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Abstract

We characterize the optimal bidding strategies of local and global bidders for two
heterogenous licenses in a multi-unit simultaneous ascending auction. The global bid-
der wants to win both licenses to enjoy synergies; therefore, she bids more than her
stand-alone valuation of a license. This exposes her to the risk of losing money even
when she wins all licenses. We determine the optimal bidding strategies in the presence
of an exposure problem. By using simulation methods, first, we show the frequency
of inefficient allocation in the simultaneous ascending auction. Then, we show that
the Vickrey-Clarke-Groves (VCG) mechanism may generate more revenue than the
simultaneous ascending auction.
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1 Introduction

In a typical American or Canadian spectrum license auction, hundreds of (heterogenous)

licenses are sold simultaneously. Each of these licences gives the spectrum usage right of

a geographical area to the winning firm. Some ‘local’ firms are interested in winning only

specific licenses in order to serve local markets while other ‘global’ firms are interested in

winning all the licenses in order to serve nationwide.1 The global firms enjoy synergies if they

win all the licenses which gives them an incentive to bid over their stand-alone valuations

for some licenses. As a result, there is a risk of incurring losses. Therefore, global bidders

lower their bids. This is known as the exposure problem.2

In a model simplifying the American and the recent Canadian spectrum license auctions,

we derive the optimal bidding strategies of local and global firms in a simultaneous ascending

auction of two licenses. We mainly focus on the optimal bidding strategies when there is the

possibility of an exposure problem, and through simulations, we determine how frequently

the exposure problem (i.e., ex-post loss) occurs. In addition, we decompose the frequency

into two cases; the case in which the exposure problem occurs when the global bidder wins

only one license, and the case in which the exposure problem occurs when the global bidder

wins all licenses.

Exposure problem indicates that the allocation may not be efficient. We compare the

efficiency and revenue properties of the simultaneous ascending auction with those of the

Vickrey-Clarke-Groves (VCG) mechanism when bidders are allowed to bid on packages.

VCG is an efficient auction that gives the highest revenue among all incentive compatible,

individually rational, efficient auctions. In the literature (e.g., Ausubel and Milgrom (2006)),

there are examples which show that VCG mechanism may give extreme low revenue in

complete information settings. We show that VCG mechanism may give higher revenue to

1In the recent Canadian Advanced Wireless Spectrum auction, firms such as Globalive and Rogers were
interested in all licenses whereas firms such as Bragg Communication and Manitoba Telecom Services (MTS)
were interested in East Coast and Manitoba licenses, respectively.

2We will interchangeably use exposure problem as follows. We say that an exposure problem occurred
whenever the global bidder incurs a loss ex-post.
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the seller for many parameter spaces and various distributions in incomplete information

setting. We also show the frequency of inefficient allocation when simultaneous ascending

auction is used.

The multi-unit auction literature generally assumes that global bidders have either equal

valuations (Englmaier et. al (2009), Albano et. al. (2001), Kagel and Levin (2005), Katok

and Roth (2004), Rosenthal and Wang (1996), and Krishna and Rosenthal (1996)) or very

large synergies (Albano et al. (2006)). The spectrum licenses for different geographic areas

are not homogenous objects; hence, the equal valuation assumption does not fit the Canadian

or the American spectrum license auction. Moreover, in a heterogeneous license environment,

bidders may not drop out of both auctions simultaneously. This enables us to analyze bidding

behavior in the remaining auction, and hence, the exposure problem in detail.

We allow for moderate synergies, and our focus is on the exposure problem and the

comparison of revenue and efficiency properties of the simultaneous ascending auction with

those of the VCG auction, unlike Albano et.al (2006).3 In our paper, the global bidder will

lower his bid because of the exposure problem; however, their optimal strategy still requires

him to bid over his stand alone valuation for at least one license. If he wins this license by

receiving a potential loss, then he may need to stay in the other license auction to minimize

his loss. Therefore, there are cases in which the exposure problem may arise even when the

bidder wins all the licenses.

Two additional papers related to this paper are Goerre and Lien (2010) and Zheng (2008).

Goerre and Lien assume that the valuation of winning a given number of licenses is the same

regardless of the composition. Hence, they find that the optimal drop out price is the same

for both licenses. In our paper, marginal valuations are different. Global bidder’s valuation

of license A or license B is different.4 Hence, our paper shows that the optimal drop out price

3They assume large synergies so no exposure problem exists in equilibrium. Our results coincide with
theirs when we also assume large synergies.

4We model situations in which winning the spectrum license for, say, Iowa City is different than winning
the license for New York city. This flexibility comes at the expense of allowing only one global bidder. Goerre
and Lin (2010)’s assumptions allow them to write a tractable model in which they can allow multiple global
bidders.
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is not the same, and the exposure problem of this case will lead to different results such as

winning all licenses and still incurring a loss. In addition, through simulations, we show the

frequency of inefficient allocation for the simultaneous ascending auction. Our common point

with Goerre and Lien (2010) is that we also find VCG mechanism may give higher revenue

than the simultaneous ascending auction. Zheng (2008) is mainly interested in showing that

jump-bidding will alleviate the exposure problem. We do not allow jump-bidding as the

Canadian spectrum auction has not allowed this.

Our paper can be contrasted with Kagel and Levin (2005) and Krishna and Rosenthal

(1996). Krishna and Rosenthal (1996) study a second price auction (simultaneous and se-

quential auctions), and do not specifically analyze exposure problem. Kagel and Levin (2005)

use a single global bidder that competes with several local bidders. Their ascending bid ver-

sion of the uniform price auction is different than ours since their two goods are sold in a

single auction. In the Canadian spectrum auction, the licenses are sold in separate auctions

so we use different auctions in our model. We also use simulations to calculate the prob-

ability of exposure problem occurrence, and the comparison of the revenue and efficiency

properties of this auction with the VCG auction.

One of the contributions of this paper is to use the simulation methods to show the

probability of the exposure problem occurring in the simultaneous ascending auction. We

also decomposed this probability into two cases; when the global bidder wins only one license,

and when he wins both licenses. We call the first one “exposure problem I” and the latter one

“exposure problem II.” We use four different distributions to draw the valuations; uniform,

beta distribution with alpha and beta equal to two, beta distribution with alpha equal to

one and beta equal to four, and beta distribution with alpha equal to four and beta equal

to one.

We compare our the revenue and the efficiency properties of this auction with those of

the VCG auction. When we use uniform distribution and one local bidder on each licences,

we show that the revenue is 8 per cent higher but the allocation is inefficient 4 per cent of

the time.
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Almost all proofs are included in the Appendix.

2 The Model

There are 2 licenses, license A and B for sale.5 There are one global bidder who demands

both licenses and mj = m− 1 local bidders who demand only license j = A,B. Specifically,

mj will denote the number of active local bidders on the auction.6 Both local bidders and

the global bidder have a private stand alone valuation for a single license, vij, where i and

j represent the bidder and the license, respectively. The valuations vij are drawn from the

continuous distribution function F (vij) with support on [0, 1] and probability density function

f(vij) which is positive everywhere with the only exception that f(0) ≥ 0 is allowed. The

bidders’ type, global or local, is publicly known.

We consider a setting where the licenses are auctioned off simultaneously through an

ascending multi-unit auction. Each license is auctioned off at a different auction (like Krishna

and Rosenthal (1996) but unlike Kagel and Levin (2005)) but at the same time. Prices start

from zero for both licenses and increase simultaneously and continuously at the same rate.

Bidders choose when to drop out. When only one bidder is left on a given license, the clock

stops for that license, and the sole remaining bidder wins the license at the price at which the

last bidder dropped out. If there are more than one bidder remaining on the other license,

its price will continue to increase. If n bidders drop out at the same price and nobody is left

in the auction, then each one of them will win the license with probability 1
n
.

The drop-out decision is irreversible. Once a bidder drops out of bidding for a given

license, he cannot bid for this license later.7 The number of active bidders and the drop-

out prices are publicly known. We also assume that there is no budget constraints for the

bidders.

5We use two licenses like Albano et. al. (2001 and 2006), Brusco and Lopomo (2002), Chow and Yavas
(2009), and Menucicci (2003).

6Allowing different number of local bidders per license will not change our qualitative results.
7In the real-world auctions, there is activity rule. If the bidders do not have enough highest standing

bids, then the number of licenses they may bid on is decreased (in the next rounds). Hence, when there are
two licenses, this translates into an irreversible drop-out.
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We assume that there is a homogeneous positive synergy for the global bidder. Specifi-

cally, letting bidder 1 be the global bidder, the global bidder’s total valuation, given that it

wins two licenses is, V1 = v1A + v1B + ®, where the synergy term ® is assumed to be strictly

positive and public knowledge.8 His stand-alone valuation of license A or B is given by v1A

or v1B. Bidder iA, i = 2, 3, ...m is only interested in license A, and her private valuation is

viA. Bidder iB is only interested in license B, and her private valuation is viB.
9 A local

bidder who is interested in license j participates only in license j auction.

We derive a symmetric perfect Bayesian equilibrium through a series of lemmas that

follow. First, we describe the equilibrium strategy of the local bidder.

Lemma 1 Each local bidder has a weakly dominant strategy to stay in the auction until the

price reaches his stand alone valuation.

This is a well-known result so we skip the proof.

Now, suppose all the local bidder drops out of license B auction, and hence, the global bid-

der wins license B at the price pB, which in equilibrium is equal to pB = max{v2B, ..., v(m)B}
by lemma 1. Then, as the price for license A increases, the global bidder will compare the

payoff from dropping out from license A auction at the clock price p (which is v1B − pB) and

the payoff from winning license A at price p (which is v1A + v1B +®− pB − p). The updated

optimal drop out price, pA, is found by equating these two equations: v1A+v1B+®−pB−pA =

v1B − pB ⇒ pA = v1A + ®. If global bidder wins license A first, the updated optimal drop

out price, pB, can be found symmetrically. We state this as lemma 2.

Lemma 2 If the global bidder wins license B (or A) first, then it will stay in license A (or

B) auction until the price reaches v1A + ® (or v1B + ®)

The global bidder will not drop out before the price reaches his minimum of stand-alone

valuations. Otherwise, they will lose the chance of winning both licenses and enjoying the

8Public knowledge assumption can be removed, and all results are still valid. We assume public knowledge
not to complicate the notation.

9We do not assume that viA > viB since local firms are different; hence, their efficiency may differ.
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synergy. In addition, if the global bidder’s average valuation, V1

2
= v1A+v1B+®

2
, exceeds 1,

bidding up to his average valuation will shut out the local bidders since local bidders’ stand

alone valuation can be at most 1.If ® is large enough, this condition will always be satisfied.

In such a case, the global bidder always wins both licenses in equilibrium. We summarize

these results as lemma 3.

Lemma 3 a) The global bidder stays in both license auctions at least until the price reaches

the minimum of his stand-alone valuations.

b) If his average valuation is greater than 1, the global bidder’s equilibrium strategy is to

stay in until the price reaches his average valuation.

To calculate the optimal drop out price for the global bidder, consider first the case in

which v1A > v1B.
10 The global bidder must compare the payoffs for two cases at each price

p as the clock is running: Case 1 is the payoff from dropping out from license B auction at

price p and optimally continuing on license A auction. Case 2 is the payoff from winning

license B at price p and optimally continuing on license A auction.11 At the beginning of

the auction, that is p = 0, the second case payoff is higher so the global bidder will start by

staying in the auction. We show that the difference between these two cases are monotonic

in p ; therefore, there is a unique price that makes the global bidder indifferent between these

two cases (assuming that the local bidders are still active). This is the optimal drop out

price, p∗1. We show that this price can be calculated at the beginning of the auction. Note

that according to Lemma 3, p∗1 ≥ v1B, and the optimal updated drop out price for license A,

after winning license B at price p, is v1A + ®.

We denote the expected profit of the global bidder for Case 1 by EΠ1
1 and his expected

profit for Case 2 by EΠ2
1, respectively.

Let pA = max{v2A, ..., v(m+1)A} be the price the global bidder will pay for the license A,

if he wins license A. Payoffs are as follows:

10The other case can be calculated symmetrically.
11The global bidder will drop out of license B first since v1A > v1B , if he has not won license A yet.
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EΠ1
1 = Max{0,

∫ v1A

p

(v1A − pA)g(pA∣p)dpA} (1)

EΠ2
1 =

∫ Min{v1A+®,1}

p
(V1 − p− pA)g(pA∣p)dpA +

∫ 1

Min{v1A+®,1}
(v1B − p)g(pA∣p)dpA (2)

The explanation of equation 1 is as follows. After the global bidder drops out of the

auction for license B at p, it becomes just like a local bidder, and hence, will continue to

stay in the auction for license A until v1A. If he wins, he will pay pA since the local bidder

with highest valuation of license A will drop out last (by Lemma 1). In order to calculate

his expected profit, global bidder will be using G(pA∣p) (highest order statistic) which is the

distribution function of the local bidders’ highest valuation pA for license A given p. When

there are m− 1 local bidders in license A, the distribution function G(pA∣p) and its density

function g(pA∣p) are:

G(pA∣p) = (F (pA∣p))m−1 = (

∫ pA
p

f(v)dv
∫ 1

p
f(v)dv

)m−1 (3)

g(pA∣p) = (m− 1)(

∫ pA
p

f(v)dv
∫ 1

p
f(v)dv

)m−2(
f(pA)∫ 1

p
f(v)dv

). (4)

The first term of EΠ2
1 is Firm 1’s expected profit of winning both licenses; assuming that

he wins license B at the price p. If the highest local bidder’s valuation pA is less than the

global bidder’s (updated) willingness to pay, v1A + ®, then the global bidder wins license A

and pays pA. Since pA < 1, we use the minimum function in the upper limit of the first

integral. The second term of EΠ2
1 is Firm 1’s expected profit of winning only license B which

can happen only if pA > v1A + ®. Note that the second term is non-positive by Lemma 3

(which is the exposure problem arising from winning only one license).

In Lemma 4 below, we characterize the global bidder’s equilibrium bids. It can be found

from EΠ1
1 = EΠ2

1. Note that these payoffs are changing as local bidders bidding for A

are dropping out; that is, m − 1 is changing. Therefore, the lemma below gives the global
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bidder’s (updated) equilibrium drop out price as the local bidders change. We show, in the

proof, that this updated price increases as local bidders drop out.

Lemma 4 : Suppose that the average valuation of the global bidder is less than 1 and no

local bidders have dropped out yet.

If v1A > v1B, the global bidder12 will drop out of license B auction at the unique optimal

drop-out price p∗1 ∈ [0, 1] that satisfies EΠ1
1 = EΠ2

1. Moreover,

a) If v1A+® < 1, and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B − v1A) < 0, then p∗1 < v1A and the global

bidder will stay in license A auction until v1A (after dropping out from license B auction).

b) If v1A+® < 1, and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B − v1A) > 0, then p∗1 > v1A and the global

bidder will also drop out of license A auction at p∗1.

c) If v1A + ® > 1, and
∫ 1

v1A
G(pA∣p)dpA + (v1B + ®− 1) < 0, then p∗1 < v1A and the global

bidder will stay in license A auction until v1A (after dropping out from license B auction).

d) If v1A + ® > 1, and
∫ 1

v1A
G(pA∣p)dpA + (v1B + ®− 1) > 0, then p∗1 > v1A and the global

bidder will also drop out of license A auction at p∗1.

Proof. See the Appendix.

We are ready to summarize our Perfect Bayesian equilibrium.

Proposition 5 (Perfect Bayesian Equilibrium) a) Local bidder j = {A,B} l = {2, 3, ..m−1}
of each license will stay in the auction j until price reaches their valuation vkj.

b) A global bidder active only on license j will bid v1j + ®, if he won license k ∕= j. He

will bid v1j when he did not win license k.

c) When v1A > v1B and the average valuation is less than one, the global bidder who is

active on both licenses and facing m− 1 active local bidders on license A will drop out from

license B at the price that equates equations 1 and 2.

d) When v1A < v1B and the average valuation is less than one, the global bidder who is

active on both licenses and facing m− 1 active local bidders on license B will drop out from

license A at the price that equates equations 1 and 2 (symmetrically replaced v1A with v1B.

12If v1A < v1B , then the proposition has to be written symmetrically
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e) If the average valuation is greater than one, the global bidder will stay in both auctions

until price reaches his average valuation.

f) Out-of-equilibrium-path beliefs: When a bidder drops out, the other bidders will see

this as an equilibrium behavior. Hence, there is no need to specify the out of equilibrium path

beliefs.

At the beginning of the game, each bidder calculates its optimal drop-out price. For local

bidders, the optimal drop out prices are their valuations. In equilibrium, it is optimal for

the global bidder to stay in the auctions for both licenses up to his optimal drop-out price

calculated in Lemma 4. When his average valuation exceeds 1, he will stay until this average

valuation and win both licenses. When the price reaches the minimum of these optimal

drop-out prices, that bidder drops out of license auction. If, for example, the highest local

bidder for license B dropped out before the global bidder, the global bidder would continue

to stay in the auction for license A until the price reaches v1A+®. At this price, he finds that

the payoff from winning only license B is more than the payoff from winning both licenses

even though it will enjoy synergy; hence, it drops out.

If the value of the licenses were identical (e.g. Albano et. al. (2001)), the global firm

would drop out of both licenses at the same time. In this case, our Lemma 4 part b will

be valid; that is, p∗1 > v1A = v1B, hence, the global bidder drops out from both licenses

at the same time. This result coincides with Albano et. al. (2001),(2006) and Goerre and

Yuanchuan (2010).

The following is a corollary of Lemma 4, and is an example for the optimal drop out price

when F (.) is a uniform distribution.

Corollary 6 : Assume that valuations are drawn from a uniform distribution with a support

[0, 1]. In addition, assume that v1A > v1B (other case is symmetrically found by exchanging
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0 v1B pB p∗1 v1A + v1B + ®− pB

When pA is here,
global bidder wins both
but makes a loss

Exposure Problem II
v1A + ®

When pA is here,
global bidder wins B
and makes a loss

Exposure Problem I
1

Figure 1: EXPOSURE PROBLEM

v1A with v1B), and there is one local bidder in each license.

p∗1 =

⎧
⎨
⎩

1
2{v1B + ®+ 1−(v21B + 1− 2v1B − ®2 + 2v1B®+ 2®− 4v1A®)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) > ®2;
1
3{v1A + v1B + ®+ 1− ((v1A + v1B + ®+ 1)2 − 3(v1A + ®)2 − 6v1B)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) ≤ ®2;
1
2{v1B + ®+ 1−{(v1B + ®+ 1)2 − 4(v1A + v1B + ®) + 2 + 2v21A}

1
2 },

if 1− ® ≤ v1A < 1 and 1 + v1A > 2(v1B + ®);
2(v1A+v1B+®)−1

3 ,

if 1− ® ≤ v1A < 1 and 1 + v1A ≤ 2(v1B + ®).

(5)

The optimal drop-out price is a function that takes a unique value defined in the corollary

above. For example, case 0 < v1A < 1 − ® and 2(1 − v1A)(v1A − v1B) > ®2 implies that

p∗1 < v1A.

2.1 Exposure Problem

We now can discuss the exposure problem with the help of Figure 1. In the first type of

exposure problem, the global bidder may win license B at a price above his stand alone

valuation (i.e., v1B < pB < p∗1) and lose the other license (i.e., pA > v1A + ®. This is the

type of exposure problem Chakraborty (2004) focuses on. In the second type of exposure

problem, the global bidder wins both licenses but incurs a loss. This is the case when he wins

license B at v1B < pB < p∗1 and wins license A at v1A + ® > pA > v1A + ®+ v1B − pB. Note

that if he wins license A at the price v1A+®+v1B −pB, his payoff is zero. The global bidder

stays in the auction for license A in order to minimize its loss from winning only license B

even if the price passes v1A + ® + v1B − pB. If objects were homogenous, the second type

of exposure problem would not be observed since the bidder would drop out of both license

auctions at the same time.
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Table 1: PROBABILITY OF EXPOSURE PROBLEM

Percentage of Percentage of Total Percentage of
Exposure Problem 1 Exposure Problem 2 Percentage Inefficiency

One One One One
® Local Bidder Local Bidder Local Bidder Local Bidder

Beta Distribution with parameters ® = 1 and ¯ = 4

0.2 2.85 0.64 3.48 7.84
0.4 2.29 2.43 4.72 5.45
0.6 0.54 1.59 2.13 2.15
0.8 0.04 0.62 0.66 0.66

Uniform Distribution

0.2 1.17 0.40 1.57 3.29
0.4 1.13 1.07 2.20 4.22
0.6 0.69 1.51 2.20 4.01
0.8 0.36 1.25 1.61 2.62

Beta Distribution with parameters ® = 2 and ¯ = 2

0.2 0.86 0.29 1.16 5.10
0.4 0.80 1.31 2.12 4.75
0.6 0.82 2.31 3.14 3.88
0.8 0.22 1.65 1.86 1.92

Beta Distribution with parameters ® = 4 and ¯ = 1.

0.2 0.34 0.77 1.11 2.72
0.4 0.20 0.93 1.13 1.95
0.6 0.00 0.50 0.50 0.64
0.8 0.00 0.26 0.26 0.28

2.2 Simulations

In the following, through simulations, we determine the probability of the occurrence of ex-

posure problems under various environments. As we noted, we say that exposure problem

occur when the global bidder wins one or both licenses with a loss ex-post. We have used

MATLAB to write our simulation code. This code first draws the valuations for both the

global and the local bidders from a given distribution function. One set of valuations corre-

spond to one auction. We, then, calculate the optimal drop-out price of the global bidder;

local bidders’ drop-out prices are their valuations. If some local bidders valuations are lower

than the global bidder, the global bidder’s drop-out price is updated as these local bidders
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drop out from the auction. If the global bidder does not win the first license, then no ex-

posure problem occurs. If he wins the first license above its valuation for that license, then

we calculate his updated price for the remaining license (unless the global bidder drops out

from both licenses at the same time). We next determine whether the global bidder will win

the remaining license at a positive profit (no exposure problem), at a loss (exposure problem

II) or lose the remaining license (exposure problem I). Dividing the number of each of these

events to the number of draws yields the probability of each event.13

We use four different distribution functions to draw valuations: uniform, beta distribution

with ® = ¯ = 2, beta distribution with ® = 1 and ¯ = 4, and beta distribution with ® = 4

and ¯ = 1. The second distribution is a mean preserving spread of the uniform distribution.

The third one is first order stochastically dominated by the uniform distribution, while the

fourth one first order stochastically dominates the uniform distribution. We use one local

bidder on each license.14 We run simulations for four different synergy levels: 0.2, 0.4, 0.6,

0.8.15 The 0.2 represents for small synergy, 0.4 and 0.6 represents middle synergy, and 0.8

represents a large synergy level. We report the results in Table 1.

We find that the global bidder may face exposure problem with probability 4.33 per cent,

if the valuations are drawn from beta distribution with parameters ® = 1 and ¯ = 4, and

the synergy level is equal to 0.4.

Table 1 also shows that the exposure problem occurs with the smallest probability among

all these different distributions when the synergy level is 0.8. This is expected since the global

bidder can bid very high for the remaining license (in most cases more than 1) but not face

exposure problem much.

13In our simulation, to simplify calculations, we only consider cases in which the global bidder values the
license B more than license A. After 15000 draws, we select only the valuations where the global bidder’s
valuation for license A is greater than license B. Hence, we are left with approximately 7500 draws. We used
UNIX system of the University of Manitoba, and our laptops for the simulations. In the UNIX machine, it
took more than four days to run each code.

14Given the complexity of the code we use, we feel that using one local bidder in our simulations are enough
to draw reasonable conclusions though this can be extended to two local bidders in each license. Using three
local bidders or more would extremely complicate the code since one has to keep track of updated prices
every time a local bidder drops off.

15We also write codes for a finer synergy level of 0.1,0.2,...0.9 but we do not report them since no new
insight is learned from this.
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In our simulations, Exposure problem I occurred most often when the synergy level is

0.4. In this case, the global bidder overbids to enjoy the middle level synergy, so he is very

likely to make a (substantial) loss when he wins the first license. His optimal drop-out price

for the remaining license is generally below 1; hence, the risk of losing the second license is

high, and this is the reason for observing exposure problem I for the synergy level of 0.4.

Exposure problem II generally occurs the most when the synergy level is 0.6. After winning

the first license, the global bidder will stay in the remaining license auction for a higher drop

out price; hence, rather than exposure problem I, exposure problem II is likely to occur.

Of the uniform and beta distribution with parameters ® = ¯ = 2, we see that exposure

problem is more likely to occur in the latter one. This is expected since the valuations are

more likely to be on the extreme sides. Hence, local bidders are more likely to have high

valuations for the remaining license, and force the global bidder to drop out or make a loss.

Of the two beta distribution, the one with ® = 4 and the one with ® = 1, we observe

that the exposure problem occurs much less frequently with the first one. The reason is that

with the former one, the valuations of the global bidder is likely to be higher; hence, even

with a small synergy level, their optimal updated drop out price after winning one license is

more than one in most cases. Therefore, it is less likely to have exposure problem. On the

other hand, when the global bidder’s updated optimal price is less than one, it is also more

likely that the local bidder’s valuation will be high so in such cases, one may see exposure

problem. As the synergy increases, this case is less likely to happen.

In Figure 2.2, we show that, for uniform distribution, the allocation is inefficient 8 per

cent of the time when ® = 0.2. As ® increases, global bidder wins both licenses more often

without facing exposure problem that much, and this is the efficient outcome. Hence, we

observe inefficient allocation only 3 per cent of the time for ® = 0.8. Most of the inefficiency

is due to exposure problem.
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3 Comparison with Vickrey Clarke Groves Auction

In this section, we will compare the revenue of our auction with the revenue of Vickrey Clarke

Groves (VCG) auction. VCG auction maximizes the expected payment of each agent among

all mechanisms for allocating multiple objects that are efficient, incentive compatible, and

individually rational.16 In this auction, the seller will let the bidders bid on license A, license

B and the whole package license A and B.

We, will first calculate the payment of each winner for all cases; that is, calculate the

revenue of the seller. The payment of a winner (say player i) in this auction is the difference

between the social welfare of the others if the bidder did not participate in the auction

(denote this as W−i(x−i) where x−i denote the bid of all players other than player i), and

the welfare of the others when he participated in the auction, and bid truthfully (denote

16See proposition 16.2 of Krishna (2010)
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this as W−i(x), where x denote the bid of all players.) since truthful bidding is the weakly

dominated strategy.

The table below shows the valuations of the bidders. To give an example of how payments

are calculated, let us assume that v2A + v1B > v1A + v1B + ® > v2A + v3B. VCG auction will

allocate license A to local bidder A, and license B to global bidder. Payment of local bidder

A is (W−2(x−2)) −W−2(x) = (v1A + v1B + ®) − v1B = v1A + ®. If local bidder A does not

participate in the auction, then global bidder will win the package; hence, the welfare of the

others W−2(x−2) = v1A + v1B + ®. When it participates in the auction, global bidder gets

only license B, and local bidder B gets nothing; hence, the welfare of others in this case is

W−2(x) = v1B.

A B AB
v1A v1B v1A+v1B+®
v2A 0 v2A
0 v3B v3B

Payment of the global bidder is: (W−1(x−1)) − W−1(x) = (v2A + v3B) − v2A = v3B.

If the global bidder does not participate in the auction, local bidder A and B wins each

license;hence, the welfare of others is the term inside the parenthesis. When the global

bidder participates in the auction, local bidder A wins license A but the welfare of local

bidder B is zero; hence the welfare of others in this case is just v2A.

The total revenue of the seller in this case will be v1A + ®+ v3B.

We summarize the revenue of the seller for all cases in the following proposition. 17

Proposition 7 Suppose that there is one global bidder and one local bidder bidding for

each license. In the VCG auction, the seller’s revenue will be as follows depending on the

valuations of the bidders.

CASE I: Suppose that the valuations are such that v1A + v1B + ® < v2A + v3B.

17This result can easily be extended to one global and many local bidders case. Since, we use one global
bidder and one local bidder in each license in the simulations, to save the notation, we give the result for a
special case.
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A) (Local bidders win each license) And suppose that v1A < v2A and v1B < v3B. There

are four sub cases to consider.

i) v3B > v1B + ® and v2A > v1A + ®, then the revenue is v1A + v1B.

ii) v3B < v1B + ® and v2A < v1A + ®, then the revenue is 2(v1A + v1B + ®)− v3B − v2A.

iii) v3B > v1B + ® and v2A < v1A + ®, then the revenue is 2v1A + v1B + ®− v2A.

iv) v3B < v1B + ® and v2A > v1A + ®, then the revenue is v1A + 2v1B + ®− v3B.

B) (Local bidder wins A, and global bidder wins B) And suppose that v2A > v1A and

v3B < v1B. Then, the revenue is v1A + ®+ v3B.

C) (Local bidder wins B, and global bidder wins A) And suppose that v2A < v1A and

v3B > v1A. Then, the revenue is v1B + ®+ v2A

CASE II: Suppose that the valuations are such that v1A + v1B + ® > v2A + v3B.

A) (Global bidder wins both licenses) And suppose that v1A < v2A and v1B < v3B. Then,

the revenue is v2A + v3B.

B) (Global bidder wins both licenses) And suppose that v1A > v2A and v1B > v3B. Then,

the revenue is v2A + v3B.

C) (Global bidder wins license A, local bidder B wins license B) And suppose that v2A <

v1A and v3B > v1B + ®. Then, the revenue is v2A + v1B + ®.

D) (Global bidder wins license B, local bidder A wins license A) And suppose that v2A >

v1A + ® and v3B < v1B. Then, the revenue is v3B + v1A + ®.

We compare the revenue of the simultaneous ascending auction with those of the VCG

auction through simulation methods. Our results are summarized in Figure 3. We run the

simulations for ® = 0.2, 0.4, 0.6, 0.8. When ® = 0.2, the revenue is 10 per cent higher in

the simultaneous ascending auction.18. When ® = 0.8, global bidder must be winning the

auction most of the time, and they pay a total of v2A + v3B. The expected payment would

be 1 in the uniform distribution, which we observe in Figure 3.

18In the 2008 Canadian spectrum auction, the revenue was 4 billion dollars so 10 per cent is a significant
number in our view.

17



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

alpha (Synergy)

A
ve

ra
ge

 R
ev

en
ue

Plot of Revenue Comparison

 

 
 Average Revenue for Our Model
 Average Revenue for efficient VCG Model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

alpha (Synergy)

A
ve

ra
ge

 R
ev

en
ue

Plot of Revenue Comparison

 

 
 Average Revenue for Our Model
 Average Revenue for efficient VCG Model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.52

1.54

1.56

1.58

1.6

1.62

alpha (Synergy)

A
ve

ra
ge

 R
ev

en
ue

Plot of Revenue Comparison

 

 
 Average Revenue for Our Model
 Average Revenue for efficient VCG Model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.32

0.34

0.36

0.38

0.4

0.42

alpha (Synergy)

A
ve

ra
ge

 R
ev

en
ue

Plot of Revenue Comparison

 

 
 Average Revenue for Our Model
 Average Revenue for efficient VCG Model

Figure 2:
Uniform Distribution, Top Left;
Beta Distribution with ® = 2, ¯ = 2, Top Right;
Beta Distribution with ® = 4, ¯ = 1, Bottom Left;
Beta Distribution with ® = 1, ¯ = 4, Bottom Right
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4 More Than One Global Bidder

In this section, we will analyze the case where there is more than one global bidder. The

difficulty in this case arises from the fact that a global bidder’s optimal drop out price depends

on the other global bidders’ optimal drop out price. Then, to calculate the optimal drop out

prices, one should solve more than one non-linear equations simultaneously. To make things

worse, the global bidder should know the distribution of the other global bidder’s drop out

price when making its own drop out price calculation. This makes deriving an analytical

result impossible.

To make our case, assume that there are two global bidders, Firm 1 and Firm 2, and one

local bidder on each of license A and license B. Everything else is the same as the previous

section. Firm 1 will make a similar calculation as we discussed in one global bidder case

–except that the price would depend on the drop out price of the second global bidder which

we denote as p∗2– Specifically, he should make the following calculation while deciding to stay

in the license B auction or not. This calculation is done based on a history in which none of

the other bidders have dropped out yet.

EΠ1
1 = Max{0, E

[
(v1A − [

∫ v1A

p

Max{v2A, v3A}P (p∗2 < v4B)dG(Max{v2A, v3A}∣p) + (6)

∫ v1A

p

Max{(v2A + ®), v3A}P (p∗2 > v4B)dG(Max{(v2A + ®), v3A}∣p)]∣p∗2
]
} (7)

EΠ2
1 =

∫ Min{v1A+®,1}

p
(V1−p−pA)dG(Max{v2A, v3A}∣p)+

∫ 1

Min{v1A+®,1}
(v1B−p)dG(Max{v2A, v3A}∣p)

(8)

The explanation of equation 6 is as follows. If this global bidder drops out from license

B before the other global and local bidders, then it will continue on license A auction as a

local bidder. Hence, it can only derive a benefit of v1A if it wins the license. The price it will

pay for license A depends on the result of whether the local or the other global bidder wins

license B. If the local bidder B wins license B (this happens with probability P (p∗2 < v4B)
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and we integrate this in the range p to v1A), then the price of license A will be the maximum

of local bidder A’s and the other global bidder’s valuations.

Equation 7 analyze the case in which the other global bidder wins license B. This happens

with probability P (p∗2 > v4B) (in the range p to v1A), then it can enjoy synergy and will bid

until v2A + ® for license A. Then, the price global bidder 1 will pay is Max{(v2A + ®), v3A}.
Equation 8 analyzes the case in which Firm 1 wins license B, and then continue optimally

on license A. This is the same as “one global bidder” case. The only difference is that the

other global bidder is now a local bidder; hence, there is one more local bidder in the license

A auction compared to the “one global case.”

Since p∗2 is not known, the global bidder must use its distribution!

By subtracting the second equation from the first one and equating it to zero, we will

define an implicit function of p∗1 and p∗2 as

F1(p
∗
1, p

∗
2) = 0

Now, we can similarly (symmetrically) define two equations for global bidder 2, and

calculate F2(p
∗
1, p

∗
2) = 0. To find the optimal drop out price, one has to solve these two

non-linear equations simultaneously for p∗1 and p∗2. However, the question of how to find

distribution of p∗i which is not known makes the solution impossible. We are not clear what

simulation techniques may solve this problem so we leave this as an open problem.

5 Conclusion and Discussion

We showed the optimal bidding strategies of global bidders when there are moderate synergies

and the licenses are heterogeneous. We also analyzed exposure problem.

We were able to show exposure problem can occur even when the global bidder wins all

licenses. Literature has not studies heterogeneous license case with moderate synergies since

it is technically challenging when one uses more than one global bidder. With this paper,

we fill this gap. One of our contributions is to write a complicated code to calculate the
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probability of exposure problem. Our simulation results show that the exposure problem

may be minor for some distributions but may be up to 4.3 per cent for some others.

Extending the results to n global bidders would be very complicated since the optimal

strategies of global bidders (optimal drop out prices) should be determined jointly which in

turn would depend on how many local and how many global bidders are still in the auction.

Moreover, one has to know the distribution of the other global bidder’s optimal drop out

price while calculating the optimal drop out price! We leave this as an open problem and

followed the literature that use only one global bidder (e.g. Kagel and Levin (2005)).

Our other contribution is comparing the revenue and the efficiency properties of the

simultaneous ascending auction with those of the VCG auction. We show that when synergy

level is small (® = 0.2), the simultaneous ascending auction generates approximately 10 per

cent more revenue but allocates licenses inefficiently 8 per cent of the time.

6 Appendix

Proof of Lemma 4:

We will prove that there is a unique optimal drop out price by solving EΠ1
1 = EΠ2

1. We

have four cases.

Case I: In this case, we will assume v1A+® < 1 and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B−v1A) < 0

implies p∗1 < v1A (which in turn implies EΠ1
1 > 0).

First, we show that there exists a unique solution that makes equations 1 and 2 equal,

and this is the optimal drop out price p∗1. We define a new function, J(p) = EΠ1
1 − EΠ2

1.

To prove uniqueness, we will show that this function is monotonically increasing and it is

negative when p = v1B (by lemma 2 p cannot be less than v1B) and is positive when p = v1A.

Hence, there must be a unique root at the interval v1B < p < v1A.

J(p,m) =
∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ v1A+®

p
(V1 − p− pA)g(pA∣p)dpA

− ∫ 1

v1A+®
(v1B − p)g(pA∣p)dpA.

By using (v1B − p)
∫ 1

p
g(pA∣p)dpA = v1B − p, we can re-write it as

∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ v1A+®

p
(v1A + ®− pA)g(pA∣p)dpA − (v1B − p)
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By using integration by parts twice (and using dv = g(pA∣p)dpA), we have

= (v1A − pA)G(pA∣p) ∣v1Ap − ∫ v1A
p

G(pA∣p)d(v1A − pA)

− (v1A + ®− pA)G(pA∣p) ∣v1A+®
p +

∫ v1A+®

p
G(pA∣p)d(v1A + ®− pA)− (v1B − p)

=
∫ v1A
p

G(pA∣p)dpA − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p)

We take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= ∂
∂p
[− ∫ v1A+®

v1A
G(pA∣p)] + 1 > 0

It is positive since the term ∂
∂p
[
∫ v1A+®

v1A
G(pA∣p)] is negative. As the lower limit of the

integral increases, the value of the expression decreases (does not increase) if the term inside

is non-negative which is true since it is a cumulative distribution function. We must also

show that ∂G(pA∣p)
∂p

≤ 0 to prove this. While one can easily see that this is correct (as p

increases the cumulative distribution conditional on p decreases), we will give a formal proof

by using Leibniz’s rule when necessary.

⇔ ∂G(pA∣p)
∂p

=
∂[(

∫ pA
p f(v)dv
∫ 1
p f(v)dv

)m−1]

∂p

= −(m− 1)f(p)
(
∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

+ (m− 1)f(p)
(
∫ pA
p f(v)dv)m−1

(
∫ 1
p f(v)dv)m

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 +
∫ pA
p f(v)dv
∫ 1
p f(v)dv

]

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 + F (pA∣p)] < 0 (≤ 0 only if pA = 1).

Thus, J(p,m) is monotonically increasing function of p, when v1B ≤ p < v1A.

If p = v1B, then J(v1B) =
∫ v1A
v1B

G(pA∣®)dpA − ∫ v1A+®

v1B
G(pA∣v1B)dpA

= − ∫ v1A+®

v1A
G(pA∣v1B)dpA < 0.

If p = v1A, J(v1A) = 0 − ∫ v1A+®

v1A
G(pA∣p)dpA − (v1B − v1A) > 0, then our assumption

∫ v1A+®

v1A
G(pA∣p)dpA + (v1B − v1A) < 0 implies that J(p = v1A) > 0.

Hence, there is a unique root in the interval v1B < p < v1A.

Next, we show that as the number of active firms in license A auction decreases, the

optimal drop out price will increase. We will use the implicit function theorem for this:

⇔ dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0.

We have already shown that
∂J(p∗1,m)

∂p∗1
> 0.

Since J(p,m) =
∫ v1A
p

G(pA∣p)dpA − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p).
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We take partial derivative of J(p,m) with respect to m, that is,

∂J(p,m)
∂m

=
∫ v1A
p

∂G(pA∣p)
∂m

dpA − ∫ v1A+®

p
∂G(pA∣p)

∂m
dpA

= − ∫ v1A+®

v1A

∂G(pA∣p)
∂m

dpA = − ∫ v1A+®

v1A
ln(F (pA∣p))G(pA∣p)dpA > 0.

Since ∂G(pA∣p)
∂m

= ln(F (pA∣p))G(pA∣p) < 0. Hence, we show that ∂G(pA∣p)
∂m

> 0 holds.

By the implicit function theorem, we show that the optimal drop out price increases as

the number of local firms, m, decreases.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,
dp∗1
dm

= −
∂F (p∗1,m)

∂m
∂F (p∗1,m)

∂p∗1

< 0

Case II: In this case, we will assume that v1A+® < 1 and
∫ v1A+®

v1A
G(pA∣v1A)dpA+(v1B−

v1A) > 0 which implies p∗1 > v1A. And this condition in turn implies that EΠ1
1 = 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) = 0− ∫ v1A+®

p
(V1 − p− pA)g(pA∣p)dpA − ∫ 1

v1A+®
(v1B − p)g(pA∣p)dpA

= − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p).

When p ≥ v1A, we take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= − ∂
∂p
[
∫ v1A+®

p
G(pA∣p)dpA] + 1 > 0, since ∂G(pA∣p)

∂p
< 0.

Thus, J(p,m) is monotonically increasing function of p, when v1A ≤ p ≤ v1A + ®.

Our assumption
∫ v1A+®

v1A
G(pA∣v1A)dpA + (v1B − v1A) < 0 implies that J(p = v1A) < 0. If

p = v1A+®, then J(v1A+®) = 0− 0− (v1B − v1A+®) > 0. Thus, there is a unique solution,

p∗1, in the interval (v1A, v1A + ®).

Next, we show that when the number of active firms in license A auction decreases, this

optimal drop out price will increase.

We take partial derivative of J(p,m) with respect to m, we have,

∂J(p,m)
∂m

= − ∫ v1A+®

p
ln(F (pA∣p))G(pA∣p)dpA > 0.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,

dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0

Case III: In this case, we will assume that v1A +® > 1 and
∫ 1

v1A
G(pA∣v1A)dpA +(v1B +

®− 1) < 0 which implies v1A ≤ p∗1. And this condition in turn implies that EΠ1
1 > 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) =
∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ 1

p
(V1 − p− pA)g(pA∣p)dpA
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= (v1A − pA)G(pA∣p) ∣v1Ap − ∫ v1A
p

G(pA∣p)d(v1A − pA)

− (v1A + v1B + ®− p− pA)G(pA∣p) ∣1p +
∫ 1

p
G(pA∣p)d(v1A + v1B + ®− p− pA)

=
∫ v1A
p

G(pA∣p)dpA − (v1A + v1B + ®− p− 1)− ∫ 1

p
G(pA∣p)dpA

= −(v1A + v1B + ®− p− 1)− ∫ 1

v1A
G(pA∣p)dpA

We take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= ∂
∂p
[− ∫ 1

v1A
G(pA∣p)] + 1 > 0

It is positive since the term ∂
∂p
[
∫ 1

v1A
G(pA∣p)] is negative. And we have shown that

∂G(pA∣p)
∂p

≤ 0. Thus, J(p,m) is monotonically increasing function of p, when v1B ≤ p < v1A.

If p = v1B, then J(v1B) = − ∫ 1

v1A
G(pA∣v1B)dpA − (v1A + ®− 1) < 0.

If p = v1A, J(v1A) = 0 − ∫ 1

v1A
G(pA∣v1A)dpA − (v1B + ® − 1) > 0, then our assumption

∫ 1

v1A
G(pA∣v1A)dpA + (v1B + ®− 1) < 0 implies that J(p = v1A) > 0.

Hence, there is a unique root in the interval v1B < p < v1A.

Next, we skip to show that as the number of active firms in license A auction decreases,

the optimal drop out price will increase, since we have done this in Case I.

Case IV: In this case, we will assume that v1A +® > 1 and
∫ 1

v1A
G(pA∣v1A)dpA + (v1B +

®− 1) > 0 which implies p∗1 > v1A. And this condition in turn implies that EΠ1
1 = 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) = 0− ∫ 1

p
G(pA∣p)dpA − (v1A + v1B + ®− p− 1).

When p > v1A, we take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= − ∂
∂p
[
∫ 1

p
G(pA∣p)dpA] + 1 > 0, since ∂G(pA∣p)

∂p
< 0.

Thus, J(p,m) is monotonically increasing function of p, when v1A ≤ p ≤ 1.

Our assumption
∫ 1

v1A
G(pA∣v1A)dpA + (v1B + ® − 1) > 0 implies that J(p = v1A) < 0. If

p = 1, then J(1) = 0− 0− (v1B + v1A + ®− 2) > 0. Since v1B + v1A + ® < 2. Thus, there is

a unique solution, p∗1, in the interval (v1A, 1).

We also skip to show that when the number of active firms in license A auction decreases,

this optimal drop out price will increase which has been proven in Case II.

Proof of Proposition 7: Suppose that there is one global bidder and one local bidder
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bidding for each license. In the VCG auction, the seller’s revenue will be as follows depending

on the valuations of the bidders.

CASE I: Suppose that the valuations are such that v1A + v1B + ® < v2A + v3B.

A) (Local bidders win each license) And suppose that v1A < v2A and v1B < v3B. There

are four sub cases to consider.

i) v3B > v1B + ® and v2A > v1A + ®, then the revenue is v1A + v1B.

since W (x−2) −W−2(x) = v1A + v3B − (0 + v3B) = v1A and W (x−3) −W−3(x) = v1B +

v2A − v2A = v1B

ii) v3B < v1B + ® and v2A < v1A + ®, then the revenue is 2(v1A + v1B + ®)− v3B − v2A.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v3B) = v1A+ v1B +®− v3B and W (x−3)−
W−3(x) = v1A + v1B + ®− (0 + v2A) = v1A + v1B + ®− v2A

iii) v3B > v1B + ® and v2A < v1A + ®, then the revenue is 2v1A + v1B + ®− v2A.

since W (x−2) − W−2(x) = v1A + v3B − (0 + v3B) = v1A, and W (x−3) − W−3(x) =

v1A + v1B + ®− (0 + v2A) = v1A + v1B + ®− v2A

iv) v3B < v1B + ® and v2A > v1A + ®, then the revenue is v1A + 2v1B + ®− v3B.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v3B) = v1A+ v1B +®− v3B and W (x−3)−
W−3(x) = v1B + v2A − v2A = v1B

B) (Local bidder wins A, and global bidder wins B) And suppose that v2A > v1A and

v3B < v1B. Then, the revenue is v1A + ®+ v3B.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v1B) = v1A+®, and W (x−1)−W−1(x) =

v3B + v2A − v2A = v3B

C) (Local bidder wins B, and global bidder wins A) And suppose that v2A < v1A and

v3B > v1B. Then, the revenue is v1B + ® + v2A

since W (x−3)−W−3(x) = v1A+ v1B +®− (0+ v1A) = v1B +®, and W (x−1)−W−1(x) =

v3B + v2A − v3B = v2A

CASE II: Suppose that the valuations are such that v1A + v1B + ® > v2A + v3B.

A) (Global bidder wins both licenses) And suppose that v1A < v2A and v1B < v3B. Then,

the revenue is v2A + v3B.
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since W (x−1)−W−1(x) = v2A + v3B − (0 + 0) = v2A + v3B.

B) (Global bidder wins both licenses) And suppose that v1A > v2A and v1B > v3B. Then,

the revenue is v2A + v3B.

since W (x−1)−W−1(x) = v2A + v3B − (0 + 0) = v2A + v3B.

C) (Global bidder wins license A, local bidder B wins license B) And suppose that

v2A < v1A and v3B > v1B + ®. Then, the revenue is v2A + v1B + ®.

since W (x−1) −W−1(x) = v2A + v3B − (v3B + 0) = v2A and W (x−3) −W−3(x) = v1A +

v1B + ®− (v1A + 0) = v1B + ®.

D) (Global bidder wins license B, local bidder A wins license A) And suppose that

v2A > v1A + ® and v3B < v1B. Then, the revenue is v3B + v1A + ®.

since W (x−1) −W−1(x) = v2A + v3B − (v2A + 0) = v3B and W (x−2) −W−2(x) = v1A +

v1B + ®− (v1B + 0) = v1A + ®.
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