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Abstract

We o¤er an axiomatization of the serial cost-sharing method of Friedman and
Moulin (1999). The key property in our axiom system is Group Demand Monotonic-
ity, asking that when a group of agents raise their demands, not all of them should
pay less.
JEL classi�cation: C 71, D 63
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1. Introduction

Serial cost sharing was proposed by Moulin and Shenker (1992) as a method for allocating
the cost of production of a single good among n agents. Friedman and Moulin (1999)
generalized it to the context where each agent consumes a possibly di¤erent good: total
cost varies with the consumption pro�le but need no longer be a function of the sum of
the agents� consumptions. The problem is to allocate the cost C(x) generated by the
demand pro�le x = (x1; :::; xn) on the basis of the knowledge of x and the information
contained in the cost function C de�ned on Rn+; which is assumed to be nondecreasing,
continuously di¤erentiable, and to display no �xed costs. This is the standard cost-sharing
model developed by Billera and Heath (1982), Mirman and Tauman (1982), and Samet and
Tauman (1982). Assuming without loss of generality that x1 � x2 � ::: � xn; Friedman
and Moulin�s serial method charges agent i the integral of her marginal cost along the
�constrained egalitarian path�made up of the line segments linking 0 to (x1; :::; x1) to
(x1; x2; :::; x2), and so on to x. This is an alternative to the better known method derived
from the Aumann-Shapley (1974) value for nonatomic games, which integrates marginal
costs along the diagonal from 0 to x:
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Friedman and Moulin (1999) proposed an axiomatization of their method. A key axiom
in their work states that if all goods are perfect substitutes �that is, C(z) = c(

P
i2N zi)�

then an agent�s cost share should not exceed the cost of producing n times her own demand.
This condition o¤ers a protection against the risk of paying an exceedingly high cost share
because of the much higher demands of others. It is certainly in the original spirit of the
serial method but remains perhaps too reminiscent of the very de�nition of the method
to provide an independent justi�cation for it. In fact, the axiom rules out virtually all
the popular cost-sharing methods. The only noticeable exception we are aware of is the
so-called �cross-subsidizing serial method�of Moulin and Sprumont (2006) which di¤ers
from the Friedman-Moulin method but retains its serial structure.
We o¤er an alternative axiomatization of the serial method which does not su¤er from

the above criticism. The general normative principle motivating our choice of axioms is
the one that underlies most of the theory of cost sharing: an agent should pay �fully but
only�the fraction of the cost generated by her own demand1. Of course, unless the cost
function is additively separable, this general principle is ambiguous. The challenge is to
formulate unambiguous statements that capture the essential aspects of it.
In order to do that, we �nd it useful to break down an agent�s in�uence on total cost

into two components: the marginal cost function associated with the good she consumes
and the size of her demand. If agents must be charged �the cost of their demand�, then
cost shares should somehow
(a) be positively associated with marginal cost functions,
(b) be positively associated with demand sizes,
(c) be independent of any cost-irrelevant information.

With one exception �Additivity�, our axioms are meant to be unambiguous statements
interpreting these three desiderata. Of course, desideratum (b) is compelling only when
each good is consumed by a clearly identi�able agent who can be held responsible for the
entire demand of that good. That is the interpretation of the cost-sharing model we have
in mind2.
The �rst component of our axiom system is nothing more than the extension to the cost-

sharing model of the system used by Shapley (1953) to characterize the value: Additivity
(cost shares depend additively on the cost function), Dummy (an agent pays nothing if total
cost never increases with her consumption), and Anonymity (the identity of an agent does
not a¤ect what she pays). If Additivity is used for tractability �the world of nonadditive
methods is virtually uncharted territory that we do not want to venture into�, the other two
axioms follow naturally from desiderata (a) and (c) above. Dummy is a minimal expression
of the view that cost shares should be positively related to marginal cost functions and
Anonymity follows from the principle forbidding the use of cost-irrelevant information. As

1There are contexts where this �full responsibility�principle is not warranted: see Moulin and Sprumont
(2006) for a discussion and an alternative view.

2A good example is the problem of allocating overhead costs among the various divisions of a large
�rm (Shubik (1962)). Desideratum (b) is not compelling when the demand for a given good results from
the agregation of many small individual demands, as in the telephone pricing problem studied by Billera,
Heath and Raanan (1978) and other applications of Aumann-Shapley pricing.
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a matter of fact, we do employ a strengthened version of the Dummy axiom requiring also
that a change in the demand of a dummy agent should have no e¤ect on cost shares. This
requirement too follows naturally from (c).
All these properties are well known and the serial method shares them with the other

two central methods discussed in the literature, the Aumann-Shapley and Shapley-Shubik
methods. Within the class delimited by Additivity, Anonymity and our strengthened
version of the Dummy axiom, the Aumann-Shapley method is known to be the only one
satisfying Scale Invariance (cost shares do not depend on the units in which consumptions
are measured) and the property that cost shares are proportional to demands when goods
are perfect substitutes. See Billera and Heath (1982) and Mirman and Tauman (1982) for
details3. In the same class, the Shapley-Shubik method proposed by Shubik (1962), is the
only method satisfying Scale Invariance and Demand Monotonicity (an agent�s cost share
does not decrease when her demand goes up). See Friedman and Moulin (1999).4

The second component of our axiom system is Group Demand Monotonicity. Intro-
duced by Moulin and Sprumont (2005), this axiom says that when a group of agents raise
their demands, not all of them should end up paying less. This is stronger than Demand
Monotonicity but still follows naturally from desideratum (b). Group Demand Monotonic-
ity is satis�ed by a number of well known methods that have nothing in common with the
serial method, such as equal or proportional cost sharing.
We show that in conjunction with the properties forming the �rst component of our

axiom system, Group Demand Monotonicity characterizes the serial method. The model,
the axioms, and our theorem are presented in Section 2. That section also contains a brief
sketch of the key ideas underlying the proof. The proof itself is given in Section 3. A
discussion of our result and further comparison with related work is o¤ered in Section 4.

2. The model and the result

Let N = f1; :::; ng be a �nite set of agents, n � 3: A cost function is a mapping C :
RN+ ! R+ that is nondecreasing, continuously di¤erentiable, and satis�es C(0) = 0: The
set of cost functions is denoted C. A demand pro�le is a point x 2 RN+ . A (cost-sharing)
method is a mapping ' which assigns to each (cost-sharing) problem (C; x) 2 C � RN+ a
vector of nonnegative cost shares '(C; x) 2 RN+ satisfying the budget balance conditionP

i2N 'i(C; x) = C(x):

As is well known, this model can be reinterpreted as a surplus-sharing model: C is then
viewed as a production function, xi is agent i�s input contribution and 'i(C; x) is her share
of the total output produced. All our axioms remain meaningful under this alternative

3Additivity, Scale Invariance and the property that cost shares are proportional to demands when goods
are perfect substitutes actually su¢ ce to characterize the Aumann-Shapley method.

4Additivity, Dummy, Anonymity and Demand Monotonicity su¢ ce to pin down the Shapley-Shubik
method. As observed in Moulin and Sprumont (2007), the axiom of Continuity at Zero is redundant in
the corollary to Theorem 1 in Friedman and Moulin (1999).
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interpretation. We maintain the cost-sharing interpretation throughout the rest of the
paper to avoid confusion.

If C 2 C and i 2 N , we denote by @iC(z) the ith partial derivative of C at z if
zi > 0 and its ith right partial derivative at z if zi = 0: For all z; z0 2 RN+ , we let
z ^ z0 = (min(z1; z

0
1); :::;min(zn; z

0
n)): The (Friedman-Moulin) serial method is the cost-

sharing method '� de�ned by

'�i (C; x) =

Z xi

0

@iC((�; �; :::; �) ^ x)d� (2.1)

for all C 2 C, x 2 RN+ , and i 2 N: This method reduces to the well known serial formula
proposed by Moulin and Shenker (1992) in the particular case of perfectly substitutable
goods. If there exists a function c : R+ ! R+ such that C(z) = c(

P
i2N zi) for all z 2 RN+ ;

then, assuming without loss of generality that x1 � x2 � ::: � xn; the cost shares in (2.1)
become '�1(C; x) =

c(nx1)
n
; '�2(C; x) =

c(nx1)
n
+ c(x1+(n�1)x2)�c(nx1)

n�1 ; ... '�n(C; x) =
c(nx1)
n
+

c(x1+(n�1)x2)�c(nx1)
n�1 + :::+ c(x1+:::+xn)�c(x1+:::+xn�2+2xn�1)

1
:

Just like the Aumann-Shapley method, the serial method belongs to the class of �path
methods�(Friedman (2004)). A path to x 2 RN+ is a continuous nondecreasing function
rx : [0; 1] ! [0; x] such that rx(0) = 0 and rx(1) = x: A cost-sharing method ' is a path
method if to each x 2 RN+ there is a path rx such that

'i(C; x) =

Z 1

0

@iC(rx(t))
drx
dt
(t)dt (2.2)

for all C 2 C and i 2 N: Note that this expression is well de�ned because rx is di¤eren-
tiable almost everywhere. The serial method is generated by the collection of �constrained
egalitarian�paths rx(t) = (txn; txn; :::; txn) ^ x whereas the Aumann-Shapley method is
generated by the collection of �diagonal�paths rx(t) = tx.

We now present our axioms. The �rst four are adapted from the properties used by
Shapley (1953) to characterize the value in the model of cooperative games.

Additivity. For all C;C 0 2 C and x 2 RN+ ; '(C + C 0; x) = '(C; x) + '(C 0; x):
As mentioned in the Introduction, our primary motivation for this axiom is tractabil-

ity. Additive methods can be described fairly explicitly: Friedman and Moulin (1999)
and Friedman (2004) o¤er characterizations of the class of additive methods satisfying the
Dummy axiom and Moulin and Vohra (2003) propose a description of the entire class in
the discrete version of the cost-sharing model. By comparison, only a few speci�c nonad-
ditive rules were studied in the literature �see for instance Sprumont (1998) and Koster
(2007)�and no general characterization result is available. Beyond tractability, however,
the practical advantages of Additivity should not be underestimated. As many authors
have noted, an additive method is easily implementable. When total cost arises from in-
dependent production processes, applying the method to the cost function corresponding
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to each process and adding the resulting cost shares is equivalent to applying it to the ag-
gregated cost function. This guarantees that the proper level of application of the method
is not a matter of dispute.

Following standard terminology, we call agent i a dummy (agent) if @iC(z) = 0 for
all z 2 RN+ : The familiar Dummy axiom states that a dummy agent pays nothing: if
@iC(z) = 0 for all z 2 RN+ ; then 'i(C; x) = 0 for all x 2 RN+ : We replace this axiom by
the two properties of Weak Dummy and Dummy Independence. The conjunction of these
properties is stronger than Dummy.

Weak Dummy. For all C 2 C; x 2 RN+ , and i 2 N; if xi = 0 and @iC(z) = 0 for all
z 2 RN+ ; then 'i(C; x) = 0:
Weak Dummy requires that a dummy agent who demands nothing pay nothing. This

is an extremely weak axiom. If the statement that an agent should pay only the fraction
of the cost generated by her own demand entails any well de�ned restriction on ', this
must be one.

Dummy Independence. For all C 2 C; x; x0 2 RN+ ; and i 2 N; if @iC(z) = 0 for all
z 2 RN+ and xj = x0j for all j 2 N n fig ; then '(C; x) = '(C; x0):
This axiom says that if total cost is independent of an agent�s demand, then cost

shares should also be. Together with Weak Dummy, Dummy Independence allows one
to essentially ignore all dummy agents. This seems to be a very natural separability
condition for a theory aiming at charging agents according to their own impact on total
cost. Dummy Independence is satis�ed by all the popular cost-sharing methods proposed
in the literature, including the Aumann-Shapley and Shapley-Shubik methods.
Within the class of methods satisfying Dummy, the axiom of Dummy Independence

may also be defended from a strategic viewpoint. Indeed, a method satisfying Dummy and
violating Dummy Independence would be vulnerable to manipulations by pairs consisting
of a dummy and a non-dummy agent: an increase in the dummy agent�s demand could
reduce her partner�s cost share without increasing her own.

Our fourth axiom uses the following notation. If i; j are two distinct agents, we denote
by �ij the permutation on N which exchanges i and j : �ij(i) = j; �ij(j) = i and �ij(k) = k
if k 2 N n fi; jg : If x 2 RN+ and C 2 C, we de�ne �ijx by (�ijx)�ij(k) = xk for all k 2 N
and we de�ne �ijC by �ijC(�ijz) = C(z) for all z 2 RN+ : Note that �ijC 2 C.
Anonymity. For all C 2 C, x 2 RN+ ; and distinct i; j 2 N; if xi = xj; then 'i(C; x) =
'j(�

ijC; x):

This requirement expresses the familiar idea that the names of the agents should play
no role in the computation of the cost shares. This is widely accepted as a very basic
notion of fairness and is consistent with condition (c) in the Introduction: characteristics
unrelated to the cost function or the demand pro�le should be ignored. Our formulation
is rather weak insofar as it does not impose restrictions on the cost shares across demand
pro�les, in contrast with the condition used in Sprumont (2008) for instance. On the
other hand, our axiom does impose restrictions across cost functions; it is stronger than
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the requirement that agents with equal demands pay the same cost share when the cost
function is symmetric in the goods they demand.

Our �fth axiom has no counterpart in Shapley�s characterization of the value.

Group Demand Monotonicity. For all C 2 C, all x; x0 2 RN+ ; and all nonempty S � N;
if xi < x0i for all i 2 S and xi = x0i for all i 2 NnS, then there exists i 2 S such that
'i(C; x) � 'i(C; x0).
This axiom simply requires that when a group of agents jointly increase their demands,

not all of them pay less. It strengthens Moulin�s (1995) Demand Monotonicity axiom
which only requires that if xi < x0i and xj = x0j for all j 2 Nn fig, then 'i(C; x) �
'i(C; x

0). As already discussed, Group Demand Monotonicity is in line with the normative
principle that cost shares should be positively related to demand sizes. We note that the
axiom is also compelling from the strategic viewpoint: in an environment where agents can
easily communicate, Group Demand Monotonicity is necessary to prevent manipulations
by coordinated arti�cial in�ation of demands.
An interesting weak form of the axiom consists of restricting Group DemandMonotonic-

ity to the groups containing no more than two agents. Combined with our �rst four axioms,
this weaker requirement turns out to imply Group Demand Monotonicity: see Section 4
for a discussion.

Theorem. The following statement are equivalent:
(i) ' is a cost-sharing method satisfying Additivity, Weak Dummy, Dummy Independence,
Anonymity and Group Demand Monotonicity;
(ii) ' is the serial cost-sharing method.

Observe that contrary to the classic axiomatizations of the Aumann-Shapley and Shapley-
Shubik methods, our theorem does not use any measurement invariance axiom. As is well
known, the Friedman-Moulin serial method is not scale invariant. It is important to keep
in mind that the method was proposed as an extension of the Moulin-Shenker formula
for perfect substitutes and is meant to be used in problems where the goods, although no
longer necessarily perfectly substitutable, remain genuinely comparable. In such environ-
ments, scale invariance is not compelling. See Friedman and Moulin (1999) for a list of
examples including queueing and scheduling cost-sharing problems, as well as the output-
sharing problem in a cooperative enterprise. Of course, the serial method is invariant to a
change in the common unit in which the goods are measured5.

It is not di¢ cult to check that statement (ii) implies statement (i) but the proof of
the converse implication is long. The remainder of this section o¤ers an informal overview
of it. For simplicity, let us consider the three-agent case, N = f1; 2; 3g : Fix a method '
satisfying our axioms. Because ' satis�es Additivity and Dummy, a fundamental lemma
in Friedman and Moulin (1999) guarantees that the cost shares are obtained by integrating
marginal costs: for every demand pro�le x and every agent i; there exists a measure �xi

5In fact, unlike the Aumann-Shapley method but like the Shapley-Shubik method, the serial method
is invariant to common ordinal rescaling of demands.
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on [0; x] such that 'i(C; x) =
R
[0;x]

@iCd�
x
i for every cost function C: The proof of our

theorem consists in showing that Dummy Independence, Anonymity, and Group Demand
Monotonicity force the support of each of the measures �x1 ; �

x
2 ; �

x
3 to be included in the

(range of the) constrained egalitarian path to x: The bulk of the proof is devoted to
establishing this fact in the particular case when all coordinates of the demand pro�le x
coincide: the argument is developed in the �rst six steps of the proof and does not rely on
Dummy Independence. The last two steps of the proof exploit Dummy Independence to
establish the fact for an arbitrary demand pro�le x.
The heart of the proof is Step 2. Let �a = (�a1; �

a
2; �

a
3); �

b = (�b1; �
b
2; �

b
3) denote

the systems of measures which, according to the Friedman-Moulin lemma just described,
generate '(:; a) and '(:; b): Consider two demand pro�les a = (�; �; �) and b = (�; �; �),
where 0 < � < �: Suppose for a moment that ' is the Shapley-Shubik method: given a
problem (C; x); each agent pays her Shapley value in the cooperative game (C;x)(S) =
C(xS; 0NnS) for all S � N: Thus,

'3(C; a) =
1

3
(C(0; 0; �)� C(0; 0; 0)) + 1

6
(C(�; 0; �)� C(�; 0; 0)) +

1

6
(C(0; �; �)� C(0; �; 0)) + 1

3
(C(�; �; �)� C(�; �; 0))

and

'3(C; b) =
1

3
(C(0; 0; �)� C(0; 0; 0)) + 1

6
(C(�; 0; �)� C(�; 0; 0)) +

1

6
(C(0; �; �)� C(0; �; 0)) + 1

3
(C(�; �; �)� C(�; �; 0)):

Suppose now that the cost function C is symmetric in z1; z2 and that its restriction to the
�nite grid f0; �; �gN is

C(z) =

�
1 if z � (�; 0; �) or z � (�; �; �) or z � (0; �; �);

0 otherwise.

Then '3(C; a) = 0+0+0+
1
3
= 1

3
and '3(C; b) = 0+

1
6
+ 1

6
+ 1

3
= 2

3
: But C(a) = C(b) = 1:

Since C is symmetric in z1; z2 and ' is anonymous, we must have 'i(C; a) =
1
3
and

'i(C; b) =
1
6
for i = 1; 2; violating Group Demand Monotonicity.

Observe that the measure �b3 attaches a positive measure (namely,
1
6
) to each of the in-

tervals [(�; 0; 0); (�; 0; �)] ; [(0; �; 0); (0; �; �)] : The violation of Group Demand Monotonic-
ity arises because these intervals lie outside the region of [0; b] where zi � � for both i = 1; 2
or zi � � for both i = 1; 2: It is for this reason, and because �a3 is simply the projection
of �b3 on the interval [0; a] (in the sense that �

a
3(Z) = �

b
3(fz 2 [0; b] j z ^ a 2 Zg) for every

measurable Z � [0; a]), that we were able to �nd a cost function C; symmetric in z1; z2
and such that C(a) = C(b); for which '3(C; a) < '3(C; b). The anonymity of ' then
precipitated the violation.
It should be clear that this argument extends beyond the particular case of the Shapley-

Shubik method. Step 2 shows that whenever the measure �a3 is the projection of �
b
3 on
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the interval [0; a], Anonymity and Group Demand Monotonicity force the support of �b3
to be included in the region of [0; b] where zi � � for i = 1; 2 or zi � � for i = 1; 2:
Proving this only requires a careful speci�cation of the above cost function C outside the
grid f0; �; �gN .
As it turns out, the assumption that �a3 is the projection of �

b
3 on the interval [0; a] is su-

per�uous. Step 1 shows that it follows from Anonymity and Group Demand Monotonicity.
The proof is similar to that of Step 2: assuming that ' is anonymous and that the projection
property does not hold, we again exhibit a cost function eC such that 'i( eC; a) > 'i( eC; b)
for i = 1; 2:
The rest is tedious but rather straightforward. Step 3 lets � vary between 0 and �: It

follows immediately from Step 2 that the support of �b3 is included in the region of [0; b]
where z1 = z2: Likewise, the support of �b1 is included in the plane z2 = z3 and the support
of �b2 is included in the plane z1 = z3.
Combining these three conditions with budget balance, it is intuitive that the support

of each of the measures �b1; �
b
2; �

b
3 must in fact be included in the ray z1 = z2 = z3: The

formal proof in Steps 4 to 6 relies on the rather cumbersome restrictions (identi�ed in
Friedman and Moulin (1999)) that budget balance entails on those measures.
Step 7 identi�es the key restriction that Dummy Independence imposes on the entire

system of measures characterizing ': A simple argument shows that for any demand pro-
�le x = (x1; x2; x3); the measures �

(x1;x2;0)
1 ; �

(x1;x2;0)
2 must be the projections of �x1 ; �

x
2 on

[0; (x1; x2; 0)] :
Step 8 concludes the proof. Since the supports of �b1; �

b
2 are included in the egalitarian

ray z1 = z2 = z3, the projection property established in Step 7 implies that the supports
of �(�;�;0)1 ; �

(�;�;0)
2 are included in the ray z1 = z2: As is well known, Demand Monotonic-

ity (which follows from Group Demand Monotonicity) then implies that the supports of
�
(�;�;0)
1 ; �

(�;�;0)
2 are included in the (range of the) constrained egalitarian path to (�; �; 0)

whenever 0 � � � �: A corresponding statement also holds for every permutation of
(�; �; 0): Invoking the projection property proved in Step 7 again, we conclude that the
supports of �x1 ; �

x
2 ; �

x
3 are included in the (range of the) constrained egalitarian path to x

whenever 0 � x � b: This implies that ' must be the serial method.

3. The proof

Proof that (ii) implies (i). It is well known and easy to check that the serial method '�

satis�es our �rst four axioms. To check Group Demand Monotonicity, �x a cost function
C, a group of agents S � N; and two demand pro�les x; x0 such that xi < x0i for all i 2 S
and xi = x0i for all i 2 NnS. We claim that the cost share of any agent with minimal
demand in S at x cannot decrease when the demand pro�le changes from x to x0: Indeed,
let i 2 S be such that xi � xj for all j 2 S: Then '�i (C; x) =

R xi
0
@iC((�; �; :::; �)^ x)d� =R xi

0
@iC((�; �; :::; �) ^ x0)d� �

R x0i
0
@iC((�; �; :::; �) ^ x0)d� = '�i (C; x0):�

As noted in Moulin and Sprumont (2005), this argument can be generalized to show
that all ��xed-path methods� satisfy Group Demand Monotonicity. In our continuous
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framework, a �xed-path method is a path method generated by a collection of paths rx
having the property that if x � x0, then rx([0; 1]) is the projection of rx0([0; 1]) on [0; x] ;
namely rx([0; 1]) = fy ^ x j y 2 rx0([0; 1])g. One can think of such a method as being
generated by a single �xed �unbounded path�r. The serial method is a �xed-path method
whereas the Aumann-Shapley method is not. To see why a �xed-path method ' is group
demand monotonic, consider again a group S and two demand pro�les x; x0 such that
xi < x

0
i for all i 2 S and xi = x0i for all i 2 NnS. If the demand of agent i is among those

in S that are reached �rst along the path rx (in the sense that tx(i) := inf ft j (rx)i(t) � xig
� tx(j) := inf ft j (rx)j(t) � xjg for all j 2 S), then agent i�s cost share cannot decrease
from x to x0 since 'i(C; x) =

R tx(i)
0

@iC(rx(t))
d(rx)i
dt
(t)dt =

R tx(i)
0

@iC(rx0(t))
d(rx0 )i
dt
(t)dt �R 1

0
@iC(rx0(t))

d(rx0 )i
dt
(t)dt = 'i(C; x

0):

We now turn to the proof that only the serial method satis�es our axioms. The following
notation will be used throughout. Vector inequalities are written �; <;�. For all S � N
and z 2 RN we denote by zS 2 RS the restriction of z to S: If z; z0 2 RN ; we denote by
(zS; z

0
NnS) the point in RN whose restrictions to S and N nS are zS and z0NnS; respectively.

If Z � RN ; we let ZS =
�
zS 2 RS j 9zNnS 2 RNnS : (zS; zNnS) 2 Z

	
:

Our proof relies on Friedman and Moulin�s (1999) characterization of the cost-sharing
methods satisfying Additivity and Dummy. For any x 2 RN+ ; denote by B([0; x]) the set of
Borel subsets of [0; x] : If i 2 N; a 2 [0; x] ; and �xi is a Radon measure on B( [0; x]); de�ne
mx
i (a) = lim"!0

1
"
�xi (fz 2 [0; x] j ai � zi � ai+ " and zj � aj for all j 2 N n ig): A measure

system is a mapping � on RN+ ; x 7! �x = (�x1 ; :::; �
x
n); where each �

x
i is a nonnegative

Radon measure on B( [0; x]) such thatX
i2S
mx
i (a) = 1 for all S � N and almost all a 2 [0; x] such that aNnS = 0; (3.1)

where the term �almost all� is understood with respect to the jSj-dimensional Lebesgue
measure on

�
0; (xS; 0NnS)

�
: A useful implication of (3.1) (derived by taking S = fig) is

that the projection of �xi on the one-dimensional interval [0; xi] is the Lebesgue measure:

�xi (fz 2 [0; x] j ai � zi � big) = bi � ai whenever 0 � ai � bi � xi: (3.2)

Lemma (Friedman and Moulin, 1999). For any function ' : C �RN+ ! RN+ , the following
statements are equivalent:
(i) ' is a cost-sharing method satisfying Additivity and Dummy;
(ii) there exists a measure system � such that

'i(C; x) =

Z
[0;x]

@iCd�
x
i for all i 2 N; C 2 C, and x 2 RN+ : (3.3)

The role of (3.1) is to guarantee that the cost shares de�ned by (3.3) satisfy bud-
get balance. It may be useful to outline the argument in the case of a cost-sharing
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problem (C; x) where C is su¢ ciently di¤erentiable. For any set S = fi1; :::; iSg �
N , denote by @SC the partial derivative @i1 :::@iSC: Compute the cost shares in (3.3)
using repeated integration by parts: for any i 2 N; 'i(C; x) =

R
[0;x]

@iC(z)d�
x
i (z) =P

S�N

R
[0;(xS ;0NnS)] @Sni@iC(z)m

x
i (z)dz =

P
S�N

R
[0;(xS ;0NnS)] @SC(z)m

x
i (z)dz; where dz refers

to the jSj-dimensional Lebesgue measure. Then
P

i2N 'i(C; x) =
P

i2N
P

S�N
R
[0;(xS ;0NnS)]

@SC(z)m
x
i (z)dz =

P
S�N

R
[0;(xS ;0NnS)] @SC(z)(

P
i2Sm

x
i (z))dz =

P
S�N

R
[0;(xS ;0NnS)] @SC(z)dz

= C(x): Friedman and Moulin (1999) invoke an approximation to extend the proof to all
cost-sharing problems.
The measure system � in the Friedman-Moulin lemma is unique; we say that it generates

': We refer to �x as a measure system at x. By the support of �x we mean the union of
the supports of the measures �x1 ; :::; �

x
n. We denote by �

� the measure system generating
the serial method '� and call �� the serial measure system. This system is an example of
a �xed measure system. In a �xed measure system �; when x � x0; each measure �xi is the
projection of �x

0
i onto [0; x] ; namely, the measure px�

x0
i de�ned on B( [0; x]) by

px�
x0

i (Z) = �
x0

i (fz 2 [0; x0] j z ^ x 2 Z and zi � xig): (3.4)

For any b = (�; �; :::; �) 2 RN+ , the support of the serial measure system ��b at b is the set
f(�; �; :::; �) j 0 � � � �g, the diagonal of [0; b] : Using (3.2), it is easy to see that this
property determines ��b uniquely, as noted in the proof of Theorem 2 in Friedman and
Moulin (1999). For any x � b, the serial measure system at x is de�ned by the projection
property ��xi = px�

�b
i for all i 2 N:

The support of ��x is the constrained egalitarian path to x. Suppose, without loss of
generality, that x1 � x2 � ::: � xn: For all i 2 N , de�ne the demand pro�le xi 2 RN+ by
xij = min(xi; xj) for all j 2 N: The support of ��x is

S�x = [ni=1co
�
xi�1; xi

	
; (3.5)

where x0 = 0 and co fxi�1; xig is the line segment joining xi�1 to xi: See Figure 1.
Proof that (i) implies (ii). Let ' be a cost-sharing method satisfying Additivity, Weak
Dummy, Dummy Independence, Anonymity and Group Demand Monotonicity. Since
Weak Dummy and Dummy Independence imply Dummy, it follows from the Friedman-
Moulin lemma that there exists a measure system � generating '. Let � be a positive real
number, �x the demand pro�le b = (�; �; �; :::; �); and let B = [0; b] :

Step 1. We claim that if 0 < � < �; and a = (�; �; �; :::; �); then �ai = pa�
b
i for

i = 3; :::; n:

Fix � such that 0 < � < �; let a = (�; �; �; :::; �) and write A = [0; a]. We use the
following terminology and notation. A set E � RN is an interval (in RN) if E = �i2NEi;
where each Ei is an (open, half-open, or closed) interval in R. If E is nonempty, we denote
its endpoints by e�(E); e+(E) or simply e�; e+. An open interval in RN is an interval
which is also an open set: if nonempty, it takes the form E = fz 2 RN j e� � z � e+g
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where e� � e+; and we write E = ]e�; e+[: Let E and Eo denote the set of intervals and
the set of open intervals, respectively. The set of intervals which are below the hyperplane
z1 = z2 is E< = fE 2 E j z2 < z1 for all z 2 Eg; the set of intervals above it is
E> = fE 2 E j z2 > z1 for all z 2 Eg; and the set of intervals whose endpoints are on this
hyperplane is E= = fE 2 E j e�1 (E) = e�2 (E) and e+1 (E) = e+2 (E)g:
1.1. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 Eo \ E<:
We only give a sketch of the argument and refer the reader to the Appendix for details.

Fix E 2 Eo \ E< and let e�; e+ 2 RN ; e� � e+; be the endpoints of E: Assume that

e+1 � � or e+1 > �: (3.6)

This assumption entails no loss of generality. (If � < e+1 � �, choose e++1 > � and consider
the open interval E+ =]e�; (e++1 ; e+Nn1)[. Apply the argument below to E

+ rather than E
to obtain �ai (E

+ \ A) � pa�bi(E+ \ A) for i = 3; :::; n: Since E+ \ A = E \ A; our claim
follows.) Assumption (3.6) guarantees that

pa�
b
i(E \ A) = �bi(E \B) for i = 3; :::; n: (3.7)

Suppose now, by way of contradiction, that, say,

�a3(E \ A) < pa�b3(E \ A): (3.8)

Assume also that 0 � e�3 and e+3 � � : this too is without loss of generality because �a3(fz 2
A j z3 = 0g) = �a3 (fz 2 A j z3 = �g) = pa�b3 (fz 2 A j z3 = 0g) = pa�b3 (fz 2 A j z3 = �g) =
0 by (3.2). For any set Z � RN ; let �12Z = f�12z j z 2 Zg ; where we recall that �12 is
the permutation exchanging agents 1 and 2; and let Z� = Z [ �12Z : this is the smallest
superset of Z that is symmetric with respect to the hyperplane z1 = z2:
Suppose we could construct a cost function C such that (a) C(a) = C(b); (b) C(z) is

independent of z4; :::; zn; and (c) @3C is a positive constant k on E\RN+ and zero elsewhere.
De�ne the function C� on RN+ by C�(z) = C(z) if z1 � z2 and C�(z) = �12C(z) otherwise.
By Anonymity '1(C; a)+'2(C; a) = '2(�

12C; a)+'1(�
12C; a) and by Dummy 'i(C; a) =

0 = 'i(�
12C; a) for i = 4; :::; n: Since C(a) = �12C(a); budget balance implies '3(C; a) =

'3(�
12C; a): Since '3(C; a) =

R
A
@3Cd�

a
3 = k�

a
3(E \A) and '3(�12C; a) =

R
A
@3�

12Cd�a3 =
k�a3(�

12(E \ A)); we obtain �a3(E \ A) = �a3(�
12(E \ A)) and therefore �a3((E \ A)�) =

2�a3(E \ A):
Likewise, since '3(C; b) = k�b3(E \ B) = kpa�

b
3(E \ A) (by (3.7)) and '3(�12C; b) =

kpa�
b
3(�

12(E \ A)); a similar argument yields pa�b3((E \ A)�) = 2pa�b3(E \ A): Therefore
inequality (3.8) implies �a3((E \ A)�) < pa�b3((E \ A)�):
Now, since '3(C�; a) = k�a3((E \ A)�) and '3(C�; b) = kpa�

b
3((E \ A)�); it follows

that '3(C�; a) < '3(C�; b): By Dummy, 'i(C�; a) = 0 = 'i(C�; b) for i = 4; :::; n: Since
C�(a) = C�(b); budget balance implies '1(C�; a) + '2(C�; a) > '1(C�; b) + '2(C�; b): By
Anonymity, 'i(C�; a) > 'i(C�; b) for i = 1; 2; contradicting Group Demand Monotonicity.
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An example of a nondecreasing function C satisfying properties (a), (b) and (c) above

is the following. For all z 2 RN and i 2 N , de�ne z0i =
zi�e�i
e+i �e

�
i

: Let z003 = med(0; z
0
3; 1); the

median of the three numbers 0; z03; 1; and de�ne C : RN+ ! [0; 1] by

C(z) =

8>><>>:
z003 if (z1; z2) 2 Ef1;2g;

0 if (z1; z2) =2 Ef1;2g and z01 + z02 < 1;
1
2
if (z1; z2) =2 Ef1;2g and z01 + z02 = 1;

1 if (z1; z2) =2 Ef1;2g and z01 + z02 > 1;

(3.9)

where we recall that Ef1;2g = f(z1; z2) j 9z3; :::; zn : (z1; z2; z3; :::; zn) 2 Eg : See Figure 2
for an illustration. The only di¢ culty is that C is not a cost function: it is not continu-
ously di¤erentiable or indeed even continuous. The formal proof in the Appendix involves
approximating C by a sequence of cost functions.

1.2. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 E<:
Let E 2 E< be an interval with endpoints e�; e+: Partition N into N<;<; N<;�; N�;<;

N�;� so that E = fz 2 RN j e�i < zi < e+i if i 2 N<;<; e
�
i < zi � e+i if i 2 N<;�;

e�i � zi < e+i if i 2 N�;<; and e�i � zi � e+i if i 2 N�;�g: For m = 1; 2; :::; de�ne
Em = fz 2 RN j e�i < zi < e+i if i 2 N<;<; e�i < zi < e+i + 1

m
if i 2 N<;�; e�i � 1

m
< zi < e

+
i if

i 2 N�;<; and e�i � 1
m
< zi < e

+
i +

1
m
if i 2 N�;�g: By de�nition, Em+1 � Em form = 1; 2; :::

and \1m=1Em = E: It follows that for all i = 3; :::; n; �ai (E \ A) = limm!1 �
a
i (Em \ A)

and pa�bi(E \ A) = limm!1 pa�
b
i(Em \ A): By Step 1.1, �ai (Em \ A) � pa�bi(Em \ A) for

m = 1; 2; ::: and i = 3; :::; n: The claim follows.

1.3. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 E :
Mutatis mutandis, the proof that �ai (E\A) � pa�bi(E\A) for i = 3; :::; n and all E 2 E>

is identical to the argument in Steps 1.1 and 1.2. The proof that �ai (E \A) � pa�bi(E \A)
for i = 3; :::; n and all E 2 E= is also similar. When E 2 E= the function C in (3.9) is
symmetric with respect to z1; z2 and C� coincides with C: Assumption (3.6) guarantees
that C(a) = C(b): The only change required in the formal proof in the Appendix is that
the functions eCm satisfying (5.2) to (5.5) must now be symmetric with respect to z1; z2:
This causes no di¢ culty since E itself is symmetric with respect to z1; z2. To conclude the
proof of Step 1.3, it su¢ ces to note that every interval in E can be written as a disjoint
union of intervals in E<; E> and E=:
1.4. We claim that �ai (E \ A) = pa�bi(E \ A) for i = 3; :::; n and all E 2 E :
Let E 2 E be an interval with endpoints e�; e+; �x i 2 f3; :::; ng and assume without

loss of generality that 0 � e�i and e
+
i � �: Let G =

�
z 2 RN j e�i � zi � e+i

	
: Applying

(3.2) to �ai and pa�
b
i ,

�ai (G \ A) = e+i � e�i = pa�bi(G \ A): (3.10)

Partition G n E into the eight disjoint intervals G<;< = G1; G=;< = G2; G>;< = G3;
G<;= = G4; G>;= = G5; G<;> = G6; G=;> = G7 and G>;> = G8; where G<;< = fz 2 G j
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z1 < z
0
1 and z2 < z

0
2 for all z

0 2 Eg; G=;< = fz 2 G j z1 = z01 for some z0 2 E and z2 < z02
for all z0 2 Eg; G>;< = fz 2 G j z1 > z01 and z2 < z02 for all z0 2 Eg; and so on.
By (3.10), �ai (E \ A) = (e+i � e�i ) �

P8
k=1 �

a
i (Gk \ A) and pa�bi(E \ A) = (e+i �

e�i )�
P8

k=1 pa�
b
i(Gk \A): By Step 1.3, �ai (Gk \A) � pa�bi(Gk \A) for k = 1; :::; 8: Hence

�ai (E \ A) � pa�
b
i(E \ A): Since the opposite weak inequality holds by Step 1.3, we are

done.

1.5. We claim that �ai (Z) = pa�
b
i(Z) for i = 3; :::; n and all Z 2 B(A):

Because every open set in RN is the union of a countable collection of (open) intervals,
Step 1.5 follows from Step 1.4, the de�nition of the Borel sets, and the countable additivity
of the measures �ai and pa�

b
i :

Step 2. For any real number � such that 0 < � < �; partition B into B0(�) =
fz 2 B j z1; z2 � �g ; B1(�) = fz 2 B j z2 < � < z1g ; B2(�) = fz 2 B j z1 < � < z2g ;
and B3(�) = fz 2 B j (�; �) < (z1; z2)g: We claim that

�bi(B
1(�) [B2(�)) = 0 for i = 3; :::; n: (3.11)

The proof works by constructing a particular cost function C and applying Anonymity
and Group Demand Monotonicity to the problems (C; a); (C; b): Although the construction
of C is in essence rather simple, the requirement that it be continuously di¤erentiable
introduces unavoidable minor complications. We begin by de�ning C on the set B = fz 2
B j zi = � for i = 3; :::; ng: If z = (z1; z2; �; :::; �) 2 B; we abbreviate notation by writing
z = (z1; z2):
Let s : R! [0; 1] be a �smoothing function�, namely, a nondecreasing, continuously

di¤erentiable function such that s(0) = 0; s(1) = 1; and s0(0) = s0(1) = 0: De�ne h : B !
[0; 1] by

h(z) =

8>>>><>>>>:
s

�
2

1+
��z2
��z1

�
if 0 � z2 � z1 < �;

s

�
2

1+
��z1
��z2

�
if 0 � z1 < z2 < �;

0 otherwise.

The level sets of this function are shown in Figure 3. Observe that h(; ) = 1 whenever
0 �  < �: The function h is continuously di¤erentiable everywhere but at (�; �); where
it is discontinuous.
De�ne the functions C1; C2 : B ! [0; 1] by

C1(z) = s

�
1�

�
� � z1
� � � � h(z)

��
�� z2
�

��
;

C2(z) = s

�
1�

�
�� z1
�

��
� � z2
� � � � h(z)

��
:

Observe that C1(z) = C2(z) = 1 if z � (�; �) and C1(; ) = C2(; ) whenever 0 �  < �:
The functions C1; C2 are continuously di¤erentiable at every point, including (�; �) where
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@iCj(�; �) = 0 for i; j 2 f1; 2g. Moreover, one checks that @iC1(; ) = @iC2(; ) for
0 �  < � and i 2 f1; 2g :
Partition the setB intoB

01
(�) =

�
z 2 B j z2 < z1 � �

	
; B

02
(�) =

�
z 2 B j z1 � z2 � �

	
;

B
1
(�) =

�
z 2 B j z2 < � < z1

	
; B

2
(�) =

�
z 2 B j z1 < � < z2

	
; and B

3
(�) = fz 2 B j

(�; �) < (z1; z2)g: De�ne C : B ! [0; 1] by

C(z) =

8><>:
C1(z) if z 2 B

01
(�) [B1(�);

C2(z) if z 2 B
02
(�) [B2(�);

1 if z 2 B3(�):

Thanks to the properties of C1; C2 discussed above, C is continuously di¤erentiable and
one checks that it is nondecreasing. The level sets of C are drawn in Figure 4. Note that
C(a) = C(b) = 1:
Finally, with a slight abuse of notation, we extend C to RN+ by letting

C(z) =

nP
i=3

zi

(n� 2)�C (min (z1; �) ;min (z2; �) ; �; :::; �)

for all z 2 RN+ : This function belongs to C:
Suppose now that (3.11) is false: say, �b3(B

1(�) [ B2(�)) > 0: Let a = (�; �; �; :::; �);
A = [0; a] ; and de�ne the function @a3C : RN+ ! R+ by @a3C(z) = @3C(z ^ a): By Step 1,
the measure �a3 is obtained by projection of �

b
3 onto A: It then follows from the de�nition

of the Lebesgue integral that Z
A

@3Cd�
a
3 =

Z
B

@a3Cd�
b
3:

From the de�nition of C; we have

@a3C(z) = @3C(z) for all z 2 B0(�) [B3(�);
@a3C(z) < @3C(z) for all z 2 B1(�) [B2(�):

For instance, if z 2 B1(�); then @a3C(z) = @3C(�; z2; z3; :::; zn) = 1
(n�2)�C(�; z2; �; :::; �) <

1
(n�2)�C(z1; z2; �; :::; �) = @3C(z):
Therefore

'3(C; b)� '3(C; a) =

Z
B

@3Cd�
b
3 �

Z
A

@3Cd�
a
3

=

Z
B

(@3C � @a3C) d�b3

=

Z
B1(�)[B2(�)

(@3C � @a3C) d�b3

> 0;
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that is, '3(C; a) < '3(C; b): Since C is symmetric in z3; :::; zn and a3 = ::: = an = � and
b3 = ::: = bn = �; Anonymity implies '3(C; a) = ::: = 'n(C; a) and '3(C; b) = ::: =
'n(C; b): Therefore 'i(C; a) < 'i(C; b) for i = 3; :::; n: Since C(a) = C(b); budget balance
implies '1(C; a) + '2(C; a) > '1(C; b) + '2(C; b): But since C is symmetric in z1; z2 and
a1 = a2 = � and b1 = b2 = �; Anonymity also forces '1(C; a) = '2(C; a) and '1(C; b) =
'2(C; b): Hence, '1(C; a) > '1(C; b) and '2(C; a) > '2(C; b); contradicting Group Demand
Monotonicity.

Step 3. De�ne D12 = fz 2 B j z1 = z2g : We claim that

�bi(D
12) = �bi(B) for i = 3; :::; n: (3.12)

For any real number � such that 0 < � < �; let B12(�) = B1(�)[B2(�) and D12(�) =
B n B12(�): For r = 1; 2; :::; let B12r = [r�1k=1B

12(k�
r
) and D12

r = B n B12r : See Figure 5 for
an illustration when n = 3: We get

�bi(D
12
r ) = �bi(B)� �bi(B12r )

= �bi(B)� �bi([r�1k=1B
12(
k�

r
))

= �bi(B)

for i = 3; :::; n; where the last equality holds because (3.11) guarantees that �bi(B
12(k�

r
)) = 0

for k = 1; :::; r � 1 and i = 3; :::; n: Since D12
r � D12

r+1 for r = 1; 2; ::: and D
12 = \1r=1D12

r ;
we obtain

�bi(D
12) = �bi(\1r=1D12

r )

= lim
r!1

�bi(D
12
r )

= �bi(B)

for i = 3; :::; n:

Step 4. For all S � N n 3 such that jSj � 2; let DS = fz 2 B j zi = zj for all i; j 2 Sg :
We claim that

�b3(D
Nn3) = �b3(B): (3.13)

From Step 3, �b3(D
f1;2g

) = �b3(B): Since the choice of agents 1 and 2 in Steps 1, 2 and
3 was arbitrary, this conclusion generalizes to

�b3(D
S) = �b3(B) for all S � N n 3 such that jSj = 2: (3.14)

For all S � N n 3 such that jSj � 2; de�ne bDS = fz 2 DS j zi 6= zk for all i 2 S and all
k 2 (N n 3) n Sg: Statement (3.14) implies

�b3( bDS) = 0 for all S � N n 3 such that 2 � jSj � n� 2: (3.15)
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To see why, suppose there exists S � N n 3 such that 2 � jSj � n � 2 and �b3( bDS) > 0:

Because 1 � jSj � n � 2; there exist i 2 S and k 2 (N n 3) n S such that bDS �
fz 2 B j zi 6= zkg = B nDfi;kg: But then �b3(B nDfi;kg) � �b3( bDS) > 0; hence �b3(D

fi;kg) <
�b3(B), contradicting (3.14).
Notice that [S�Nn3:jSj�2DS = fz 2 B j 9i; j 2 N n 3 : i 6= j and zi = zjg : Since for all

S � N n 3 such that jSj � 2; DS =
S

T�Nn3:T�S bDT ; we have[
S�Nn3:jSj�2

DS =
[

S�Nn3:jSj�2

bDS:

Since DNn3 = bDNn3 = fz 2 B j zi = zj for all i; j 2 N n 3g; it follows that

DNn3 =

0@ [
S�Nn3:jSj�2

DS

1A n
0BB@ [

S�Nn3:
2�jSj�n�2

bDS

1CCA :
Using (3.14) and (3.15), it follows that �b3(D

Nn3) � �b3(B): This inequality must be an
equality since DNn3 � B: This completes Step 4.
Next, we establish a general property of the measure system � that will be used in

Step 6. This property does not depend on the assumption that ' satis�es Anonymity and
Group Demand Monotonicity; it is implied by (3.3) and (3.1).

Step 5. For any real number � such that 0 < � < �; de�ne E3+(�) = fz 2 B j z3 � � >
zj for all j 2 N n 3g and E3�(�) = fz 2 B j z3 � � < zj for all j 2 N n 3g: We claim that

if �bi(E3+(�)) = 0 for all i 2 N n 3; then �b3(E3+(�)) = 0; (3.16)

and
if �bi(E3�(�)) = 0 for all i 2 N n 3; then �b3(E3�(�)) = 0: (3.17)

This is illustrated in Figure 6. We prove (3.16) and leave the similar proof of (3.17)
to the reader. If i 2 N and P is a property that points of B may have, we abbreviate
notation by writing �bi(P ) instead of �

b
i(fz 2 B j z satis�es property Pg): For all t 2 B;

i 2 N; S � N n i; and " > 0 small enough, we de�ne

mS
i (t) = lim

"!0

1

"
�bi (ti � zi � ti + "; zj < tj if j 2 S; and zj � tj if j 2 (N n i) n S)

In particular, m;
i (t) = m

b
i(t), as de�ned just before condition (3.2).

5.1. We claim that if 0 < �0 < �; then

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) =

Z �

�

m
Nn3
3 (�0; �0; z3; �

0; :::; �0)dz3: (3.18)
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De�ning M(t3) = �b3 (zi < �
0 for i 2 Nn3 and z3 � t3) ; we have M 0(t3) = lim"!0

1
"
(M(

t3+")�M(t3)) = lim"!0
1
"
(�b3(zi < �

0 for i 2 Nn3 and z3 � t3+") � �b3(zi < �0 for i 2 Nn3
and z3 � t3)) = � lim"!0

1
"
�b3 (zi < �

0 for i 2 Nn3 and t3 � z3 < t3 + ") = �mNn3
3 (�0; �0;

t3; �
0; :::; �0); where the last equality uses property (3.2).
Hence

R �
�
m
Nn3
3 (�0; �0; t3; �

0; :::; �0)dt3 = �
R �
�
M 0(t3)dt3 = M(�) �M(�) = �b3(zi < �0

for i 2 Nn3 and z3 � �) � �b3(zi < �0 for i 2 Nn3 and z3 � �) = �b3(zi < �0 for i 2 Nn3
and z3 � �):
5.2. We claim that if 0 < �0 < �; then

m
Nn3
3 (�0; �0; z3; �

0; :::; �0) =
X
i2Nn3

m
(Nn3)ni
i (�0; �0; z3; �

0; :::; �0) for almost all z3 2 [�; �] :

(3.19)
To see why this is true, �x z3 2 [�; �] and write a0 = (�0; �0; z3; �

0; :::; �0): For any set S

such that 3 2 S � N; applying property (3.1) gives
P

i2Sm
b
i(a

0
S; 0NnS) = 1 almost surely

whenever 3 2 S � N: By de�nition of mT
i (a

0); we have mb
i(a

0
S; 0NnS) = m;

i (a
0
S; 0NnS) =P

T :;�T�NnSm
T
i (a

0) for all i 2 S: Therefore,X
i2S

X
T :;�T�NnS

mT
i (a

0) = 1

almost surely whenever 3 2 S � N: Adding up these conditions pre-multiplied by alter-
nating positive and negative unit coe¢ cients,

X
S:32S�N

(�1)jSj�1
0@X

i2S

X
T :;�T�NnS

mT
i (a

0)

1A = 0

almost surely. Cancelling terms in the left-hand side of this equation, we obtain

m
Nn3
3 (a0)�

X
i2Nn3

m
(Nn3)ni
i (a0) = 0

almost surely, as claimed.

5.3. Assume now that �bi(E3+(�)) = 0 for all i 2 N n 3: Combining (3.18) and (3.19),

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) =

Z �

�

X
i2Nn3

m
(Nn3)ni
i (�0; �0; z3; �

0; :::; �0)dz3

whenever 0 < �0 < �: But if i 2 N n 3 and � � t3 � �; then m(Nn3)ni
i (�0; �0; t3; �

0; :::; �0) =
lim"!0

1
"
�bi (�

0 � zi � �0 + "; zj < �0 for j 2 (Nn3)ni; and z3 � t3) = 0 because �bi(E3+(�))
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= 0 and fz 2 B j �0 � zi � �0 + "; zj < �0 for j 2 (Nn3)ni; and z3 � t3g � E3+(�) when
" is su¢ ciently small. Therefore

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) = 0 (3.20)

whenever 0 < �0 < �:
A standard limit argument completes Step 5. Writing Ek3+(�) = fz 2 B j zi < �� 1

k
for

i 2 N n3 and z3 � �g for k = 1; 2; :::; we have �b3(Ek3+(�)) = 0 from (3.20). Since Ek3+(�) �
Ek+13+ (�) for all k and

S1
k=1E

k
3+ = E3+(�); we get �

b
3(E3+(�)) = limk!1 �

b
3(E

k
3+(�)) = 0:

Step 6. We claim that
�b = ��b: (3.21)

Let D = fz 2 B j zi = zj for all i; j 2 Ng: We �rst show that

�b3(D) = �
b
3(B); (3.22)

that is, the support of �b3 is included in the diagonal of B:
PartitionDNn3 intoD = fz 2 DNn3 j z3 = zi for all i 2 Nn3g; DNn3

+ = fz 2 DNn3 j z3 >
zi for all i 2 N n 3g; and DNn3

� = fz 2 DNn3 j z3 < zi for all i 2 N n 3g. Suppose, contrary
to our claim, that �b3(D) < �

b
3(B): Then �

b
3(D

Nn3
+ ) > 0 or �b3(D

Nn3
� ) > 0: We consider the

case where �b3(D
Nn3
+ ) > 0 and derive a contradiction. If �b3(D

Nn3
� ) > 0; a completely similar

argument (using (3.17) instead of (3.16)) leads to a similar contradiction.
For k = 1; 2; :::; de�ne DNn3

+ (k) = fz 2 B j z3 � 1
k
� zi = zj for all i; j 2 N n 3g:

See Figure 7. Since DNn3
+ (k) � DNn3

+ (k + 1) for all k and
S1
k=1D

Nn3
+ (k) = D

Nn3
+ ; we have

�b3(D
Nn3
+ ) = limk!1 �

b
3(D

Nn3
+ (k)): Therefore there is some k such that

�b3(D
Nn3
+ (k)) > 0: (3.23)

Let � be a �nite subset of [0; �] such that

D
Nn3
+ (k) �

[
�2�

E3+(�) (3.24)

where, as in Step 5, E3+(�) = fz 2 B j z3 � � > zj for all j 2 N n 3g : For instance, we
may choose � =

�
1
2k
; 2
2k
; :::; 2k�1

2k

	
: From (3.23) and (3.24) follows that there exists � 2 �

such that �b3(E3+(�)) > 0: By (3.16) in Step 5, there must exist some i 2 N n 3 such that

�bi(E3+(�)) > 0: (3.25)

Since the choice of agents 1 and 2 in Step 1 and the choice of agent 3 in Steps 4 and 5
was arbitrary, an equation analogous to (3.13) holds for agent i as well, namely,

�bi(D
Nni) = �bi(B):
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But E3+(�) � B n DNni (since z 2 E3+(�) ) zj 6= z3 for all j 2 N n 3 ) zj 6= z3
for all j 2 N n f3; ig ) zj 6= zk for some j; k 2 N n i ) z 2 B n DNni). Therefore
�bi(E3+(�)) � �bi(B nDNni) = 0, contradicting (3.25). This proves (3.22).
Since the support of �b3 is included in the diagonal of B; it follows from (3.2) that �

b
3 is

uniquely determined and, by de�nition of the serial measure system, �b3 = �
�b
3 : Since the

choice of agents 1 and 2 in Step 1 and the choice of agent 3 in Steps 4 and 5 was arbitrary,
�bi = �

�b
i for all i 2 N; completing Step 6.

Next we identify the key restriction imposed on � by the Dummy Independence axiom.
Let x 2 RN+ and X = [0; x] : De�ne the demand pro�le x(12) = (x1; x2; 0; :::; 0) and let
X(12) = [0; x(12)] : De�ne the demand pro�le x(12) = (0; 0; x3; :::; xn) and let X(12) =
[x(12); x] : De�ne Eox(12) =

�
E 2 Eo j E \X(12) 6= ; and E \X(12) 6= ;

	
:

Step 7. We claim that for all E 2 Eox(12);

�
x(12)
i (E \X(12)) = �xi (E \X) for i = 1; 2: (3.26)

Let E 2 Eox(12): Let e� � e+ be such that E =]e�; e+[. Since E \X(12) 6= ;; we have
e+i > 0 for i = 1; 2: De�ne e

�
i+ = max(e

�
i ; 0): For m = 3; 4; :::; let

Em = fz 2 E j e�i+ +
1

m
(e+i � e�i+) � zi � e+i �

1

m
(e+i � e�i+) for i = 1; 2g:

Fix a real number k > 0 and let (Cm)m=3;4;::: be a sequence of cost functions such that,
for all m, (a) Cm(z) is independent of z3; :::; zn; (b) @1Cm(z) = k if z 2 Em \ RN+ ; (c)
@1C

m(z) � k if z 2 E \ RN+ ; and (d) @1Cm(z) = 0 if z 2 RN+ n E: See Figure 8 for an
illustration. Then,

k�
x(12)
1 (Em \X(12)) � '1(C

m; x(12)) � k�x(12)1 (E \X(12)),
k�x1(E

m \X) � '1(C
m; x) � k�x1(E \X):

Since limm!1 �
x(12)
1 (Em \X(12)) = �x(12)1 (E \X(12)) and limm!1 �

x
1(E

m \X) = �x1(E \
X); we have limm!1 '1(C

m; x(12)) = k�
x(12)
1 (E\X(12)) and limm!1 '1(C

m; x) = k�x1(E\
X): By Dummy Independence, '1(C

m; x(12)) = '1(C
m; x) for all m: Since '1(:; x(12))

and '1(:; x) are continuous (because they are of the form given in (3.3)), it follows that
limm!1 '1(C

m; x(12)) = limm!1 '1(C
m; x); hence �x(12)1 (E \ X(12)) = �x1(E \ X): A

completely similar argument shows that �x(12)2 (E \X(12)) = �x2(E \X):
Step 8. We conclude the proof.

8.1. Let b(12) = (�; �; 0; :::; 0) and B(12) = [0; b(12)] : We claim that

�b(12) = ��b(12): (3.27)

From Step 7, �b(12)i (E\B(12)) = �bi(E\B) for i = 1; 2 and all E 2 Eob (12): Using Step 6,
it follows that �b(12)i (E\B(12)) = ��bi (E\B) = 0 for i = 1; 2 and all E 2 Eob (12)\(E<[E>):
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This means that for i = 1; 2 the support of �b(12)i is included in fz 2 B(12) j z1 = z2g;
the diagonal of B(12): Then (3.27) follows because of (3.2) and because bi(12) = 0 for
i = 3; :::; n.

8.2. Fix a real number � such that 0 � � < � and let x = (�; �; 0; :::; 0): We claim that

�x = ��x: (3.28)

Because Group Demand Monotonicity implies Demand Monotonicity, '1(C; x) � '1(C;
b(12)) for all C 2 C: As Friedman and Moulin (1999) show (see Step 3 of the proof of their
Theorem 1), this implies that �x1 and �

b(12)
1 coincide on [0; x] : Because of (3.2) and (3.1),

it follows that �xi = px�
b(12)
i for i = 1; 2: Hence, by Step 8.1 and the de�nition of the serial

measure system ��, �xi = px�
b(12)
i = px�

�b(12)
i = ��xi for i = 1; 2 and (3.28) follows because

xi = 0 for i = 3; :::; n.

8.3. Let x be an arbitrary demand pro�le such that 0 � x � b: For any two distinct
i; j 2 N; let x(ij) = (xfi;jg; 0Nnfi;jg): Since the choice of agents 1; 2 in Steps 7, 8.1, and 8.2
was arbitrary, (3.26) and (3.28) generalize:

�
x(ij)
k (E \X(ij)) = �xk(E \X) for k = i; j and all E 2 Eox(ij)

and
�x(ij) = ��x(ij):

Since these two facts hold for all distinct i; j 2 N; the support of �x must equal S�x, the
support of ��x de�ned in (3.5). Because of (3.2), any measure system at x whose support
equals S�x coincides with ��x: Thus �x = ��x: Since � is arbitrary, we conclude that � = ��;
hence ' = '�:�

4. Discussion

(1) The only other existing axiomatization of the Friedman-Moulin serial method in the
continuous cost-sharing model is Theorem 2 in Friedman and Moulin (1999), which states
that the serial method is characterized by Additivity, Dummy, Demand Monotonicity, and
Upper Bound for Homogenous Goods. This last axiom says that if C(z) = c(

P
i2N zi),

then 'i(C; x) � C(xi; :::; xi) for all x 2 RN+ and i 2 N:We already discussed the limitations
of this axiomatization in the Introduction.
In the discrete version of the cost-sharing model (that is, when demands are integers and

the cost function is de�ned over NN) Moulin and Sprumont (2006) o¤er an axiomatization
of the (proper reformulation of the) Friedman-Moulin serial method based on Distributivity.
That property states that the cost-sharing method should commute with the composition
of cost functions. It is a technical axiom akin to Additivity with no clear normative or
strategic interpretation. By contrast, Group Demand Monotonicity is meaningful on both
counts.
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Still in the discrete framework, Sprumont (2008) studies a combination of axioms very
closely related to the one we use. The main di¤erence is that his axiom of Independence of
Dummy Changes is strictly stronger than the combination of Weak Dummy and Dummy
Independence, as the example of the Aumann-Shapley method shows. Moreover, his ver-
sion of Anonymity is stronger than ours. In spite of this, Sprumont�s (2008) axioms fail to
uniquely characterize the serial method: they circumscribe the class of so-called �nearly
serial�methods. The use of the continuous framework allows us to obtain a much crisper
result.

(2) Building upon results derived by Haimanko (2000a and 2000b) in the model of
nonatomic games, Friedman (2004) proposes a description of the methods satisfying Addi-
tivity and Dummy which constitutes an interesting alternative to the one given by (3.3) and
(3.1). He shows that at any demand pro�le x, any such method can be expressed as an aver-
age of the �path methods at x�. Formally, if x 2 RN+ , denote by Rx the set of paths to x: If
i 2 N and (C; x) 2 C�RN+ , de�ne fi;(C;x) : Rx ! R+ by fi;(C;x)(rx) =

R 1
0
@iC(rx(t))

drx
dt
(t)dt:

This mapping associates with every path rx to x the cost share paid by agent i in the
problem (C; x) according to the path formula generated by rx. Friedman (2004) proves
that if a method ' satis�es Additivity and Dummy, then for every x 2 RN+ there is a
measure �x on Rx such that

'i(C; x) =

Z
Rx

fi;(C;x)d�x

for all i 2 N and (C; x) 2 C � RN+ : We refer the reader to the original paper for the
measure-theoretic details.
This characterization is more compact and intuitive than the Friedman-Moulin char-

acterization in terms of measure systems. It could lead to a simpler proof of our theorem
(avoiding the tedious Steps 4 to 6) and, as we suggest in comment 4 below, could also
prove useful to analyze non-anonymous methods.

(3) The axioms used in our theorem are independent.
(a) A cost-sharing method satisfying all our axioms but Additivity is equal sharing

among the non-dummy agents: given a problem (C; x); let N(C) = fi 2 N j 9z 2 RN+g :
@iC(z) > 0; 'i(C; x) = C(x)= jN(C)j if i 2 N(C) and 'i(C; x) = 0 if i 2 N nN(C):
(b) A method violating only Weak Dummy is plain egalitarianism, 'i(C; x) = C(x)=n:
(c) A simple example of a method violating only Dummy Independence is proportion-

ality: 'i(C; x) = xiC(x)=
P

j2N xj if x > 0 and 'i(C; 0) = 0:
This method, however, violates Dummy. For an example that also satis�es Dummy,

combine the serial method with the Shapley-Shubik method as follows: let 'i(C; x) =
'�i (C; x) if jfj 2 N j xj > 0gj � 3 and 'i(C; x) = 'SSi (C; x) otherwise, where we recall
that the Shapley-Shubik method 'SS charges agent i her Shapley value in the �stand-
alone game�(C;x)(S) = C(xS; 0NnS) for all S � N: This method satis�es Group Demand
Monotonicity because the Shapley-Shubik method satis�es Demand Monotonicity.
Albeit quite reasonable, Dummy Independence is an axiom that dramatically reduces

the set of admissible methods. It would be interesting to know whether it can be relaxed.
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Observe that the method described in the previous paragraph is not a continuous function
of the demand pro�le. Continuity at Zero, which states that for all (C; x) 2 C�RN+ and
all i 2 N; limxi!0 '(C; (xi; xNni)) = '(C; (0i; xNni)); allowed Friedman and Moulin (1999)
to dispense with Dummy Independence in their characterization of the so-called random-
order methods. It is therefore tempting to conjecture that the combination of Dummy
and Continuity at Zero could replace the combination of Weak Dummy and Dummy
Independence in our theorem. This is not the case. Suppose N = f1; 2; 3g : For any
(C; x) 2 C�RN+ ; let x = (min(x1; x2; x3); min(x1; x2; x3);min(x1; x2; x3)) and de�ne Cx 2 C
by Cx(z) = C(x+z)�C(x): The method 'i(C; x) = '�i (C; x)+'SSi (Cx; x�x) satis�es Ad-
ditivity, Dummy, Continuity at Zero, Anonymity and Group Demand Monotonicity. This
last axiom is satis�ed because the Shapley-Shubik method is demand-monotonic and be-
cause at most two agents demand a quantity higher than the smallest demand. It is unclear
whether similar examples can be constructed when there are more than three agents.
(d) For a method violating only Anonymity, consider any �xed-path method (as de�ned

in the second paragraph of Section 3) other than the serial method: the simplest example
is the so-called incremental method 'i(C; x) = (C;x)(f1; :::; ig)� (C;x)(f1; :::; i� 1g):
(e) Finally, the Aumann-Shapley and Shapley-Shubik methods are examples of methods

violating only Group Demand Monotonicity.

(4) We conjecture that the �xed-path methods are the only methods satisfying Addi-
tivity, Weak Dummy, Dummy Independence and Group Demand Monotonicity.
It is not di¢ cult to see that a nondegenerate convex combination of two �xed-path

methods cannot be group demand monotonic. Here is a sketch of the argument in the
three-agent case. Let r; r0 be two �xed increasing unbounded paths in RN+ and let 'r; 'r

0

be the methods they generate: for each demand pro�le x, the paths to x used to compute
the cost shares are the projections of r and r0 on [0; x] ; which we write rx and r0x: Let
' = �'r + (1� �)'r0 ; where 0 < � < 1:
Because the two paths r; r0 are di¤erent, there exists a demand pro�le x at which the

order in which the individual demands x1; :::; xn are reached along the path rx di¤ers from
the order in which they are reached along r0x: To be more precise, write, for each x 2 RN+
and i 2 N , tx(i) := inf ft j (rx)i(t) � xig and t0x(i) := inf ft j (r0x)i(t) � xig : There must
exist some demand pro�le x and two agents, say, 1 and 2; such that

tx(1) < tx(2) and t0x(2) < t
0
x(1): (4.1)

This is shown in Figure 9. The �gure illustrates the case where tx(1) < tx(2) < tx(3)
and t0x(2) < t0x(1) < t0x(3) but the order in which x3 is reached relative to x1 and x2 is
unimportant. Let a(i) = rx(tx(i)) and a0(i) = r0x(t

0
x(i)) for i = 1; 2.

Let x0 = (x01; x
0
2; x3); where x

0
i > xi for i = 1; 2: Let C be a cost function such that

(i) @1C is positive everywhere along the path r0x between a
0(2) and a0(1) except in a

neighborhood of a0(2) (where it is zero), (ii) @2C is positive everywhere along the path rx
between a(1) and a(2) except in a neighborhood of a(1); but (iii) both @1C and @2C (but
not @3C) are zero everywhere along the path rx0 between a(1) and x0 as well as along the
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path r0x0 between a
0(2) and x0. Then

'1(C; x
0)� '1(C; x)

= � ('r1(C; x
0)� 'r1(C; x)) + (1� �)

�
'r

0

1 (C; x
0)� 'r01 (C; x)

�
= �(1� �)

Z t0x(1)

t0x(2)

@1C(r
0
x(t))

dr0x
dt
(t)dt

< 0

and

'2(C; x
0)� '2(C; x)

= � ('r2(C; x
0)� 'r2(C; x)) + (1� �)

�
'r

0

2 (C; x
0)� 'r02 (C; x)

�
= ��

Z tx(2)

tx(1)

@2C(rx(t))
drx
dt
(t)dt

< 0;

a violation of Group Demand Monotonicity.
A possible proof of our conjecture would exploit the Friedman (2004) characterization of

Additivity and Dummy discussed in comment 2. The main di¢ culties would be (i) to show
that every method satisfying Additivity, Weak Dummy, Dummy Independence and Group
Demand Monotonicity can be written as a convex combination of �xed-path methods and
(ii) to extend the argument above to arbitrary convex combinations of �xed-path methods,
including the uncountable ones.

(5) Group Demand Monotonicity may be replaced in the statement of our theorem with
the weaker requirement that members of groups of size one or two cannot all lower their
cost shares by jointly raising their demands. This is because our proof does not use the
full power of the axiom. Group Demand Monotonicity is employed in Steps 1, 2, and 8.
Steps 1 and 2 only use the restriction of the condition to groups of two agents while Step
8 only uses its restriction to single agents. Of course, Demand Monotonicity could not
replace Group Demand Monotonicity: numerous demand-monotonic methods, including
the Shapley-Shubik method, satisfy our �rst four axioms.

(6) One can think of axioms of responsiveness to marginal costs that would strengthen
Dummy. One very natural requirement would stipulate that if the marginal cost function
associated with an agent increases, that agent should not end up paying less: if @iC1(z) �
@iC

2(z) for all z 2 RN+ ; then 'i(C1; x) � 'i(C
2; x) for all x 2 RN+ : This property is

automatically satis�ed by every additive method satisfying Dummy, including the serial
method, because of the Friedman-Moulin lemma (see formula (3.3)).
In the same spirit of cost responsiveness, Young (1985) proposed a powerful condition

dubbed Symmetric (Cost) Monotonicity: if @iC1(z) � @jC
2(z) for all z 2 [0; x] ; then

'i(C
1; x)=xi � 'j(C2; x)=xj: The fact, proved by Young, that only the Aumann-Shapley
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method possesses this property illustrates the trade-o¤ existing between the fundamental
desiderata of responsiveness to marginal costs and responsiveness to demand sizes. In
our interpretation of the cost-sharing model where each good is consumed by a clearly
identi�able agent, Symmetric Monotonicity is not compelling because average cost shares
have no particular ethical relevance.

(7) One can also think of axioms of responsiveness to demand size that would strengthen
Group Demand Monotonicity. One such property is Strong Group Demand Monotonicity:
the sum of the cost shares of the agents in a group should not decrease when they jointly
raise their demands. This condition is violated by the serial method6. In fact, one can show
(by adapting the arguments in Moulin and Sprumont (2005) to our continuous model) that
no additive method satis�es Strong Group Demand Monotonicity and Dummy. This fact is
another illustration of the trade-o¤between cost responsiveness and demand responsiveness
within the class of additive methods. It also shows how restrictive Additivity is. Indeed, it
is easy to construct non additive methods satisfying Dummy and Strong Group Demand
Monotonicity: equal sharing among the non-dummy agents is a very simple example; it
actually satis�es the condition that none of the agents who jointly raise their demands
pays less.

5. Appendix

We provide the proof of the claim made in Step 1.1. To do so, we begin by constructing a
sequence of continuous functions Cm approximating the function C in (3.9). Recall that
E =]e�; e+[ is an open interval below the plane z1 = z2: For m = 3; 4; :::; and � 2 [0; 1] ;
de�ne the set

Em(�) =

�
z 2 E j min

�
1

m
;
2�

m

�
� z0i � min

�
1� 1

m
; 1� 2�

m

�
for i = 1; 2

�
:

Figure 10 shows the set Emf1;2g(�) for some values of �: Observe that E
m(1

2
) = fz 2 E j

e�i +
1
m
(e+i � e�i ) � zi � e+i � 1

m
(e+i � e�i ) for i = 1; 2g � Em(�) for all � 2 [0; 1] : From

now on we write Em instead of Em(1
2
): Notice that

Em � Em+1 for m = 3; 4; ::: and [1m=3 Em = E: (5.1)

For m = 3; 4; :::; and � 2 [0; 1] ; de�ne Cm0 (:; :; �); Cm1 (:; :; �) on R
f1;2g
+ by

Cm0 (z1; z2; �) = max

�
0; �mmin(z01; z

0
2);

1�m
2

+
m

2
(z01 + z

0
2)

�
;

Cm1 (z1; z2; �) = min

�
1; 1� (1� �)mmin(1� z01; 1� z02);

1�m
2

+
m

2
(z01 + z

0
2)

�
:

6A much more modest strengthening of Group Demand Monotonicity would require that if xi < x0i for
all i 2 S and xi = x0i for all i 2 NnS, then either there exists i 2 S such that 'i(C; x) < 'i(C; x0) or else
'i(C; x) = 'i(C; x

0) for all i 2 S: This condition too is violated by the serial method.
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Figure 11 illustrates the function Cm0 (:; :; �) (for � =
3
4
) and the function Cm1 (:; :; �) (for

� = 1
2
). De�ne Cm : RN+ ! [0; 1] by

Cm(z) =

8<:
z003 if (z1; z2) 2 Emf1;2g(z003 );

Cm0
�
z1; z2;max(z

00
3 ;

1
2
)
�
if (z1; z2) =2 Emf1;2g(z003 ) and 1�m

2
+ m

2
(z01 + z

0
2) � z003 ;

Cm1
�
z1; z2;min(z

00
3 ;

1
2
)
�
if (z1; z2) =2 Emf1;2g(z003 ) and 1�m

2
+ m

2
(z01 + z

0
2) > z

00
3 :

See Figure 12. Because of (5.1), the sequence (Cm)m=3;4;::: converges pointwise to the
function C de�ned in (3.9).

The functions Cm are not continuously di¤erentiable. Our next step consists in smooth-
ing them o¤. We begin by slightly modifying them to obtain functions that are contin-
uously di¤erentiable in z3. Let k be a large positive real number. For m = 3; 4; :::; let
fm : R+ ! [0; 1] be a continuously di¤erentiable nondecreasing function such that (a)
fm(z3) = z

00
3 whenever z3 � e�3 or e�3 + 1

m
(e+3 � e�3 ) � z3 � e+3 � 1

m
(e+3 � e�3 ) or e+3 � z3 and

(b) the derivative of fm is bounded above by k. De�ne Cm;m : RN+ ! [0; 1] by replacing
z003 with f

m(z3) in the de�nition of the function Cm above. Notice that Cm;m coincides
with Cm outside E. Because the sequence (fm)m=3;4;::: converges pointwise to the function
f(z3) = z

00
3 ; the sequence (C

m;m)m=3;4;::: converges pointwise to the function C de�ned in
(3.9).
Next, we modify the functions Cm;m to obtain functions that are also continuously

di¤erentiable in z1 and z2: For m = 3; 4; ::: and � 2 [0; 1] ; de�ne Em� = fz 2 Em \ RN+ j
z003 = �g and E� = fz 2 E \ RN+ j z003 = �g: Given a function eC : RN+ ! [0; 1] ; de�ne

E( eC; �) = nz 2 E j eC (z) = � and z003 = �o :
Note that E(C; �) = E�: Let ( eCm)m=3;4;::: be a sequence of cost functions satisfying the
following conditions:

8m = 3; 4; ::: and z =2 E; eCm(z) = Cm(z); (5.2)

8m = 3; 4; ::: and � 2
�

1

m+ 1
; 1� 1

m+ 1

�
; Em� � E( eCm+1; �) \ Em+1� ; (5.3)

8� 2 [0; 1] ; E( eCm; �)! E� in the Hausdor¤ metric, (5.4)

8m = 3; 4; ::: and z 2 E; @3 eCm(z) � k: (5.5)

The construction of such a sequence causes no di¢ culty: see Figure 13 for an illustration.
We make two sets of claims regarding this sequence. First,

eCm ! C pointwise, (5.6)

where C is given in (3.9). To see why this is true, check �rst, using (5.4) and the continuity
of the cost functions eCm; that for all � 2 [0; 1] ; fz 2 E j eCm(z) = �g ! E� in the Hausdor¤
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metric. This in turn implies, using the continuity of the cost functions again, that for all
z 2 E; eCm(z) ! C(z): Combining this with (5.2) and the fact that Cm ! C pointwise
yields (5.6).
Second, we claim that each cost function eCm has properties similar to C: Speci�cally,

(a) eCm(a) = eCm(b); (b) eCm(z) is independent of z4; :::; zn; and (c) @3 eCm is a positive
constant on a set eE( eCm) which tends to E \ RN+ as m grows, and zero outside E \ RN+ :
Properties (a) and (b) are clear. As for (c), let Em;m =

�
z 2 Em j z003 2

�
1
m
; 1� 1

m

�	
for

m = 3; 4; ::: and notice that
[1m=3Em;m = E: (5.7)

For m = 3; 4; :::; de�ne the set

eEm = �z 2 Em;m j eCm(z�3; �e+3 + (1� �)e�3 ) = � for all � 2 � 1m; 1� 1

m

��
:

By construction,

@3 eCm(z) = ( 1
e+3 �e

�
3

for all z 2 eEm;
0 for all z =2 E;

(5.8)

and we claim thateEm � eEm+1 for m = 3; 4; :::; and [1m=3 eEm = E \ RN+ : (5.9)

To prove this claim, �xm � 3 and, for all � 2
�
1
m
; 1� 1

m

�
; let eEm(�) = fz 2 eEm j z003 = �g:

Using (5.3), it is straightforward to check that Em� � eEm+1(�) for all � 2 � 1
m+1

; 1� 1
m+1

�
;

hence Em;m � eEm+1; and the �rst statement in (5.9) follows. As for the second statement,
we have [1m=3 eEm = [1m=2 eEm+1 � [1m=2Em;m = E because of (5.7).
We are now ready to complete the proof of Step 1.1. The function eCm� de�ned on RN+

by eCm� (z) =
( eCm(z) if z1 � z2;
�12 eCm(z) otherwise,

need not be a cost function because it may fail to be di¤erentiable when z1 = z2: However, it
is straightforward to construct a cost function eCm;m� which (a) coincides with eCm� whenever
jz1 � z2j < 1

m
; (b) is symmetric in z1; z2; (c) is independent of z4; :::; zn, and (d) is such

that @3 eCm;m(z) = 0 for all z =2 E: For m large enough, (3.7) and (5.9) guarantee that
pa�

b
3(
eEm \ A) = �bi( eEm \B): Using (5.8) and Anonymity,

'3( eCm;m� ; a) =
2�a3(

eEm \ A)
e+3 � e�3

+ 2

Z
(E\A)n( eEm\A) @3 eCmd�a3

and

'3( eCm;m� ; b) =
2�b3(

eEm \B)
e+3 � e�3

+ 2

Z
(E\B)n( eEm\B) @3 eCmd�b3

=
2pa�

b
3( eEm \ A)
e+3 � e�3

+ 2

Z
(E\B)n( eEm\B) @3 eCmd�b3:
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By (5.5),
R
(E\A)n( eEm\A) @3 eCm d�a3 � k�a3((E \ A) n ( eEm \ A)) for all m. By (5.9),

limm!1 �
a
3((E \A) n ( eEm \A)) = 0; hence limm!1

R
(E\A)n( eEm\A) @3 eCmd�a3 = 0. Similarly,

limm!1
R
(E\B)n( eEm\B) @3 eCmd�b3 = 0. Therefore

lim
m!1

�
'3( eCm;m� ; a)� '3( eCm;m� ; b)

�
=

2

e+3 � e�3
lim
m!1

�
�a3(

eEm \ A)� pa�b3( eEm \ A)�
=

2

e+3 � e�3
�
�a3(E \ A)� pa�b3(E \ A)

�
< 0

by (5.9) and (3.8).
Because of (5.6), eCm;m� ! C� pointwise. Hence, since '3(:; a) and '3(:; b) are continuous

(by (3.3)), there exists m such that '3( eCm;m� ; a)�'3( eCm;m� ; b) < 0: As in the sketch of the
argument at the beginning of Step 1.1, budget balance, Dummy, and Anonymity now imply
that 'i( eCm;m� ; a) > 'i( eCm;m� ; b) for i = 1; 2; contradicting Group Demand Monotonicity.
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