost sharing of a binary public

good, Mutuswami (2005) shows that any mechanism with a non-bossy allocation rule and

satisfying other extra conditions must be a weak group strategy-proof mechanism.

Though, we characterize implementable allocation rules, by virtue of revenue equiva-

lence 7, this also characterizes the set of dominant strategy mechanisms. An alternate ap-

proach is to characterize the set of dominant strategy mechanisms directly by imposing

conditions on mechanisms rather than just on allocation rules. A contribution along this

line is Ashlagi and Serizawa (2011). They show that any mechanism which always allocates

6Strategy-proofness and non-bossiness in these models is equivalent to a form of groupstrategy-proofness

- see for instance Papai (2000).
7Revenue equivalence holds if the set of possible valuations of every agent is an interval (Myerson, 1981).
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the object, satisfies individual rationality, non-negativity of payments, anonymity in net util-

ity, and dominant strategy incentive compatiblity must be the Vickrey auction. This result

is further strengthened by Mukherjee (2012), who shows that any strategy-proof and anony-

mous (in net utility) mechanism which always allocates the object must use the efficient

allocation rule. Further, Sakai (2012) characterizes the Vickrey auction with a reserve price

using various axioms on the mechanism (this includes an axiom on the allocation rule which

requires a weak version of efficiency). By placing minimal axioms on allocation rules, we are

able to characterize a broader class of mechanisms (using revenue equivalence) than these

papers.

1.2 Discussions of the Main Results

Our characterization of implementability shows that implementability is equivalent to maxi-

mizing generalized utilities. Generalized utilities transform the original valuation of an agent

to a new utility, which depends on the valuations of all the agents. This is similar to imple-

menting the efficient allocation rule in an interdependent values model with the qualification

that we allow generalized utilities to be negative, which is precluded in the standard inter-

dependent value model. It is well known that the efficient allocation rule is not generally

implementable in the interdependent values single object auction. However, Maskin (1992)

shows that single crossing of value functions is a sufficient condition for implementing the

efficient allocation rule in this model 8. The single crossing condition that we require for

generalized utility functions is weaker than the usual single crossing condition used in the

interdependent value models. Nevertheless, our result reveals a surprising and interesting

connection between these seemingly unrelated models.

Our virtual utility maximization result is obtained by exploiting the connection between

implementability and rationalizability of allocation rules. The rationalizability approach

views the mechanism designer as a decision maker, who is choosing among various utility

vectors (associated with each alternative) at every valuation profile. Observe that at any

valuation profile an allocation rule chooses a vector of utilities that are the payoffs of the

agents. For instance, if agent i is assigned the object at a valuation profile (vi, v−i), then each

agent realizes a utility of zero except agent i who realizes a utility of vi
9. If the alternative

where the seller keeps the object is chosen, then every agent realizes a utility of zero. Let D

be the set of all such vectors of utilities - these are vectors in R
n and lie on one of the n axes

8See sharper negative results about implementation in multidimensional interdependent values models in

Jehiel et al. (2006) and their resolution in Bikhchandani (2006).
9To clarify, these are the utilities agents derive from the allocation alone, and do not include the net

utility from payments.
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of R
n, where n is the number of agents 10. An allocation rule is strongly rationalizable if

there exists an ordering ≻ on D with the following property: at every valuation profile, the

allocation rule chooses the utility vector that is ≻-maximal at that profile. We show that

an allocation rule is implementable and non-bossy if and only if it is strongly rationalizable.

This result is of independent interest. Once we establish this result, we use some classical

results concerning utility representation of orderings (a la Debreu (1954)) to complete our

characterization of virtual utility maximizers.

This rationalizability approach was first used in Mishra and Sen (2012). They consider

general quasi-linear environments with private values. They show that if the type space

is a multidimensional open interval, then every implementable and neutral allocation rule

is rationalizable. Rationalizability here is weaker than strong rationalizability in the sense

that it does not require the underlying ordering to be a linear ordering. Our results depart

from those in Mishra and Sen (2012) in many ways. First, as discussed earlier, their domain

condition is not satisfied in our model, and neutrality is vacuous in the single object auction

models. Second, we show that implementability and non-bossiness is equivalent to strong

rationalizability. Mishra and Sen (2012) do not provide any such equivalence. Indeed, the

non-bossiness that we use, is a condition that is specific to private good allocation problems,

and cannot be used in general mechanism design problems.

2 The Single Object Auction Model

A seller is selling an indivisible object to n potential agents (buyers). The set of agents

is denoted by N := {1, . . . , n}. The private value of agent i for the object is denoted by

vi ∈ R++. The set of all possible private values of agent i is Vi ⊆ R++ - note that we do

not allow zero valuations. We will use the usual notations v−i and V−i denote a profile of

valuations without agent i and the set of all profiles of valuations without agent i respectively.

Let V := V1 × V2 × . . . × Vn.

The set of alternatives is denoted by A := {a0, a1, . . . , an}, where a0 is the alternative

where the seller keeps the object and for every i ∈ N , ai is the alternative where agent i gets

the object. Notice that our model focuses on deterministic alternatives. Every agent i ∈ N

gets zero value from any alternative where he does not get the object. An allocation rule is

a mapping f : V → A. For convenience, for every v ∈ V and for every i ∈ N , we use the

notation fi(v) ∈ {0, 1} to denote if agent i gets the object (fi(v) = 1) or not (fi(v) = 0) at

valuation profile v in allocation rule f .

Payments are allowed and agents have quasi-linear utility functions over payments. A

payment rule of agent i ∈ N is a mapping pi : V → R.

10 The structure of D depends on how the set of valuations (type space) of each agent looks like.
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Definition 1 An allocation rule f is implementable (in dominant strategies) if there

exists payment rules (p1, . . . , pn) such that for every agent i ∈ N and for every v−i ∈ V−i

vifi(vi, v−i) − pi(vi, v−i) ≥ vifi(v
′
i, v−i) − pi(v

′
i, v−i) ∀ vi, v

′
i ∈ Vi.

In this case, we say (p1, . . . , pn) implement f and the mechanism (f, p1, . . . , pn) is incentive

compatible.

Notice that we focus on deterministic dominant strategy implementation.

Myerson (1981) showed that the following notion of monotonicity is equivalent to imple-

mentability.

Definition 2 An allocation rule f is monotone if for every i ∈ N , for every v−i ∈ V−i,

and for every vi, v
′
i ∈ Vi with vi < v′

i and fi(vi, v−i) = 1, we have fi(v
′
i, v−i) = 1.

Myerson (1981) shows that an allocation rule is implementable if and only if it is monotone

- this result does not require any restriction on the space of valuations (see Vohra (2011),

for instance).

3 The Complete Characterization

In this section, we provide a complete characterization of implementable allocation rules.

In particular, we show that an implementable allocation rule is equivalent to a generalized

utility maximizer allocation rule.

A generalized utility function (GUF) of agent i ∈ N is a function ui : V → R. Notice

that the generalized utility of an agent may be negative also. We will need the following

version of single crossing property.

Definition 3 The GUFs (u1, . . . , un) satisfy top single crossing if for every i ∈ N , for ev-

ery v−i ∈ V−i, and for every vi, v
′
i ∈ Vi with vi > v′

i and ui(v
′
i, v−i) ≥ max(0, maxk∈N uk(v

′
i, v−i)),

we have ui(vi, v−i) > max(0, maxk∈N\{i} uk(vi, v−i)).

The top single crossing condition is a very general monotonicity condition. We give below

a standard definition of a “single crossing” property, which implies top single crossing.

Definition 4 GUFs (u1, . . . , un) satisfy single crossing if for every i, j ∈ N , for every

v−i ∈ V−i, for every v′
i, vi ∈ Vi with vi > v′

i, we have ui(vi, v−i) − ui(v
′
i, v−i) > uj(vi, v−i) −

uj(v
′
i, v−i).

A GUF ui is increasing if for every v−i ∈ V−i and for every vi, v
′
i ∈ Vi with vi > v′

i we

have ui(vi, v−i) > ui(v
′
i, v−i).
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Lemma 1 If GUFs (u1, . . . , un) satisfy single crossing and ui is increasing for every i ∈ N ,

then they satisfy top single crossing.

Proof : Consider i ∈ N and v−i ∈ V−i. Let vi, v
′
i ∈ Vi such that vi > v′

i and ui(v
′
i, v−i) ≥

max(0, maxk∈N uk(v
′
i, v−i)). Since ui is increasing, ui(vi, v−i) > ui(v

′
i, v−i) ≥ 0. Further, by

single crossing, ui(vi, v−i) − ui(v
′
i, v−i) > uj(vi, v−i) − uj(v

′
i, v−i) for all j 6= i. Using the fact

that ui(v
′
i, v−i) ≥ uj(v

′
i, v−i) for all j 6= i, we get that ui(vi, v−i) > uj(vi, v−i) for all j 6= i.

Hence, ui(vi, v−i) > max(0, maxk∈N\{i} uk(vi, v−i)). �

We are now ready to introduce a new class of implementable allocation rules.

Definition 5 An allocation rule f is a generalized utility maximizer if there exist

GUFs (u1, . . . , un) satisfying top single crossing such that for every v ∈ V , if f(v) = ai then

i ∈ arg maxi∈N∪{0} ui(v), where u0(v) = 0.

Generalized utility maximizers are implementable.

Lemma 2 If f is a generalized utility maximizer, then it is implementable.

Proof : Fix a generalized utility maximizer f , and let (u1, . . . , un) be the corresponding

increasing GUFs satisfying top single crossing. Consider agent i and v−i ∈ V−i. Also,

consider any vi, v
′
i ∈ Vi with vi > v′

i and f(v′
i, v−i) = ai. By definition, ui(v

′
i, v−i) ≥

max(0, maxk∈N uk(v
′
i, v−i)). By top single crossing, ui(vi, v−i) > max(0, maxk∈N\{i} uk(vi, v−i)).

Hence, f(vi, v−i) = ai. So, f is monotone, and hence, implementable. �

This leads to the main result of this section.

Theorem 1 Suppose Vi = (0, βi), where βi ∈ R++, for all i ∈ N . Then, f is implementable

if and only if it is a GUF maximizer allocation rule.

Proof : Lemma 2 showed that every GUF maximizer is implementable. Now, for the con-

verse, suppose f is implementable. Fix an agent i ∈ N and v−i ∈ V−i. If f(vi, v−i) 6= ai for all

vi ∈ Vi, then define κf
i (v−i) = βi. Else, define κf

i (v−i) = inf{α ∈ Vi : f(vi, v−i)}. Notice that

κf
i (v−i) is well defined. Further, since f is monotone, for every agent i ∈ N , for every v−i,

and for every vi ∈ Vi, if vi > κf
i (v−i), we have f(vi, v−i) = ai and for every vi < κf

i (v−i) we

have f(vi, v−i) 6= ai. Define for every i ∈ N and for every (vi, v−i), ui(vi, v−i) := vi −κf
i (v−i).

By definition, if f(v) = ai, then vi − κf
i (v−i) ≥ 0 and vj − κf

j (v−j) ≤ 0 for all j 6= i. Hence,

i ∈ arg maxk∈N∪{0} uk(v), where u0(v) = 0.

To show that (u1, . . . , un) satisfy top single crossing, consider i ∈ N and v−i ∈ V−i.

Let vi, v
′
i ∈ Vi such that vi > v′

i and ui(v
′
i, v−i) ≥ max(0, maxk∈N uk(v

′
i, v−i)). Notice that
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ui(vi, v−i) > ui(v
′
i, v−i) ≥ 0. By definition of u1, . . . , un, if ui(vi, v−i) > 0, then vi > κf

i (v−i),

and hence, f(vi, v−i) = ai. But, this implies that uk(vi, v−i) = vk −κf
i (v−k) ≤ 0 for all k 6= i.

Hence, ui(vi, v−i) > max(0, maxk∈N\{i} uk(vi, v−i)). �

Remark. Consider a general mechanism design set up with private values and quasi-linear

utility. Let A be a finite set of alternatives. Suppose |A| ≥ 3. The type of agent i is denoted

as vi ∈ R
|A| and vi(a) denotes the valuation of agent i for alternative a. Roberts (1979) shows

that if type space of every agent is R
|A|, then for every onto and implementable allocation

rule f , there exists λ1, . . . , λn ≥ 0, not all of them equal to zero, and κ : A → R such that

at every valuation profile v, f(v) ∈ arg maxa∈A[
∑

i∈N λivi(a) + κ(a)]. Such allocation rules

are called affine maximizer allocation rules. Theorem 1 can be thought of as the analogue of

Roberts’ affine maximizer theorem in the single object auction model. Since the generalized

utility functions are quite general than the affine maximizers, it reflects the richness of the

set of implementable allocation rules in this model.

4 Implementation, Rationalizability, and Non-Bossiness

Though the generalized utility maximizers provide a complete characterization of imple-

mentable allocation rules, GUFs satisfying top single crossing are not easy to construct. The

objective of this section is to characterize implementability in the presence of additional

conditions. This allows us to characterize a simpler class of implementable allocation rules

than generalized utility maximizers. For this, we extend idea of virtual utility functions in

Myerson (1981). Virtual utility function of an agent only depends on the valuation of that

agent. Clearly, a virtual utility function is also a GUF. Using additional conditions besides

implementability, we characterize the virtual utility maximizer allocation rules.

The backbone of this characterization is a notion of rationalizability in our model. We

introduce this idea of rationalizability in the single object auctions next.

4.1 Rationalizability

To define rationalizability, we view the mechanism designer as a decision maker who is making

choices using his allocation rule. Notice that at every profile of valuations, by choosing an

alternative a ∈ A, the mechanism designer assigns values to each agent - zero to all agents

who do not get the object but positive value to the agent who gets the object. Denote by

1vi
the vector of valuations in R

n
+, where all the components except agent i has zero and the

component corresponding to agent i has vi. Further, denote by 10 the n-dimensional zero

vector. For convenience, we will write 10 as 1v0
at any valuation profile.
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Using this notation, at a valuation profile (v1, . . . , vn), a mechanism designer’s choice of

an alternative in A can lead to the selection of one of the following (n + 1) vectors in R
n
+ to

be chosen - 1v0
, 1v1

, . . . , 1vn
. We will refer to these vectors as utility vectors. Any allocation

rule f can alternatively thought of choosing utility vectors at every valuation profile. The

domain of valuations Vi of agent i gives rise to a set of feasible utility vectors where only

agent i gets positive value. In particular define for every i ∈ N , Di := {1vi
: vi ∈ Vi}.

Further, let D0 := {1v0
} and V0 = {0}. Denote by D := D0 ∪ D1 ∪ D2 ∪ . . . ∪ Dn the set of

all utility vectors consistent with the domain of profile of valuations V .

An example with two agents will clarify some of the concepts. With two agents, there

are three alternatives A = {a0, a1, a2}. Let V1 = V2 = R++. In that case, D is a subset of

R
2. In particular, D0 is the origin, D1 and D2 are the axes in R

2. At any valuation profile,

there will be three points from D, one being D0, one chosen from D1, and the other chosen

from D2.

For every allocation rule f , let Gf : V → D be a social welfare function induced by f ,

i.e., for all v ∈ V , Gf(v) = 1vj
if f(v) = aj for any j ∈ {0, 1, . . . , n}. Further, for every

allocation rule f , let Df := {x ∈ D : Gf(v) = x for some v ∈ V }. We impose some natural

requirements on the allocation rule of a mechanism designer - the selection of an alternative

at every valuation profile must be rational in the following sense.

To define the notion of a rational allocation rule, we will use orderings (reflexive, complete,

and transitive binary relation) on the set of utility vectors D. For any ordering � on D, let

≻ be the asymmetric component of � and ∼ be the symmetric component of �. A linear

ordering has no symmetric component. An ordering � on D is monotone if for every i ∈ N ,

for every vi, v
′
i ∈ Vi with vi > v′

i, we have 1vi
≻ 1v′i

. Our notion of rational allocation requires

that at every profile of valuations it must choose a maximal element among the utility vectors

at that valuation profile, where the maximal element is defined using a monotone ordering

on D.

Definition 6 An allocation rule f is rationalizable if there exists a monotone ordering

� on D such that for all v ∈ V , Gf(v) � 1vj
for all j ∈ {0, 1, . . . , n}. In this case, we say

� rationalizes f .

An allocation rule f is strongly rationalizable if there exists a monotone linear or-

dering ≻ on D such that for all v ∈ V , 1vi
≻ 1vj

for all j ∈ {0, 1, . . . , n} \ {i}, where

Gf(v) = 1vi
. In this case, we say ≻ strongly rationalizes f .

We will investigate the relationship between (strongly) rationalizable allocation rules and

implementable allocation rules. The following lemma establishes that a rational allocation

rule is implementable.

Lemma 3 Every rationalizable allocation rule is implementable.

11



Proof : Consider a rationalizable allocation rule f and let � be the corresponding ordering

on D. Fix an agent i and valuation profile v−i. Consider two valuations of agent i: vi and

v′
i with vi < v′

i with f(vi, v−i) = ai. By definition of �, 1vi
� 1vj

for all j ∈ (N ∪ {0}) \ {i}.

Since � is monotone, 1v′i
≻ 1vi

. By transitivity, 1v′i
≻ 1vj

for all j ∈ (N ∪ {0}) \ {i}. Then,

by the definition of �, f(v′
i, v−i) = ai. Hence, f is monotone. �

The converse of Lemma 3 is not true. The following example establishes that.

Example 1

Suppose there are two agents: N = {1, 2}. Suppose V1 = V2 = R++. Consider an allocation

rule f defined as follows. At any valuation profile (v1, v2), if max(v1 − 2v2, v2 − v1) < 0, then

f(v1, v2) = a0. Else, if v1 − 2v2 < v2 − v1, then f(v1, v2) = a2 and if v1 − 2v2 ≥ v2 − v1, then

f(v1, v2) = a1. It is easy to verify that f is monotone, and hence, implementable.

We argue that f is not a rationalizable allocation rule. Assume for contradiction that f

is a rationalizable allocation rule and � is the corresponding monotone ordering. Consider

the profile of valuation (v1, v2), where v1 = 1 and v2 = 2. For ǫ > 0 but arbitrarily close to

zero, f(v1, v2 − ǫ) = a2. Hence, 1v2−ǫ � 1v0
. By monotonicity, 1v2

≻ 1v0
. Now, consider the

profile of valuations (v′
1, v2), where v′

1 = 2 + ǫ and v2 = 2. Note that f(v′
1, v2) = a0. Hence,

1v0
� 1v2

. This is a contradiction.

A feature of this example is that at valuation profile (v1, v2), the allocation rule was

choosing a2. But when valuation of agent 1 changed to v′
1, it chose a0 at valuation profile

(v′
1, v2). Hence, agent 1 could change the outcome without changing his own outcome. As

we show next, such allocation rules are incompatible with rationalizability.

4.2 Non-bossy Single Object Auctions

In this section, we will characterize the set of implementable allocation rules which are ratio-

nalizable. Besides implementability, we will impose an additional condition on an allocation

rule.

Definition 7 An allocation rule f is non-bossy if for every i ∈ N , for every v−i ∈ V−i

and for every vi, v
′
i ∈ Vi with fi(vi, v−i) = fi(v

′
i, v−i) = 0, we have f(vi, v−i) = f(v′

i, v−i).

Non-bosiness requires that if an agent does not change his own allocation (i.e., whether

he is getting the object or not) by changing his valuation, then he should not be able to

change the allocation of anyone. It was first proposed by Satterthwaite and Sonnenschein

(1981). As discussed in the introduction, it is a plausible condition to impose in private

good allocation problems and has been extensively used in the strategic social choice theory

literature.

12



We give an example of a bossy and a non-bossy allocation rule in Figure 1(a) and Figure

1(b) respectively. These figures indicate a scenario with two agents. The possible outcomes

of the allocation rules at different valuation profiles are depicted in the Figures. In Figure

1(a), the allocation rule is bossy since if we start from a region where alternative a2 is chosen

and agent 1 increases his value, then we can come to a region where alternative a0 is chosen

(i.e., agent 1 can change the outcome without changing his own outcome). However, such a

problem is absent for the allocation rule in Figure 1(b).

valuation of agent 1

a_2

a_0

a_1

valuation of agent 2

(a)

valuation of agent 1

a_0

a_2

a_1

valuation of agent 2

(b)

Figure 1: Bossy and non-bossy allocation rules

Lemma 4 A strongly rationalizable allocation rule is non-bossy.

Proof : Let f be a strongly rationalizable allocation rule with ≻ being the corresponding

ordering on D. Fix an agent i and v−i ∈ V−i. Consider vi, v
′
i ∈ Vi such that f(vi, v−i) =

aj 6= ai and f(v′
i, v−i) = al 6= ai. By definition, 1vj

≻ 1vk
for all k ∈ (N ∪ {0}) \ {j}.

Suppose f(v′
i, v−i) = al 6= ai. By definition, 1vl

≻ 1vk
for all k ∈ (N ∪{0}) \ {l}. Assume for

contradiction al 6= aj. Then, we get that 1vj
≻ 1vl

and 1vl
≻ 1vj

, which is a contradiction.

�

This leads to the formal connection between implementability and rationalizability.

Theorem 2 An allocation rule is implementable and non-bossy if and only if it is strongly

rationalizable.

Proof : By virtue of Lemmas 3 and 4, we only need to show that if an allocation rule f is im-

plementable and non-bossy then it is strongly rationalizable. We do the proof in several steps.

Step 1. For any i, j ∈ N ∪ {0} with i 6= j, consider 1vi
and 1vj

for some vi ∈ Vi

and vj ∈ Vj . Suppose for some v−ij , we have f(vi, vj, v−ij) = ai. We will show that

13



if f is implementable and non-bossy, then f(vi, vj , v
′
−ij) 6= aj for all v′

−ij . Assume for

contradiction f(vi, vj , v
′
−ij) = aj for some v′

−ij. Now, consider a valuation profile v′′
−ij

where v′′
k = min(vk, v

′
k) for all k ∈ N \ {i, j}. Since f is implementable (monotone) and

non-bossy f(vi, vj, v
′′
−ij) = ai if (vi, vj, v−ij) is changed to (vi, vj, v

′′
−ij) agent-by-agent and

f(vi, vj, v
′′
−ij) = aj if (vi, vj , v

′
−ij) is changed to (vi, vj, v

′′
−ij) agent-by-agent. This is a contra-

diction.

Step 2. We will first define an ordering �, and then convert it into an anitsymmetric or-

dering. The ordering � is defined using f as follows. Let the symmetric and asymmetric

components of � be ∼ and ≻ respectively. Define 1vi
≻ 1vj

if there is some v−ij such that

f(vi, vj, v−ij) = ai and 1vj
≻ 1vi

if there is some v−ij such that f(vi, vj, v−ij) = aj . Further,

for every i ∈ N and every vi ∈ Vi, define 1vi+ǫ ≻ 1vi
for all ǫ > 0 such that (vi + ǫ) ∈ Vi. If

f(vi, vj, v−ij) /∈ {ai, aj} for all v−ij then 1vi
∼ 1vj

. Further define, 1vi
∼ 1vi

. By Step 1, this

is a well defined binary relation.

Step 3. We now show that � satisfies the following conditions:

1 for every x, y ∈ Df , x ≁ y, where Df = {x ∈ D : Gf (v) = x for some v ∈ V },

2 for every x ∈ Df and for every y /∈ Df , x ≻ y,

3 for all v ∈ V , 1vi
≻ 1vj

for all j ∈ {0, 1, . . . , n} \ {i}, where Gf(v) = 1vi
.

• Proof of (1). Pick x, y ∈ Df . By definition, there is v ∈ V , such that Gf(v) = x. If

x = 1vi
, then f(v) = ai. Suppose y = 1v′i

. Then, by definition, either x ≻ y or y ≻ x.

Hence, suppose y = 1v′j
for some j 6= i. Then, by monotonicity and non-bossiness,

f(vi, v
′
j, v−ij) ∈ {ai, aj}. Hence, x ≻ y or y ≻ x but not both.

• Proof of (2). Pick x ∈ Df but y /∈ Df . By definition, there is v ∈ V , such that

Gf(v) = x. If x = 1vi
, then f(v) = ai. Suppose y = 1v′i

. Then, if v′
i > vi, we have

f(v′
i, v−i) = ai by monotonicity, and this contradicts the fact that y /∈ Df . Hence,

v′
i < vi, and by definition, x ≻ y.

Suppose y = 1v′j
for some j 6= i. Then, by monotonicity and non-bossiness, f(vi, v

′
j, v−ij) ∈

{ai, aj}. Using the fact that y /∈ Df , we get that f(vi, v
′
j, v−ij) = ai. Hence, x ≻ y.

• Proof of (3). At any valuation profile (v1, . . . , vn), if f(v1, . . . , vn) = ai, then, by

definition, 1vi
≻ 1vj

for all j 6= i.

Step 4. We show that � is an ordering. By definition � is reflexive and complete. To

show transitivity of �, we show transitivity of ≻ and ∼. Pick vi ∈ Vi, vj ∈ Vj and vk ∈ Vk

14



such that 1vi
∼ 1vj

and 1vj
∼ 1vk

. Note that i, j, k are distinct. Consider any profile of

valuations (vi, vk, v
′
−ik). By Step (3), f(vi, vj, vk, v

′
−ijk) /∈ {ai, aj, ak}. By monotonicity and

non-bossiness, f(vi, vk, v
′
−ik) /∈ {ai, ak}. Hence, 1vi

∼ 1vk
. This shows that ∼ is transitive.

Now, we show that ≻ is transitive. Suppose for some i ∈ N , 1vi+ǫ ≻ 1vi
for some ǫ > 0

such that vi + ǫ ∈ Vi. Also, for some j 6= i, 1vi
≻ 1vj

. Then, by definition, for some v−ij ,

f(vi, vj, v−ij) = ai. By monotonicity, f(vi + ǫ, vj , v−ij) = ai. Hence, 1vi+ǫ ≻ 1vj
.

We also know that for some i ∈ N and for some ǫ > 0, δ > 0, if 1vi+ǫ+δ ≻ 1vi+ǫ and

1vi+ǫ ≻ 1vi
, then 1vi+ǫ+δ ≻ 1vi

.

Finally, pick vi ∈ Vi, vj ∈ Vj and vk ∈ Vk such that 1vi
≻ 1vj

and 1vj
≻ 1vk

, where

i, j, k are distinct. This means, f(vi, vj, v
′
−ij) = ai for some v′

−ij . By monotonicity and non-

bossiness, f(vi, vj , vk, v
′
−ijk) ∈ {ai, ak}. But, 1vj

≻ 1vk
implies that f(vi, vj, vk, v

′
−ijk) 6= ak.

Hence, f(vi, vj, vk, v
′
−ijk) = ai. Hence, 1vi

≻ 1vk
. This shows that ≻ is transitive. So, � is

an ordering.

Step 5. We show that f is strongly rationalizable. To do show, we generate a new linear

ordering ≻′ on D from �. The linear ordering ≻′ is defined as follows. For every x, y ∈ Df ,

x ≻′ y if and only if x ≻ y. For every x ∈ Df and y /∈ Df , x ≻′ y (note that this means

x ≻′ y if and only if x ≻ y). Now, construct any linear ordering ≻′′ of the elements of

D \ Df . Make ≻′ coincide with ≻′′ on elements of D \ Df . Notice that ≻′ is a well-defined

ordering on D. Further, by definition of ≻′ and Step 3, at any valuation profile (v1, . . . , vn),

if f(v1, . . . , vn) = ai, then, by definition, 1vi
≻ 1vj

for all j 6= i. Hence, f is strongly

rationalizable. �

If the linear ordering we constructed in the proof of Theorem 2 can be represented using

a utility function, then the characterization will be even more direct. If for every agent

i ∈ N , Vi is finite, then it is possible. But, as the next example illustrates, this is not always

possible.

Example 2

Suppose N = {1, 2} and V1 = V2 = R++. Consider the allocation rule f such that for all

valuation profiles (v1, v2), f(v1, v2) = a1 if v1 ≥ 1, f(v1, v2) = a2 if v1 < 1 and v2 ≥ 1, and

f(v1, v2) = a0 otherwise. It can be verified that f is implementable (monotone) and non-

bossy. By Theorem 2, f is strongly rationalizable. Now, consider the linear order defined in

the proof of Theorem 2 that strongly rationalizes f - denote it by ≻f . If v1 = v2 = 1, we

have f(v1, v2) = a1. Hence, 1v1
≻f 1v2

.

Now, consider the following definition.

15



Definition 8 An ordering � on the set D is separable if there exists a countable set Z ⊆ D

such that for every x, y ∈ D with x ≻ y, there exists z ∈ Z such that x � z � y.

It is well known that an ordering on D has a utility representation if and only if it is

separable - the result goes back to at least Debreu (1954) (see also Ok (2012) and Kreps

(1988) for details). We show that ≻f is not separable. Note that since ≻f is monotone, any

utility vector between 1v1
and 1v2

will be of the form 1v2+ǫ or 1v1−ǫ for some ǫ > 0. But,

f(v1, v2 + ǫ) = a2 implies that 1v2+ǫ ≻
f 1v1

for all ǫ > 0. Also, f(v1 − ǫ, v2) = a2 implies that

1v2
≻f 1v1−ǫ for all ǫ > 0. Hence, there cannot exist z ∈ D such that 1v1

≻f z ≻f 1v2
.

4.3 Virtual Utility Maximization

We saw that the linear ordering that strongly rationalizes an allocation rule may not have

a utility representation. The aim of this section is to explore minimal conditions that allow

us to define a new ordering for any implementable and non-bossy allocation rule which has

a utility representation. This allows us to characterize a broad class of allocation rules. Our

extra condition is a continuity condition.

Definition 9 An allocation rule f is continuous if for every i, j ∈ N (i 6= j), for ev-

ery value profile v with f(v) = ai, and for every ǫ > 0, there exists a δǫ,v > 0 such that

f(vi + ǫ, vj + δǫ,v, v−ij) = ai.

An allocation rule f is uniformly continuous if for every i, j ∈ N (i 6= j) and for every

v−ij, for every ǫ > 0, there exists a δǫ,v−ij
> 0 such that for every vi, vj with f(vi, vj, v−ij) = ai,

we have f(vi + ǫ, vj + δǫ,v−ij
, v−ij) = ai.

Both continuity and uniform continuity require a version of robustness of the allocation

rule. Note that if f is uniformly continuous, then it is continuous. Further, in the definitions

above, we can assume δǫ,v−ij
(or δǫ,v for continuous case) to be less than ǫ without loss of

generality if f is monotone and non-bossy.

We will now introduce a new class of allocation rules.

Definition 10 An allocation rule f is a virtual utility maximizer (VUM) if there

exists an increasing function Ui : Vi → R for every i ∈ N ∪ {0}, where U0(0) = 0, such that

for every valuation profile v ∈ V , f(v) = aj implies that j ∈ arg maxj∈N∪{0} Uj(vj).

Lemma 5 A VUM allocation rule is implementable.
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Proof : Suppose f is a VUM allocation rule with corresponding virtual utility functions

U0, U1, . . . , Un. Fix an agent i and the valuation profile of other agents at v−i. Consider vi, v
′
i

such that vi < v′
i and f(vi, v−i) = ai. Then, by VUM maximization, Ui(vi) ≥ Uj(vj) for all

j ∈ N ∪ {0}. Since Ui is increasing, Ui(v
′
i) > Uj(vj) for all j ∈ (N ∪ {0}) \ {i}. This implies

that f(v′
i, v−i) = ai. So, f is monotone, and hence, implementable. �

The VUM allocation rule can have many allocations which maximize the sum of virtual

utilities. We propose a modification of the VUM allocation rules which breaks these ties

using an ordering.

Definition 11 An allocation rule f is a virtual utility maximizer (VUM) with order-

based tie-breaking if there exists an increasing function Ui : Vi → R for every i ∈ N ∪{0},

where U0(0) = 0, and a monotone linear ordering ≻ on D such that for every valuation profile

v ∈ V , f(v) = aj implies that j ∈ arg maxi∈N∪{0} Ui(vi) and 1vj
≻ 1vk

for all k 6= j and

k ∈ arg maxi∈N∪{0} Ui(vi), i.e., 1vj
is the unique virtual utility maximizer according to ≻.

A VUM allocation rule with order-based tie-breaking is also a VUM allocation rule.

Hence, by Lemma 5, it is implementable. However, unlike a VUM allocation rule, a VUM

allocation rule with order-based tie-breaking is non-bossy.

Lemma 6 A VUM allocation rule with order-based tie-breaking is non-bossy.

Proof : Let f be a VUM allocation rule with order-based tie-breaking and v be a valuation

profile such that f(v) 6= aj for some j ∈ N . Suppose f(v′
j , v−j) 6= aj . Then, by definition,

the unique virtual utility maximizer of f remains the same in (vi, v−i) and (v′
i, v−i). So,

f(vi, v−i) = f(v′
i, v−i), and hence, f is non-bossy. �

We are now ready to state the main result of this section.

Theorem 3 Suppose Vi = (0, βi), where βi ∈ R++∪{∞}, for all i ∈ N and f is a uniformly

continuous allocation rule. Then, the following statements are equivalent.

1. f is an implementable and non-bossy allocation rule.

2. f is a virtual utility maximizer allocation rule with order-based tie-breaking.

4.3.1 Remarks on Theorem 3

• VUM allocation rules and non-bossiness. It can be easily seen that not every

VUM allocation rule is non-bossy. For instance, consider the efficient allocation rule

that allocates the good to an agent with the highest value. Suppose there are three
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agents with valuations 10, 10, 8 respectively and suppose that the efficient allocation

rule allocates the object to agent 1. Consider the valuation profile (10, 10, 9) and

suppose that the efficient allocation rule now allocates the object to agent 2. This

violates non-bossiness. Theorem 3 shows that such violations can happen in case

of ties (as was the case here with ties between agents 1 and 2), and when ties are

broken carefully (using an order-based tie-breaking), a VUM allocation rule becomes

non-bossy.

• Some virtual utility maximizers. An efficient allocation rule is also a VUM

allocation rule, where Ui(vi) = vi for all i ∈ N and for all vi ∈ Vi. Similarly, we

can define for every i ∈ N and for every vi ∈ Vi, Ui(vi) = λivi + κi for some λi ≥ 0

and κi ∈ R, and this VUM will correspond to the affine maximizer allocation rules

of Roberts (1979). The virtual utility function in Myerson (1981) takes the form

Ui(vi) = vi −
1−Fi(vi)

fi(vi)
, where Fi and fi are respectively the cumulative density function

and density function of the distribution of valuation of agent i.

• Payments. It is well known that revenue equivalence (Myerson, 1981) implies that

for any implementable allocation rule, the payments are determined uniquely up to

an additive constant. Suppose Vi is an interval for all i ∈ N . For any implementable

allocation rule f , define the cutoff for agent i and valuation profile v−i as κf
i (v−i) =

inf{α ∈ Vi : f(α, v−i) = ai}, where κf
i (v−i) = 0 if f(α, v−i) 6= ai for all α ∈ Vi. It is

well known that for every i ∈ N and for every (vi, v−i) ∈ V , pf
i (vi, v−i) = κf

i (v−i) if

f(vi, v−i) = ai and pf
i (vi, v−i) = 0 if f(vi, v−i) 6= ai is a payment rule which implements

f . Further, by revenue equivalence, any payment rule p which implements f must

satisfy for every i ∈ N and for every (vi, v−i), pi(vi, v−i) = pf
i (vi, v−i) + hi(v−i), where

hi : V−i → R is any function. Such cutoffs are easy to determine for generalized utility

maximizers. Thus, by characterizing implementable allocation rules, we characterize

the class of dominant strategy incentive compatible mechanisms.

• Other versions of non-bossieness. Another version of non-bossiness, which seem

appealing is the utility non-bossiness. Utility non-bossiness is a condition on mecha-

nisms rather than on allocation rules only. In particular, an incentive compatible

mechanism (f, p) satisfies utility non-bossiness if for every i ∈ N , for every v−i, and

for every vi, v
′
i ∈ Vi, such that vifi(vi, v−i) − pi(vi, v−i) = v′

ifi(v
′
i, v−i) − pi(v

′
i, v−i), we

have vjfj(vi, v−i) − pj(vi, v−i) = vjfj(v
′
i, v−i) − pj(v

′
i, v−i) for all j ∈ N . In words, if

an agent changes his valuation such that his net utility does not change, then the net

utility of every agent must remain unchanged.

We do not impose such version of utility non-bossiness because this is a condition on
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mechanisms, and we are interested in conditions on allocation rules. Further, utility

non-bossiness is not satisfied by many canonical mechanisms. For instance, the second-

price Vickrey auction is not utility non-bossy. To see this, consider an example with

two agents with valuations 10 and 7 respectively. Note that the allocation rule in a

second-price Vickrey auction is an efficient allocation rule. The net utilities of agents

1 and 2 in the second-price Vickrey auction are 3 and 0 respectively. Now, consider

the valuation profile (10, 8). At this valuation profile, agent 2 continues to get zero net

utility in the second price Vickrey auction, but the net utility of agent 1 is reduced to

2. This shows that the second-price Vickrey auction is not utility non-bossy. On the

other hand, the efficient allocation rule with order-based tie-breaking is a non-bossy

allocation rule.

4.3.2 Proof of Theorem 3

By Lemmas 5 and 6, a VUM allocation rule with order-based tie-breaking is implementable

and non-bossy. We show that every implementable, non-bossy, and uniformly continuous

allocation rule is a VUM allocation rule with order-based tie-breaking. We do the proof in

various steps. Throughout we assume that Vi = (0, βi), where βi ∈ R++∪{∞}, for all i ∈ N .

Step 1. In this step, we show that if f is implementable, non-bossy, and uniformly contin-

uous allocation rule, then there is an ordering �f on D which rationalizes f . We construct

this specific �f in this step 11.

Suppose f is an implementable, non-bossy, and uniformly continuous allocation rule. We

first define the notion of a winning set. The winning set of allocation rule f at a valuation

profile v is denoted as W f(v), and defined as follows. For any i ∈ N , we say ai ∈ W f(v) if

for all ǫ > 0, we have f(vi + ǫ, v−i) = ai, where (vi + ǫ) ∈ Vi. We say that a0 ∈ W f(v) if for

all ǫ > 0, we have f({vj − ǫ}j∈N) = a0, where (vj − ǫ) ∈ Vj for all j ∈ N . The first claim is

that W f(v) is non-empty for all valuation profiles v.

Lemma 7 If f is implementable and non-bossy, then for every value profile v, f(v) ∈ W f (v).

Proof : Consider an implementable and non-bossy allocation rule f and a value profile v. If

f(v) = aj 6= a0, then by monotonicity f(vj + ǫ, v−j) = aj for all ǫ > 0. Hence, f(v) ∈ W f(v).

If f(v) = a0, then consider any ǫ > 0 and a valuation profile v′ such that v′
i − ǫ > 0

for all i ∈ N . We argue that f(v′) = a0, and hence, a0 = f(v) ∈ W f(v). Assume for

11Notice that by Theorem 2, if f is implementable and non-bossy, then it is a strongly rationalizable

allocation rule, and hence, a rationalizable allocation rule. The novelty of this step of the proof is to be able

to construct a specific ordering which rationalizes f .
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contradiction that f(v′) = aj 6= a0. Now, we go from v′ to v by increasing the valuation of

one agent at a time. By monotonicity, f(vj , v
′
−j) = aj . Now, pick any k ∈ N \ {j}. Then,

either f(vj, vk, v
′
−jk) = ak or by non-bossiness f(vj, vk, v

′
−jk) = aj. In both cases, we see that

f(vj, vj , v
′
−jk) 6= a0. Continuing in this manner, we will reach the valuation profile v and get

that f(v) 6= a0, a contradiction. �

Step 1.1. In this step, we show that an implementable, non-bossy, and uniformly continuous

allocation rule satisfies a form of independence property.

Definition 12 An allocation rule f satisfies binary independence if for any pair of

alternatives aj , ak ∈ A and any pair of valuation profiles v, v′ such that 1vj
= 1v′j

and

1vk
= 1v′

k
, the following conditions hold.

1. if ak ∈ W f(v) and aj ∈ W f(v′), then ak ∈ W f(v′),

2. if aj ∈ W f(v) and ak /∈ W f(v), then ak /∈ W f(v′).

Intuitively, the binary independence property says that the comparison of any pair of

utility vectors is independent of what the other utility vectors are.

Proposition 1 An implementable, non-bossy, and uniformly continuous allocation rule sat-

isfies binary independence.

Proof : The proof is in the Appendix. �

Step 1.2. In this step, we define an ordering on the set of utility vectors D. We denote

this ordering as �f . The anti-symmetric part of this ordering is denoted as ≻f and the

symmetric part is denoted as ∼f . For any i ∈ N and for any vi, v
′
i ∈ Vi with vi > v′

i, we

define 1vi
≻f 1v′i

. Further, for every i ∈ N and every vi ∈ Vi, we define 1vi
∼f 1vi

(reflexive).

For any i, j ∈ N ∪ {0} and any vi ∈ Vi and vj ∈ Vj , we define

1. 1vi
≻f 1vj

, if there exists a valuation profile v′ such that 1v′i
= 1vi

, 1v′j
= 1vj

, and

ai ∈ W f(v′) but aj /∈ W f(v′);

2. 1vi
∼f 1vj

, if (a) there exists a valuation profile v′ such that 1v′i
= 1vi

, 1v′j
= 1vj

, and

ai, aj ∈ W f(v′) or (b) at every valuation profile v′ such that 1v′i
= 1vi

, and 1v′j
= 1vj

,

we have ai, aj /∈ W f(v′).

We show that the binary relation � is well defined.

Lemma 8 Suppose f is implementable, non-bossy, and uniformly continuous. Then, �f is

well-defined.
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Proof : Fix some x, y ∈ D. If x, y ∈ Di for some i ∈ N , and x = 1vi
and y = 1v′i

with

vi > v′
i then, by definition, x ≻f y. Similarly, if x ∈ Di and y ∈ Dj for some i 6= j, and

for every valuation profile v with 1vi
= x and 1vj

= y we have ai, aj /∈ W f(v), then, by

definition, x ∼f y.

So, we just need to consider the case where x ∈ Di and y ∈ Dj for some i 6= j, and there

is a valuation profile v with 1vi
= x and 1vj

= y with either ai or aj or both are in W f(v).

We consider two cases.

Case 1. Suppose ai, aj ∈ W f(v). Now, consider any other valuation profile v′ such that

1vi
= 1v′i

= x and 1vj
= 1v′j

= y. By Proposition 1, ai ∈ W f(v′) if and only if aj ∈ W f(v′).

This means that the relation x ∼f y is well-defined.

Case 2. Suppose ai ∈ W f(v) but aj /∈ W f(v). Now, consider any other valuation profile v′

such that 1vi
= 1v′i

= x and 1vj
= 1v′j

= y. By Proposition 1, aj /∈ W f(v′). This means that

the relation x ≻f y is well-defined. �

Step 1.3. In this step, we show that �f is an ordering, i.e., the binary relation is reflexive,

complete, and transitive. The fact that �f is reflexive and complete is clear. We show that

�f is transitive.

Proposition 2 If f is an implementable, non-bossy, and uniformly continuous allocation

rule, then �f is transitive.

Proof : The proof is in the Appendix. �

Step 1.4. We conclude Step 1 by showing that f is a rationalizable allocation rule and

�f rationalizes f . Note that the ordering �f , defined in Steps 1.2 and 1.3, is a monotone

ordering. By Lemma 7, for every valuation profile v, f(v) ∈ W f(v). Hence, by definition of

�f , Gf(v) �f 1vi
for all i ∈ N ∪ {0}. This shows that f is a rationalizable allocation rule

and �f rationalizes f .

Step 2. In this step, we show that if f is a non-bossy and uniformly continuous allocation

rule, then it is implementable if and only if it is a VUM allocation rule. By Lemma 5, a VUM

allocation rule is implementable. Suppose f is an implementable, non-bossy, and uniformly

continuous allocation rule. By Step 1, f can be rationalized by the monotone ordering �f ,

defined as in Step 1.2. We say that �f has a utility representation if there exists a utility

function U : D → R such that for all x, y ∈ D we have U(x) > U(y) if and only if x ≻f y.
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Step 2.1. In this step, we will show that �f is separable in the sense of Definition 8. Let

Z := {x ∈ D : x = 1vi
for some i ∈ N ∪ {0} and vi is rational}. Note that since the set

of rational numbers is countable, Z is a countable subset of D. Now, pick x, y ∈ D such

that x ≻f y. If x, y ∈ Di for some i ∈ N , then let x = 1vi
and y = 1v′i

. By definition,

vi > v′
i. Then, we can find a rational v′′

i such that vi > v′′
i > v′

i (this is because the set of

rational numbers is a dense set). Let z = 1v′′i
. By definition, z ∈ Z and x ≻f z ≻f y. Now,

assume that x = 1vi
and y = 1vj

for some i, j ∈ N∪{0} with i 6= j. We consider various cases.

Case A. Suppose i 6= 0 and j 6= 0. Since x ≻f y, there is a valuation profile v ≡ (vi, vj , v−ij)

such that ai ∈ W f(v) but aj /∈ W f(v). Since aj /∈ W f(v), there is some ǫ > 0 such that

f(vi, vj + ǫ, v−ij) 6= aj . This means that aj /∈ W f(vi, vj + ǫ
2
, v−ij). Consider any δ > 0. Since

f(vi, vj + ǫ
2
, v−ij) 6= aj, by monotonicity and non-bossiness, f(vi + δ, vj + ǫ

2
, v−ij) 6= aj . Since

ai ∈ W f(v), f(vi+δ, vj , v−ij) = ai. By monotonicity and non-bossiness, f(vi+δ, vj+
ǫ
2
, v−ij) ∈

{ai, aj}. This implies that f(vi + δ, vj + ǫ
2
, v−ij) = ai. Hence, ai ∈ W f(vi, vj + ǫ

2
, v−ij). Then,

x = 1vi
≻ 1vj+

ǫ
2
≻ 1vj

= y. Since the set of rational numbers is dense, we can find a z ∈ Z

arbitrarily close to 1vj+
ǫ
2

such that x ≻f z ≻f y.

Case B. Suppose i 6= 0 and j = 0. Since x ≻f y, there is a valuation profile (vi, v−i)

such that ai ∈ W f(vi, v−i) but a0 /∈ W f(vi, v−i). This means for some δ > 0, we have

f({vj − δ}j∈N) 6= a0. Suppose f({vj − δ}j∈N) = ak for some k 6= 0. Then, 1vk−δ �
f y. Since

ai ∈ W f(vi, v−i), we get that x = 1vi
�f 1vk

≻f 1vk−δ. Hence, x ≻f 1vk−δ �f y. Since the

set of rational numbers is dense, we can choose a z ∈ Z arbitrarily close to 1vk−δ such that

x ≻f z �f y.

Case C. Suppose i = 0 and j 6= 0. Since x ≻f y, there is a valuation profile (vj , v−j) such

that aj /∈ W f(vj , v−j) but a0 ∈ W f(vj , v−j). Then, for some ǫ > 0, we have f(vj+ǫ, v−j) = ak,

where k 6= j. This implies that 1vk
�f 1vj+ǫ ≻

f 1vj
= y. But a0 ∈ W f(vj , v−j) implies that

x �f 1vk
. Hence, x �f 1vj+ǫ ≻

f y. Since the set of rational numbers is dense, we can find

z ∈ Z arbitrarily close to 1vj+ǫ such that x �f z ≻f y.

This shows that �f is separable. Using Debreu (1954), �f has a utility representation.

Let U : D → R be a utility function representing �f . Without loss of generality, we can

assume U(1v0
) = 0. Now, for every i ∈ N∪{0}, define Ui : Vi → R as follows: Ui(vi) = U(1vi

)

for all vi ∈ Vi. Note that by the definition of �f , each Ui is well-defined and increasing.

Since U represents �f and f is a rationalizable allocation rule with �f being the cor-

responding ordering, we get that for all valuation profiles v, f(v) ∈ arg maxi∈N∪{0} Ui(vi).

Hence, f is a VUM allocation rule.
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By Theorem 2, f is a strongly rationalizable allocation rule. Let ≻ be the linear ordering

that strongly rationalizes f . By definition, for all x ∈ Df and for all y /∈ Df , x ≻ y. Further,

for all v ∈ V if f(v) = aj , then 1vj
≻ 1vi

for all i 6= j. In that case, 1vj
≻ 1vk

for all

k 6= j and k ∈ arg maxi∈N∪{0} Ui(vi). Hence, f is a VUM allocation rule with order-based

tie-breaking.

5 Conclusions

We conclude by pointing some future research directions.

• Although we focus on deterministic dominant strategy implementation, randomization

is a natural extension of our model. Indeed, the monotonicity characterization of

Myerson (1981) extends to single object auctions with randomization. However, the

generalization of Roberts’ theorem with randomization is not known in any domain,

let alone in the single object auction model.

• Another extension of our results is to consider the weaker notion of Bayesian im-

plementation. Myerson (1981) shows that an appropriate extension of monotonicity

is necessary and sufficient for Bayesian implementation. The extension of our para-

metric characterizations to Bayesian implementation is a direction for future research.

Recently, Manelli and Vincent (2010) show an equivalence between Bayesian and dom-

inant strategy implementation in single object auction models with randomization - see

its generalizations in Gershkov et al. (2012). Hence, characterizing dominant strategy

implementation with randomization also characterizes all equivalent (in the sense of

Manelli and Vincent (2010)) Bayesian implementable allocation rules.

• It will be interesting to extend our results and Roberts’ theorem to other mechanism

design problems - for instance to multi-object auction models. However, as we saw in

Theorem 1, the set of implementable allocation rules in such restricted environments

can be quite complex to capture using extensions of Roberts’ theorem. Are there

reasonable assumptions that can be imposed on implementable allocation rules such

that a simpler class of allocation rules can be characterized in the spirit of Roberts’

theorem in these models?

Appendix: Omitted Proofs

Proof of Proposition 1.

Proof : We will use the following lemma to prove the proposition.
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Lemma 9 Suppose v and v′ are two distinct valuation profiles such that vi ≥ v′
i for all i ∈ N .

Let B(v, v′) = {ai ∈ A : vi > v′
i}. If f is an implementable and non-bossy allocation rule,

then W f(v) \ B(v, v′) ⊆ W f(v′).

Proof : Let f be an implementable and non-bossy allocation rule and v and v′ be two dis-

tinct valuation profiles with vi ≥ v′
i for all i ∈ N . We will go from v to v′ by lowering one

agent’s value at a time. Pick any aj ∈ B(v, v′). Consider a new type profile v′′ such that

the value of every agent i 6= j remains vi and the value of agent j is v′
j , which is strictly less

than vj . Pick any ak ∈ W f(v) such that ak 6= aj. Then, we consider two cases.

Case 1: ak 6= a0. We argue that ak ∈ W f(v′′). Assume for contradiction that ak /∈ W f(v′′).

Then, for some ǫ > 0, we have f(vk + ǫ, v′
j , v−kj) 6= ak. If f(vk + ǫ, v′

j , v−kj) = aj, then by

monotonicity, we have f(vk + ǫ, vj , v−kj) = aj. This is a contradiction since ak ∈ W f(v).

If f(vk + ǫ, v′
j, v−kj) = al /∈ {aj , ak}. But monotonicity and non-bossiness implies that

f(vk + ǫ, vj, v−kj) ∈ {al, aj}. But this contradicts ak ∈ W f (v).

Case 2: ak = a0. Since a0 ∈ W f(v), for any ǫ > 0 such that v̄i := vi − ǫ > 0 for all

i ∈ N , we have f(v̄1, . . . , v̄n) = a0. Note that v′
i − ǫ = vi − ǫ = v̄i for all i 6= j for any ǫ.

Now, fix any ǫ > 0 such that v′
j − ǫ > 0. Consider the valuation profile (v̄−j, v

′
j − ǫ). Since

f(v̄1, . . . , v̄n) = a0 and v̄j = vj − ǫ > v′
j − ǫ, by monotonicity and non-bossiness, we have

f(v̄−j, v
′
j − ǫ) = a0. Hence, a0 ∈ W f(v′′).

This establishes that ak ∈ W f(v′′) for any ak 6= aj . Hence, W f(v) \ {aj} ⊆ W f(v′′).

Repeating this argument for other elements of B(v, v′) one by one, we conclude that W f(v)\

B(v, v′) ⊆ W f(v′). �

Now, let f be an implementable, non-bossy, and uniformly continuous allocation rule.

Pick any pair of alternatives aj, ak ∈ A and any pair of valuation profiles v, v′ such that

1vj
= 1v′j

and 1vk
= 1v′

k
. We will show that f satisfies both (1) and (2) of Definition 12.

1. Suppose ak ∈ W f(v) and aj ∈ W f(v′). We will show that ak ∈ W f(v′). Construct a

new type profile v′′ such that v′′
i = min(vi, v

′
i) for all i ∈ N . Note that 1v′′j

= 1vj
= 1v′j

and 1v′′
k

= 1vk
= 1v′

k
. By Lemma 9, aj , ak ∈ W f(v′′). Now, assume for contradiction

that ak /∈ W f(v′). We now consider various cases.

Case 1: aj, ak ∈ A \ {a0}. Since ak /∈ W f(v′), there exists ǫ > 0 such that f(v′
k +

ǫ, v′
−k) 6= ak. By monotonicity and non-bossiness, for all ǫ′ > 0 we have f(v′

j + ǫ′, v′
k +

ǫ, v′
−jk) 6= ak. Further, we show that f(v′

j + ǫ′, v′
k + ǫ, v′

−jk) = aj for all ǫ′ > 0. To see
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this, suppose f(v′
j + ǫ′, v′

k + ǫ, v′
−jk) = al for some al /∈ {aj , ak}. Then, by monotonicity

and non-bossiness, we get f(v′
j + ǫ′, v′

k, v
′
−jk) = al, and this contradicts aj ∈ W f(v′).

Hence, f(v′
j + ǫ′, v′

k + ǫ, v′
−jk) = aj for all ǫ′ > 0. Now, applying monotonicity and

non-bossiness again, for all ǫ′ > 0, we have

f(v′
j + ǫ′, v′

k + ǫ, v′′
−jk) = aj. (1)

Since ak ∈ W f(v′′), we have f(v′
j, v

′
k + ǫ

2
, v′′

−jk) = ak. By continuity, there is an ǫ′ > 0

such that f(v′
j + ǫ′, v′

k + ǫ, v′′
−jk) = ak. This contradicts Equation 1.

Case 2: aj = a0. We have to show that a0 ∈ W f(v′) implies ak ∈ W f(v′). Assume for

contradiction that ak /∈ W f(v′) but a0 ∈ W f(v′). For this, we first show there is some

ǫi > 0 for every i ∈ N such that f(v′
k + ǫk, {v

′
i − ǫi}i6=k) = a0.

To see this, suppose f(v′
k + ǫk, {v

′
i − ǫi}i6=k) = ak. Fix any l 6= k. Then, by uniform

continuity, for every ǫ there is a δ such that, f(v′
k + ǫk + ǫ, (v′

l − ǫl + δ), {v′
i − ǫi}i6=k,l) =

ak. By, uniform continuity, we can choose ǫl = δ. Also, let ǫk = ǫ. Hence, we get

f(v′
k +2ǫk, v

′
l, {v

′
i − ǫi}i6=k,l) = ak. Repeating this, we reach f(v′

k +(n− 1)ǫk , v
′
−k) = ak.

But this contradicts the fact that ak /∈ W f(t).

Similarly, suppose f(v′
k +ǫk, {v

′
i−ǫi}i6=k) = al for some l 6= 0, k. Then, by monotonicity

and non-bossiness, we get that f({v′
i − ǫi}i∈N) = al. This means f({v′

i − ǫi}i∈N) 6= a0.

Now, choose ǫ′ < mini∈N ǫi. Then, consider the profile {v′
i − ǫ′}i∈N . By repeated

application of monotonicity and non-bossiness, f({v′
i − ǫ′}i∈N) 6= a0. This contradicts

a0 ∈ W f(v′).

This shows that there is some ǫi > 0 for all i ∈ N such that f(v′
k +ǫk, {v

′
i−ǫi}i6=k) = a0.

By monotonicity and non-bossiness, f(v′
k + ǫk, {v

′′
i − ǫi}i6=k) = a0. But ak ∈ W f(v′′)

implies that f(v′′
k + ǫk, v

′′
−k) = ak (to remind, v′

k = v′′
k). But monotonicity and non-

bossiness implies that f(v′
k + ǫk, {v

′′
i − ǫi}i6=k) = ak. This gives us a contradiction.

Case 3: ak = a0. We have to show that if aj ∈ W f(v′) then a0 ∈ W f(v′). Assume

for contradiction a0 /∈ W f(v′). We first show that for some ǫ > 0 and ǫ′ > 0, f(v′
j −

ǫ, {v′
i − ǫ′}i6=j) = aj .

To see this, suppose that f(v′
j − ǫ, {v′

i − ǫ′}i6=j) = a0 for all ǫ, ǫ′. Then, by monotonicity

and non-bossiness, we see that f({v′
i − min(ǫ, ǫ′)}i∈N) = a0 for all ǫ, ǫ′. But this

contradicts a0 /∈ W f(v′).

Similarly, suppose that f(v′
j−ǫ, {v′

i−ǫ′}i6=j) = al for some l ∈ N\{j} and for all ǫ, ǫ′. By

uniform continuity, there is some δ := δǫ′,v′
−lj

< ǫ′ such that f(v′
j−ǫ+δ, v′

l, {v
′
i−ǫ′}i6=j,l) =
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al for all ǫ, ǫ′. Since δ is independent of ǫ, we can choose ǫ = δ
2

for every ǫ′. Hence,

we have f(v′
j + δ

2
, v′

l, {v
′
i − ǫ′}i6=j,l) = al for every ǫ′. Further, since aj ∈ W f(v′), we

know that f(v′
j + δ

2
, v′

−j) = aj for all ǫ′. By repeatedly applying monotonicity and

non-bossiness, we get that f(v′
j + δ

2
, v′

l, {v
′
i − ǫ′}i6=j,l) = aj for every ǫ′. This gives us a

contradiction.

This shows that f(v′
j − ǫ, {v′

i − ǫ′}i6=j) = aj for some ǫ > 0 and ǫ′ > 0. By repeatedly

applying monotonicity and non-bossiness, we get that f(v′
j − ǫ, {v′′

i − ǫ′}i6=j) = aj for

some ǫ > 0 and ǫ′ > 0. Since a0 ∈ W f(v′′), we know that f({v′
i − min(ǫ, ǫ′)}i∈N) = a0.

By repeatedly applying monotonicity and non-bossiness, we get that f(v′
j − ǫ, {v′′

i −

ǫ′}i6=j) = a0. This is a contradiction.

This concludes the proof of Property (1) in Definition 12.

2. Property (2) in Definition 12 follows by applying Property (1). To see this, pick any

aj , ak ∈ A and v, v′ as in Definition 12. Suppose aj ∈ W f(v) but ak /∈ W f(v′). We

need to show that ak /∈ W f(v′). Assume for contradiction ak ∈ W f(v′). Then, by

changing the role of v and v′ in (1), we get that ak ∈ W f(v), which is a contradiction.

�

Proof of Proposition 2.

Proof : For this, we will show that ≻f and ∼f are transitive, and this in turn will imply

that �f is transitive. Pick any x, y, z ∈ D such that x 6= y 6= z. We consider three cases.

Case 1. Suppose x, y, z ∈ Di for some i ∈ N and x = 1vi
, y = 1v′i

, z = 1v′′i
. Suppose x ≻f y

and y ≻f z. Then, it must be vi > v′
i > v′′

i . By definition, we have x ≻f z.

Case 2. x, y ∈ Di but z ∈ Dj for some i, j where i 6= j. Suppose x = 1vi
, y = 1v′i

, and

z = 1vj
. Suppose x ≻f y and y ≻f z. Note that x ≻f y implies vi > v′

i. We consider two

subcases.

Case 2a. Suppose j 6= 0. Then, there is a valuation profile v′′ such that v′′
i = v′

i, v′′
j = vj ,

and ai ∈ W f(v′′) but aj /∈ W f(v′′). Now consider the type profile v̄, where v̄k = v′′
k if

k 6= i and v̄i = vi. We show that ai ∈ W f(v̄) and aj /∈ W f(v̄), and this will show that

xP fz. Since ai ∈ W f(v′′), we know that f(v′
i + ǫ, vj, v

′′
−ij) = ai for all ǫ > 0. By mono-

tonicity, f(vi + ǫ, vj , v
′′
−ij) = ai for all ǫ > 0. Hence, ai ∈ W f(v̄). Since aj /∈ W f(v′′),

there is some ǫ > 0 such that f(v′
i, vj + ǫ, v′′

−ij) 6= aj. By monotonicity and non-bossiness,
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f(vi, vj + ǫ, v′′
−ij) 6= aj . Hence, aj /∈ W f(v̄).

Case 2b. Suppose j = 0. So, z is the n-dimensional zero vector. Since yP fz, there is a

valuation profile v̄ with 1v̄i
= 1v′i

= y and ai ∈ W f(v̄) but a0 /∈ W f(v̄). Now, consider the

valuation profile v′′ ≡ (vi, v̄−i). Since vi > v′
i, by monotonicity, we have ai ∈ W f(v′′).

Since a0 /∈ W f(v̄), there is some ǫ > 0 such that f({v̄k − ǫ}k∈N) 6= a0. Now, since vi > v′
i,

by monotonicity and non-bossiness, f(vi − ǫ, {v̄k − ǫ}k 6=i) 6= a0. Hence, a0 /∈ W f(v′′).

This completes the proof of Case 2.

Case 3. x ∈ Di, y ∈ Dj, z ∈ Dk, where i, j, k are distinct. Suppose x = 1vi
, y = 1vj

, and

z = 1vk
. Here, we will consider transitivity of both ≻f and ∼f .

Case 3a - Transitivity of ≻f . Suppose x ≻f y and y ≻f z. Since x ≻f y, there is some

valuation profile v′′ where 1v′′i
= x, 1v′′j

= y, and ai ∈ W f(v′′) but aj /∈ W f(v′′).

First, note that i 6= 0. To see this, since y ≻f z there is a valuation profile v′ where

1v′j
= y, 1v′

k
= z, and aj ∈ W f(v′) but ak /∈ W f(v′). But 1v′i

= x implies that y �f x, which

contradicts x ≻f y. Hence, i 6= 0.

Suppose v′′
k < vk. Since ai ∈ W f(v′′), for every ǫ > 0, f(v′′

i + ǫ, v′′
j , v′′

k , v
′′
−ijk) = ai.

By monotonicity and non-bossiness, f(v′′
i + ǫ, v′′

j , vk, v
′′
−ijk) ∈ {ai, ak} for every ǫ > 0. But

f(v′′
i + ǫ, v′′

j , vk, v
′′
−ijk) = ak for any ǫ > 0 will imply that z �f y, and this will contradict

y ≻f z. Hence, f(v′′
i + ǫ, v′′

j , vk, v
′′
−ijk) = ai for every ǫ > 0. So, ai ∈ W f(v′′

i , v
′′
j , vk, v

′′
−ijk).

Since y ≻f z, ak /∈ W f(v′′
i , v

′′
j , vk, v

′′
−ijk). Hence, x ≻f z.

Suppose v′′
k ≥ vk. As before, since ai ∈ W f(v′′), for every ǫ > 0, f(v′′

i +ǫ, v′′
j , v′′

k , v
′′
−ijk) = ai.

By monotonicity and non-bossiness, f(v′′
i + ǫ, v′′

j , vk, v
′′
−ijk) = ai for every ǫ > 0. Hence,

ai ∈ W f(v′′
i , v

′′
j , vk, v

′′
−ijk). Since y ≻f z, ak /∈ W f(v′′

i , v
′′
j , vk, v

′′
−ijk). Hence, x ≻f z.

Case 3b - Transitivity of ∼f . Suppose x ∼f y and y ∼f z. Suppose for every valuation

profile v′ such that 1v′i
= x and 1v′j

= y, we have ai, aj /∈ W f(v′). Further, suppose for

every valuation profile v̄ with 1v̄j
= y and 1v̄k

= z, we have aj , ak /∈ W f(v̄). Consider any

valuation profile v′′ such that 1v′′i
= x and 1v′′

k
= z. Assume for contradiction ai ∈ W f(v′′).

Consider the valuation profile v̂ such that 1v̂j
= y and v̂l = v′′

l for all l 6= j. Since 1v̂k
= z,

by definition aj, ak /∈ W f(v̂). By monotonicity and non-bossiness, ai ∈ W f(v̂). But, this is

not possible since 1v̂i
= x implies that ai, aj /∈ W f(v̂). This means that at every valuation

profile v′′ with 1v′′
i

= x and 1v′′
k

= z we must have ai, ak /∈ W f(v′′). Hence, x ∼f z.

Now, consider the case where y ∼f z and there is some valuation profile v′ such that

1v′j
= y, 1v′

k
= z, and aj, ak ∈ W f(v′). Also, since x ∼f y, there is some valuation profile
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v′′ such that 1v′′i
= x, 1v′′j

= y, and ai, aj ∈ W f(v′′). If k = 0, then y ∼f z implies that

ak ∈ W f(v′′), and this in turn implies that x ∼f z.

Suppose k 6= 0 and construct a new valuation profile v̄ such that 1v̄k
= z and v̄l = v′′

l for

all l 6= k. We consider two possibilities.

Case 3b(i). Suppose i 6= 0. There are two further possibilities. Suppose v̄k > v′′
k . Since

ai ∈ W f(v′′), for every ǫ > 0, we have f(v′′
i + ǫ, v′′

j , v
′′
k , v

′′
−ijk) = ai. By monotonicity and

non-bossiness, f(v′′
i + ǫ, v′′

j , v̄k, v
′′
−ijk) ∈ {ai, ak} for all ǫ > 0. Denote the valuation profile

(v′′
i , v

′′
j , v̄k, v

′′
−ijk) as v̂.

Fix ǫ > 0. If f(v′′
i + ǫ, v′′

j , v̄k, v
′′
−ijk) = ai, then ai ∈ W f(v̂). Else, f(v′′

i + ǫ, v′′
j , v̄k, v

′′
−ijk) =

ak, and by monotonicity and non-bossiness, f(v′′
i , v

′′
j , v̄k + ǫ, v′′

−ijk) = ak, which means that

ak ∈ W f(v̂). So, we conclude that either ai ∈ W f(v̂) or ak ∈ W f(v̂).

If ai ∈ W f(v̂), using the fact that x ∼f y, we must have aj ∈ W f (v̂). Also, since y ∼f z,

we must have ak ∈ W f(v̂). Hence, x ∼f z. A similar argument applies if ak ∈ W f (v̂).

Now consider the possibility where v̄k ≤ v′′
k . Since ai ∈ W f(v′′), for every ǫ > 0, we have

f(v′′
i + ǫ, v′′

j , v
′′
k , v

′′
−ijk) = ai. By monotonicity and non-bossiness, f(v′′

i + ǫ, v′′
j , v̄k, v

′′
−ijk) = ai.

This shows that ai ∈ W f(v̂). The rest of the argument is similar to the argument in the

previous paragraph, and we conclude that x ∼f z.

Case 3b(ii). Suppose i = 0. As before, there are two possibilities. Suppose v̄k > v′′
k .

Consider any ǫ > 0. Since a0 ∈ W f(v′′), f({v′′
l − ǫ}l∈N) = a0. By monotonicity and non-

bossiness, f(v̄k − ǫ, {v′′
l − ǫ}l 6=k) ∈ {a0, ak}. Denote the valuation profile (v′′

i , v
′′
j , v̄k, v

′′
−ijk) as

v̂.

If f(v̄k − ǫ, {v′′
l − ǫ}l 6=k) = a0, then a0 ∈ W f(v̂). If f(v̄k − ǫ, {v′′

l − ǫ}l 6=k) = ak, then

by monotonicity and non-bossiness, we can choose (ǫ1, . . . , ǫn), all greater than zero, such

that f(v̄k − ǫk, {v
′′
l − ǫl}l 6=k) = ak. Fix h 6= k. By continuity, there is a δ > 0 such that

f(v̄k + ǫk, v
′′
h − ǫh + δ, {v′′

l − ǫl}l 6=k) = ak. By uniform continuity, δ is independent of ǫh. So,

we can choose ǫh = δ. As a result, f(v̄k + ǫk, v
′′
h, {v

′′
l − ǫl}l 6=k) = ak. Repeating this argument

for all l 6= k, we get f(v̄k + 2(n − 1)ǫk, v
′′
−k) = ak. Since ǫk can be chosen arbitrarily small,

ak ∈ W f(v̂). So, we conclude that either a0 ∈ W f(v̂) or ak ∈ W f(v̂).

Now, suppose v̄k ≤ v′′
k . Since a0 ∈ W f(v′′), for every ǫ > 0, f({v′′

l − ǫ}l∈N ) = a0. By

monotonicity and non-bossiness, f(v̄k − ǫ, {v′′
l − ǫ}l 6=k) = a0. This implies that a0 ∈ W f(v̂).

So, in either case, a0 ∈ W f(v̂) or ak ∈ W f(v̂). If a0 ∈ W f(v̂), using the fact that x ∼f y,

we must have aj ∈ W f(v̂). Also, since y ∼f z, we must have ak ∈ W f(v̂). Hence, x ∼f z. A

similar argument applies if ak ∈ W f(v̂). �

28



References

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity

and Implementability,” Econometrica, 78, 1749–1772.

Ashlagi, I. and S. Serizawa (2011): “Characterizing Vickrey Allocation Rule by

Anonymity,” Social Choice and Welfare, 38, 1–12.

Barbera, S., F. Gul, and E. Stacchetti (1993): “Generalized Median Voter Schemes

and Committees,” Journal of Economic Theory, 61, 262–289.

Bikhchandani, S. (2006): “Ex Post Implementation in Environments with Private Goods,”

Theoretical Economics, 1, 369–393.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant Strategy Implemen-

tation,” Econometrica, 74, 1109–1132.

Carbajal, J. C., A. McLennan, and R. Tourky (2012): “Truthful Implementation

and Aggregation in Restricted Domains,” Working Paper, University of Queensland.

Clarke, E. (1971): “Multipart Pricing of Public Goods,” Public Choice, 11, 17–33.

Cuff, K., S. Hong, J. A. Schwartz, Q. Wen, and J. Weymark (2012): “Dominant

Strategy Implementation with a Convex Product Space of Valuations,” Social Choice and

Welfare, 39, 567–597.

Debreu, G. (1954): “Representation of a Preference Ordering by a Numerical Function,”

in Decision Processes, John Wiley and Sons, 159–165.

Dhangwatnotai, P., T. Roughgarden, and Q. Yan (2010): “Revenue Maximization

with a Single Sample,” in Proceedings of the 11th ACM conference on Electronic commerce,

ACM, 129–138.

Dobzinski, S. and N. Nisan (2009): “A Modular Approach to Roberts’ Theorem,” in

In Proceedings of the 2nd International Symposium on Algorithmic Game Theory (SAGT

2009), Springer (Lecture Notes in Computer Science).

Ehlers, L. (2002): “Coalitional strategy-proof house allocation,”Journal of Economic The-

ory, 105, 298–317.

29



Gershkov, A., J. P. Goeree, A. Kushnir, B. Moldovanu, and X. Shi (2012):

“On the Equivalence of Bayesian and Dominant Strategy Implementation,” Forthcoming,

Econometrica.

Gibbard, A. (1973): “Manipulation of Voting Schemes: A General Result,” Econometrica,

41, 587–602.

Groves, T. (1973): “Incentives in Teams,” Econometrica, 41, 617–631.

Hartline, J. and T. Roughgarden (2009): “Simple versus optimal mechanisms,” in

Proceedings of the 10th ACM conference on Electronic commerce, ACM, 225–234.

Hatfield, J. W. (2009): “Strategy-proof, efficient, and nonbossy quota allocations,”Social

Choice and Welfare, 33, 505–515.

Jehiel, P., M. Meyer-ter Vehn, B. Moldovanu, and W. Zame (2006): “The Limits

of Ex Post Implementation,” Econometrica, 74, 585–610.

Jehiel, P., M. M. ter Vehn, and B. Moldovanu (2008): “Ex-Post Implementation

and Preference Aggregation via Potentials,” Economic Theory, 37, 469–490.

Kreps, D. M. (1988): Notes on the Theory of Choice, Westview Press, Boulder.

Lavi, R. (2007): Algorithmic Game Theory, Cambridge University Press, chap.

Computationally-Efficient Approximate Mechanisms, 301–330, editors: Noam Nisan and

Tim Roughgarden and Eva Tardos and Vijay Vazirani.

Lavi, R., A. Mualem, and N. Nisan (2003): “Towards a Characterization of Truthful

Combinatorial Auctions,” in Proceedings of the 44th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS’03), IEEE Press.

Manelli, A. M. and D. R. Vincent (2010): “Bayesian and Dominant Strategy Imple-

mentation in the Independent Private Values Model,” Econometrica, 78, 1905–1938.

Marchant, T. and D. Mishra (2012): “Mechanism Design with Two Alternatives in

Quasilinear Environments,” Working Paper, Indian Statistical Institute.

Maskin, E. (1992): Privatization, Mohr, Tubingen, chap. Auctions and Privatization, 115–

136, editor: Horst Siebert.

Mishra, D. and S. Roy (2012): “Implementation in Multidimensional Dichotomous Do-

mains,” Forthcoming, Theoretical Economics.

30



Mishra, D. and A. Sen (2012): “Roberts’ Theorem with Neutrality: A Social Welfare

Ordering Approach,” Games and Economic Behavior, 75, 283–298.

Moulin, H. (1980): “On Strategyproofness and Single-peakedness,” Public Choice, 35, 437–

455.

Mukherjee, C. (2012): “Fair and Group Strategy-proof Good Allocation with Money,”

Working Paper, Indian Statistical Institute, Kolkata.

Muller, E. and M. A. Satterthwaite (1977): “The Equivalence of Strong Positive

Association and Strategy-proofness,” Journal of Economic Theory, 14, 412–418.

Mutuswami, S. (2005): “Strategyproofness, Non-Bossiness and Group Strategyproofness

in a Cost Sharing Model,” Economics Letters, 89, 83–88.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,

6, 58–73.

Ok, E. (2012): Elements of Order Theory, forthcoming.

Papai, S. (2000): “Strategyproof Assignment by Hierarchical Exchange,” Econometrica, 68,

1403–1433.

Roberts, K. (1979): The Characterization of Implementable Choice Rules, North Holland

Publishing, chap. Aggregation and Revelation of Preferences, 321–348, editor: J-J. Laffont.

Sakai, T. (2012): “Axiomatizations of Second Price Auctions with a Reserve Price,” Work-

ing Paper, Keio University.

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex

Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Satterthwaite, M. (1975): “Strategy-proofness and Arrow’s Conditions: Existence and

Correspondence Theorems for Voting Procedures and Social Welfare Functions,” Journal

of Economic Theory, 10, 187–217.

Satterthwaite, M. and H. Sonnenschein (1981): “Strategy-Proof Allocation Mecha-

nisms at Differentiable Points,” Review of Economic Studies, 48, 587–597.

Svensson, L.-G. (1999): “Strategy-proof Allocation of Indivisible Goods,” Social Choice

and Welfare, 16, 557–567.

31



Vickrey, W. (1961): “Counterspeculation, Auctions, and Competitive Sealed Tenders,”

Journal of Finance, 16, 8–37.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

32


	dp12-04cov
	download
	Introduction
	Relationship with Literature
	Discussions of the Main Results

	The Single Object Auction Model
	The Complete Characterization
	Implementation, Rationalizability, and Non-Bossiness
	Rationalizability
	Non-bossy Single Object Auctions
	Virtual Utility Maximization
	Remarks on Theorem 3
	Proof of Theorem 3


	Conclusions


