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1 Introduction

We study long run contracts when there is limited commitment in an adverse selection

model. While enforceability of the contracts is a fairly reasonable assumption in the short

run and especially when the contracts are single-period contracts, it is less likely that

individuals may sign contracts that are fully enforceable in the long run, and even if they

do guaranteeing the enforceability of such contracts may be problematic. What might

typically happen when the interaction between a principal and an agent is repeated over

many periods, is that the contracts may be rewritten every period, with the contract

being enforceable for that period. This of course does not preclude the possibility that

the same contract may be offered over multiple periods, but the fact that the individuals

are not committed to a single fixed contract over periods allows possibly a greater degree

of flexibility.

In order to study the nature of long run contracts with limited commitment we

study a repeated game in which a principal and an agent are able to rewrite the contract

every period if they choose to do so and only single-period contracts are enforceable.

We thus use the framework of repeated games and study a repeated game in which

the principal offers an enforceable contract to the agent each period, but the principal

is free to offer a different contract in the following period. We find this approach both

interesting and useful because it opens up the possibility of renegotiation, as well as allow

the principal to offer contracts that are based on the updated beliefs of the principal. Such

an optimal contract problem can then be analyzed as a repeated game with incomplete

information in which the payoffs of the players are private information. In the adverse

selection models the cost parameter of the agent is not known to the principal and thus

the principal does not know the payoff of the agent. Such repeated games have been

studied in the literature, especially in the long run pricing and output strategies of firms

in oligopoly markets in which the costs of the firms are not known, as for example in [4],

[2] and [3]. We find that many of the observations made in these studies are useful in

understanding long run optimal contracts in adverse selection models. More specifically

we look for contracts that can be implemented as equilibrium points of the repeated game

with incomplete information and focus on the perfect Bayesian equilibrium points of the

resulting repeated game with imperfect information. Although this paper focuses on

Adverse Selection it is useful to note that optimal contracts involving Moral hazard has

been studied using repeated games to model repeated interaction between the Principal

and the Agent. For example [13] and [14] studies the the nature of optimal contracts when

there is repeated interaction between a Principal and an Agent and the agent’s effort
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levels cannot be observed. In [16] the discounts offered by insurers who have a favorable

record of past claims is explained as a mechanism that counteracts the inefficiency from

Moral hazard, a mechanism that can be used when there is repeated interaction between

the principal and the agent.

We find some interesting results. In a finite-horizon repeated game in which both

the principal and the agent knows that the relationship between the principal and the

agent will end definitely after a given number of periods, the unique perfect Bayesian

equilibrium of the game is one in which the optimal second-best contract of the single-

period contract problem is offered in period 1. This fully reveals the type of the agent

(inferred by the principal from the output produced by the agent) so that the principal

updates beliefs about the agent, and then offers the full-information first-best contract

that is consistent with the agent’s type to the agent. This, however, means that the

principal has to compensate the agent with an informational rent in period 1, so that

the agent is willing to reveal his type and forgo the informational rent in the future.

For the infinite-horizon situation we find that there are multiple perfect Bayesian

equilibrium points. There is an entire set of perfect Bayesian equilibria that are pooling

equilibrium points in which the principal offers a stationary contract in every period and

the belief of the principal about the type of the agent is never updated. We also find

that there is a perfect Bayesian equilibrium that is a separating equilibrium in which

the second-best optimal contract is offered in period 1, the principal’s beliefs are fully

updated and the contracts from period 2 onwards is the second-best contract for the type

of the agent revealed in period 1. In this separating contract, if the agent is of the more

efficient type then the agent gets paid his informational rent every period and thus has

no incentive to hide his true type. This particular separating equilibrium is optimal for

the principal as the principal’s expected payoff over the entire horizon is a the maximum

over all the possible perfect Bayesian equilibrium points. This may at first seem a

little counter-intuitive as this does not involve the full-information, first-best contract

in any way even though beliefs are fully updated. However, it is useful to note that an

information rent has to be paid to the agent in period 1 if the full-information, first-best

contract is to be implemented. This information rent is higher than the informational

rent of the agent in the second-best optimal contract.

Repeated interaction between a Principal and an Agent is fairly common and much

of the negotiation on payments tend to be implicit and have limited commitment over

multiple periods. However, although these agreements may not be fully enforceable by

long-rum contracts, these agreements need to be self-enforcing in some manner. This has

been recognized and has been studied in the literature. For example, [15], [12], [11] among
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others have studied the nature of such self-enforcing or equilibrium contracts with limited

commitment in repeated games with imperfect monitoring, where the effort level of the

agent is unobserved. In some cases the results also extend to the case of adverse selection

where the cost parameter of the agent is private information of the agent as in [11].

Studies on adverse selection in the repeated game framework has also been extensive,

[5] and [10] study adverse selection with limited commitment in the case of repeated

interaction in which the parties can renegotiate a long-term contract. These study long-

term contracts in which future renegotiation can be added as a constraint in the initial

contract. The result obtained in the case with renegotiation differs significantly from

the full-commitment case. Most notably, the renegotiation-proof contract is suboptimal

compared to the full-commitment case.

In our study we do not impose any conditions on renegotiation but allow for the

possibility that the principal may want to offer different contracts in the future. We

examine instead entire classes of self-enforcing contracts in a repeated game framework

and examine the properties of these contracts. As we have already mentioned we find that

in the finite-horizon game, in which there is a definite terminal point to the relationship

between the principal and the agent, there is only kind of contract that is self-enforcing.

The principal in this case chooses to learn the type of the agent quickly by paying all the

informational rent in period 1 and then offers only the complete information, first-best

contract in the following periods.

In the infinite-horizon case we find that there are plenty of self-enforcing series of

contracts that can be implemented as either pooling1 or separating equilibrium. However,

the series of contracts that the principal would be most likely to offer is a separating

contract as it maximizes the expected stream of profits of the principal. This is an

equilibrium in which the single-period second-best optimal contract is offered. It is of

interest to note that in the case of the pooling equilibria the agent gains nothing from

using his private information. In this respect the pooling equilibria are similar to the

pooling equilibria in [11], which use public perfect equilibrium strategies so that the

strategies of the agent and the principal are functions of only the publicly observed

output levels, and the principal never updates beliefs about the type of the agent. The

principal and the agent negotiate only on the available public information about the

output level produced. In a separating equilibrium, the principal offers different options

to the different types, learns from the output level produced by the agent, who produces

1We note here that in [11] the contracts in the stationary equilibria are all pooling equilibrium
contracts as the contract offered by the principal does not depend on the type of the agent. This is also
true of the contracts offered in our pooling equilibria.
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an output based on his privately observed cost parameter, and then uses this information

to make subsequent offers.

The paper is organized as follows. In section 2 we describe the details of the

model. In section 3 we describe the infinite-horizon repeated game with incomplete

information.In section 5 we provide a folk theorem for the pooling equilibrium points.

In section 6 we discuss the separating equilibrium for both the finite-horizon and the

infinite-horizon game. In section 8 we conclude.

2 The Adverse Selection Model

A principal needs to contract work out to an agent in which the work needs to be done

over many periods. The principal needs to write a contract with the agent in each period

although the relationship with the agent can last for many periods. This is typically the

situation in many cases where a workers wage or bonuses are determined in each period

during which the worker works for the principal. The total revenue of the principal from

the output produced by the agent is S(q) where S(.) is an increasing and strictly concave

function of the output q produced by the agent.

The agent can produce the output q at cost θq. The value of θ is private information

to the agent and the principal only knows that θ can take finitely many values θ1, · · · , θL
with probabilities ν1, · · · , νL with θ1 < θ2 < · · · < θL. We will denote by Θ = {θ1, · · · , θL}
the set of possible values of θ and sometimes refer to Θ as the type set of the agent, and

the probability distribution giving the belief of the type of the agent we will denote by

ν. The principal’s payoff is given by

UP (q, T ) = S(q)− T

where T is the amount paid by the principal to the agent in return for output q. The

payoff of the agent which depends on the agent’s type θℓ is given by

Uℓ(q, T ) = T − θℓq

where θℓ is the true marginal cost of the agent. As the principal does not know the value

of θ, the actual payoff of the agent is not known to the principal.

This then gives us the single -period contracting game in which the principal makes

an offer T for an output q and the agent then either accepts the offer or rejects it.
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3 The infinite horizon game

The infinite horizon repeated adverse selection problem is one that is generated by allow-

ing for recontracting every period over an infinite horizon. The strategy of the principal

in this sequential game is a sequence {σP
t }∞t=1 such that

σP
t : Ht−1 → IRL

+ × IRL
+

where Ht−1 is the set of histories of the game until period t − 1 and an ht−1 ∈ Ht−1 is

given by ht−1 = {(T1, q1), (T2, q2), · · · , (Tt−1, qt−1)}, where qt is the output in time period

t and Tt is the payment made in period t. That is, ht−1 is a history that consists of a

sequence of past payments and output levels until period t− 1. The menu of choices

offered by the principal in period t thus depends on the past history of payments and

output levels so that given a history ht−1 up to time period t, the principal chooses

a menu σP
t (ht−1) = {(Tt(θℓ), qt(θℓ)}Lℓ=1 if the principal’s strategy in period t is σP

t . A

strategy of the principal will be denoted by σP = {σP
t }∞t=1. The agent’s strategy in any

period t also depends on the past history but also on the type of the agent given by the

value of θℓ or the unit cost of production of the agent. Therefore, the strategy of the

agent is a sequence {σAℓ
t }∞t=1 such that

σA
t : Ht−1 ×Θ → IR+.

The expected payoff of the principal in period t is

L∑
ℓ=1

νℓ(S(qt(θℓ)− Tt(θℓ))

as the actual payoff of the principal depends on the option in the contract chosen by the

agent from the menu offered by the principal. The payoff of the agent in any period t is

given by

Uℓ(qt, Tt) = Tt − θℓqt.

The expected payoff of the principal over the entire infinite horizon is the expected

discounted sum of the single-period payoffs from the sequence of offers of the principal

and the offers chosen by the agent and is given by

∞∑
ℓ=1

νℓ[
∞∑
t=1

δt−1
P (S(qt(θℓ))− Tt(θℓ))],

where δP is the discount rate of the principal. Therefore, the expected payoff of the

principal when the principal’s strategy is σP and the agent’s strategy is σAθ is

U∞
P (σP , σAℓ) =

∞∑
ℓ=1

νℓ[
∞∑
t=1

δt−1
P UP (σ

P
t (ht−1), σ

Aℓ
t (ht−1))].
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Similarly, the payoff of the agent over the entire infinite horizon is the discounted

sum of the single-period payoffs. These single-period payoffs depend on the offers made

each period by the principal and the type of the agent. Thus the payoff of agent of type

θℓ over the entire infinite horizon is

∞∑
t=1

δt−1
A (Tt − θℓqt)

so that the payoff of the agent over the infinite horizon, when the strategy of the principal

and the agent is (σP , σA), is given by

U∞
ℓ (σP , σAℓ) =

∞∑
t=1

δt−1
Aℓ

Uℓ(σ
P
t (ht−1), σ

Aℓ
t (ht−1))

where δAℓ is the discount rate of the agent.

4 Long Run Optimal Contracts

In looking for optimal contracts that can be implemented in the long run, that is over the

infinite horizon, we look for an optimal contract among the set of equilibrium contracts.

While optimal contracts are usually derived by finding the contract that maximizes the

principal’s payoff subject to the participation and incentive constraints, in the case of

long run contracts with limited commitment where single-period contracts are offered in

each period, any long run contract should typically be an equilibrium contract in the

sense that the neither the principal nor the agent has any incentive to take an action or

make an offer that is different from what is proposed.

In the infinite horizon game with incomplete information the equilibrium concept

that we use here is that of a Perfect Bayesian equilibrium2. A Perfect Bayesian

equilibrium is a strategy combination that continues to be an optimal strategy for

every player given any history and the updated beliefs of the players given that history,

when the beliefs are updated using Bayes’ rule.

We note that any strategy combination (σP , σA) generates histories ht and thus

generates a probability over the set of possible histories Ht up to time period t. Thus

given a strategy combination, observing a history ht the principal is able to update beliefs

about the type of the agent using Bayes rule, the updated beliefs about the type then is

given by the conditional probability distribution over the set Θ which we will denote as

ν|(σ, ht).

2Note that as this is a game with incomplete information it can also be viewed as a game with
imperfect information, in which a chance move at the beginning of the game cannot be perfectly observed
by all the players.
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Definition 1 Given the strategy combination σ⋆ = (σP⋆, σAℓ⋆), the assessment (σ⋆, ν⋆)

is a Perfect Bayesian equilibrium of the infinite horizon game if

(i) ν⋆(.) is a system of beliefs that is determined by σ⋆ according to the Bayesian updating

rule, and

(ii)for every time period t and for every history ht up to time period t, the expected payoff

of the principal satisfies

∞∑
ℓ=1

(νℓ|ht,σ⋆)U∞
P (σP⋆, σAℓ⋆|ht). ≥

∞∑
ℓ=1

(νℓ|ht,σP ,σAℓ⋆)U∞
P (σP , σAℓ⋆|ht)

for every σP |ht

and the expected payoff of the agent of each type ℓ satisfies

∞∑
t=1

δt−1
A U∞

ℓ ((σP⋆, σAℓ⋆)|ht) ≥
∞∑
t=1

δt−1
A U∞

ℓ ((σP⋆, σAℓ)|ht)

for every σAℓ|ht.

Note that the strategies are conditioned on the private information of the agent

as well as the history of outputs and payments. For a detailed discussion of Perfect

Bayesian equilibrium and Sequential Equilibrium one may refer to [7] and for a discussion

of Sequential equilibrium see [9]. A Perfect Bayesian equilibrium will be called a pooling

equilibrium if the strategies of the agent of different types are the same. That is, in a

pooling equilibrium the agent plays the same strategy irrespective of its type. A Perfect

Bayesian equilibrium will be called a separating equilibrium if the strategy of an

agent depends on its type. It will be called a strictly separating equilibrium if the

equilibrium strategy of the agent varies strictly with its type.

5 Pooling Equilibrium and a Folk Theorem

Here we show that there are perfect Bayesian equilibrium of the repeated game in which

the equilibrium contracts are pooling contracts.

Theorem 1 A Folk Theorem for Pooling Contracts Let (q̂, T̂ ) be any pooling con-

tract such that S(q̂) − T̂ > 0 and T̂ − θLq̂ > 0. Then there is a perfect Bayesian

equilibrium strategy σ̂ such that U∞
P (σ̂) =

∑∞
t=1 δ

t−1
P [S(q̂) − T̂ ] = δP

1−δP
[S(q̂) − T̂ ] and

U∞
ℓ (σ̂) =

∑∞
t=1 δ

t−1
A [T̂ − θℓq̂] =

δA
1−δA

[T̂ − θℓq̂] for all ℓ = 1, · · · , L.

Proof:The claim is that the strategy combination {(σ̂P , σ̂Aℓ)Lℓ=1} described below is a

pooling equilibrium.
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(i)σ̂P
t (ht−1) = (q̂, T̂ ) if the past history has been (q̂, T̂ ) in every period up to t− 1.

(ii) If the principal offers (q, T ) ̸= (q̂, T̂ ) in any period t and both the principal and the

agent had offered and produced (q̂, T̂ ) in all previous periods, then the agent produces

q = 0 from time t+ 1 onwards for K periods. This is a phase I punishment strategy.

(iii) If the agent produces q ̸= q̂ in any period t and both the principal and the agent

had offered and produced (q̂, T̂ ) in all previous periods, then the principal offers T = θLq

if q is the output of the agent for K periods. This is a phase I punishment for the agent.

(iv) If there are no deviations during a phase I punishment by either the principal or the

agent then after the length of timeK the principal offers (q̂, T̂+ϵ), such that T̂+ϵ < S(q̂)

if the principal had been the deviator, and offers (q̂, T̂ − ϵ) such that (T̂ − ϵ)− θLq > 0

if the agent had been the deviator.

(v) If the agent deviates during a phase I punishment for the principal, then the offer

switches to T = θLq if q is the output for a length of time K. If the principal deviates

while punishing the agent during a phase I punishment then the offer switches to q = 0

for the next K periods. Such a punishment is a phase II punishment.

(vi) After a phase II punishment for the principal the offer switches to (q̂, T̂ + ϵ) and

after a phase II punishment for the agent the offer becomes (q̂, T̂ − ϵ).

(vii) If the principal deviates after a phase II punishment, then the phase I punishment

for the principal is played after which the offer becomes (q̂, T̂ + ϵ).

(viii) Finally, if the agent deviates after a phase II punishment, then the phase I punish-

ment for the agent is played after which the offer becomes (q̂, T̂ − ϵ).

We now proceed to show that the strategy profile σ⋆ is an equilibrium irrespective

of the type of the agent.

Let MA be the maximum “gain” the agent can make by deviating in any period

irrespective of its type. If the agent deviates in any period then its maximum payoff in

the subsequent periods, if it has cost θℓ, is at most

MA + δK
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂]

as for a length of time K the agent’s payoff is zero or less every period. If the agent does

not deviate, its payoff in the subsequent periods is

∞∑
ν=1

δν−1[T̂ − θℓq̂].

Therefore, from the construction of the strategy profile, the agent does not gain

from a deviation if
∞∑
ν=1

δν−1[T̂ − θℓq̂] ≥ MA + δK
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂]. (1)
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That is,

1− δK

1− δ
[T̂ − θℓq̂] ≥ MA − δK

1− δ
ϵ. (2)

Now note that the expression 1−δK

1−δ
→ K as δ → 1, therefore, there is a δA1 : 0 < δ1 < 1

and K1 sufficiently large for which equation (2) is satisfied for all ℓ = {1, · · · , L}. Choose
K1 so that

1− δK

1− δ
[T̂ − θLq̂] ≥ MA − δK

1− δ
ϵ. (3)

Thus, phase I punishments can deter the agent from deviating irrespective of its cost for

δ ≥ δ1 and K ≥ K1. Similarly, the principal does not gain from a deviation if

∞∑
ν=1

δν−1[S(q̂)− T̂ ] ≥ M + δK
∞∑
ν=1

δν−1[S(q̂)− T̂ − ϵ]. (4)

That is, if

1− δK

1− δ
[S(q̂)− T̂ ] ≥ M − δK

1− δ
ϵ. (5)

Thus, if δ is chosen to be sufficiently large (say greater than δP1) and for a large enough

K, the principal does not gain from a deviation.

We now consider deviations from a phase I punishment. It should be clear from

the above analysis an agent cannot gain while the agent is being punished in a phase I

punishment. But consider a deviation made by the agent during a phase I punishment

when the principal is considered the deviator. Let LA be the maximum loss every period

that the agent sustains during a phase I punishment. Then the agent’s payoff after

deviating when K − t (1 ≤ t < K) periods of the phase I punishment is left is then less

than or equal to

MA + δK−t
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂],

and if the agent does not deviate, the payoff in the subsequent periods is:

δK−t
∞∑
ℓ=1

δν−1[T̂ + ϵ− θℓq̂]−
K−t∑
ν=1

δν−1LA.

Therefore, the agent does not gain by deviating during a phase I punishment when the

principal is being punished, if

δK−t
∞∑
ℓ=1

δν−1[T̂ + ϵ− θℓq̂]−
K−t∑
ν=1

δν−1LA ≥ MA + δK−t
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂]. (6)
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This reduces to

δK−t

1− δ
2ϵ ≥ MA +

1− δK−t

1− δ
LA. (7)

In equation (7) as δ → 1, the expression

1− δK−t

1− δ

goes to K−t and the expression δK−t

1−δ
goes to ∞. Hence, there is a δA2 : 0 < δA2 < 1 such

that equation (7) holds for all δ > δA2 and for all ℓ = 1, · · · , L. Again choose K = K2

such that equation (7) holds3.

Next, suppose the principal deviates while punishing the agent during a phase I

punishment. Then the principal’s payoff from deviating, when K−t (1 ≤ t < K) periods

of the phase I punishment is left, is less than or equal to

M + δK−t
∞∑
ν=1

δν−1[S(q̂)− T̂ − ϵ],

and if the principal does not deviate, the payoff in the subsequent periods is:

δK−t
∞∑
ℓ=1

δν−1[S(q̂)− T̂ + ϵ]−
K−t∑
ν=1

L.

Therefore, the principal does not gain from deviating when the agent is being punished

during a phase I punishment if

δK−t
∞∑
ℓ=1

δν−1[S(q̂)− T̂ + ϵ]−
K−t∑
ν=1

L ≥ M + δK−t
∞∑
ν=1

δν−1[S(q̂)− T̂ − ϵ]. (8)

This reduces to

δK−t

1− δ
2ϵ ≥ M +

1− δK−t

1− δ
L. (9)

As before, as δ → 1 the left hand side of the inequality in (9) goes to ∞ and the right

hand side goes to M + (K − t)L. Hence, there is a δP2 : 0 < δP2 < 1 such that for all

δ > δP2 the inequality in (9) holds and the principal cannot gain by deviating during a

phase I punishment.

We now consider deviations from a phase II punishment. Consider a deviation by

the agent from a phase II punishment while punishing the principal. The payoff of the

agent, if the agent deviates after t periods of the phase II punishment, is at most

MA + δK−t
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂],

3Note that the type of the agent enters this calculation through MA and LA but these are set so that
(6) holds for agents of all types so if K is sufficiently large (7) will hold for agents of all types.
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and if the agent does not deviate, the payoff in the subsequent periods is

δK−t
∞∑
ℓ=1

δν−1[T̂ + ϵ− θℓq̂]−
K−t∑
ν=1

δν−1LA.

Therefore, the agent does not gain by deviating after t periods during a phase II pun-

ishment when the principal is being punished, if

δK−t
∞∑
ℓ=1

δν−1[T̂ + ϵ− θℓq̂]−
K−t∑
ν=1

δν−1LA ≥ MA + δK−t
∞∑
ν=1

δν−1[T̂ − ϵ− θℓq̂]. (10)

Note that this inequality is the same as the one in (6) and the same analysis that follows

shows that for δ ≥ δA2 the agent cannot gain by deviating from a phase II punishment.

Similarly, for the principal, a deviation from a phase II punishment while punishing

the agent is not profitable if (8) holds and thus is not profitable for δ ≥ δP2.

Finally, we consider deviations from the contracts (q̂, T̂ − ϵ) and (q̂, T̂ + ϵ) respec-

tively. For the agent it is enough to show that the agent cannot profitably deviate from

(q̂, T̂ − ϵ). If the agent deviates then the subsequent payoff of the agent of any type is

at most

MA + δK
∞∑
ν=1

δν−1(T̂ − ϵ− θℓq̂)

and if he does not deviate then the payoff in the subsequent periods is

∞∑
ν=1

δν−1(T̂ − ϵ− θℓq̂).

Therefore, the agent does not gain from deviating if

∞∑
ν=1

δν−1(T̂ − ϵ− θℓq̂) ≥ MA + δK
∞∑
ν=1

δν−1(T̂ − ϵ− θℓq̂). (11)

This reduces to

1− δK+1

1− δ
(T̂ − ϵ− θℓq̂) ≥ MA. (12)

As δ → 1, 1−δK+1

1−δ
→ K + 1. Hence, for K such that

(K + 1)(T̂ − ϵ− θℓq̂) > MA

there is a δA3 such that for all δ ≥ δA3 the inequality in (11) holds and the agent cannot

gain by deviating. A similar analysis for the principal shows that the principal cannot

gain from deviating from (q̂, T̂ + ϵ) if

∞∑
ν=1

δν−1(s(q̂)− T̂ + ϵ) ≥ M + δK
∞∑
ν=1

δν−1(S(q̂)− T̂ + ϵ) (13)
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that is if

1− δK+1

1− δ
(S(q̂)− T̂ + ϵ) ≥ M. (14)

Hence, there is a δP3 such that for all δ ≥ δP3 the inequality in (14) will hold if K satisfies

(K + 1)(S(q̂)− T̂ + ϵ) > M.

We have therefore shown that for δ > max{δA1, δA2, δA3}, the agent cannot gain by

deviating in any period t, given any history, and for δ > max{δP1, δP2, δP3}, the principal
cannot gain by deviating in any period t, given any history.

We now show that the strategy combination {(σ̂P , σ̂Aℓ)Lℓ=1} is a Perfect Bayesian

equilibrium. We first note that since (σ̂P |ht, σ̂) = (σ̂P |ht, σ̂) and (σ̂Aℓ|ht, σ̂) = (σ̂Aℓ|ht, σ̂)

for every ℓ, therefore we have νℓ|ht, σ̂ = νℓ|ht−1, σ̂ for all t ≥ 1. Hence, νℓ|ht, σ̂ = νℓ for

all ℓ = 1, · · · , L so that

L∑
ℓ=1

(νℓ|ht, σ̂)U
∞
P (σ̂|ht, ℓ) = U∞

P (σ̂|ht, ℓ)
L∑

ℓ=1

ν|ht, ℓ

= U∞
P (σ̂|ht, ℓ). (15)

Since we have already shown that for any ht and ell = 1, · · · , L and for all strategy σP

of the principal, U∞
P (σ̂|ht, ℓ) ≥ U∞

P ((σP , σ̂Aℓ)|ht, ℓ), it now follows from (15) that

L∑
ℓ=1

(νℓ|ht, σ̂)U
∞
P (σ̂|ht, ℓ) = U∞

P (σ̂|ht, ℓ)

≥
L∑

ℓ=1

(νℓ|ht, σ̂)U
∞
P (σP , σ̂Aℓ)|ht, ℓ). (16)

Similarly, as we have already shown that for any ht and for all strategy σAℓ of the

agent with cost θℓ, U
∞
Aℓ(σ̂|ht, ℓ) ≥ U∞

Aℓ((σ̂
P , σAℓ)|ht, ℓ), for all ℓ = 1, · · · , L it follows from

νℓ|ht, σ̂ = νℓ for all ℓ = 1, · · · , L that

L∑
ℓ=1

(νℓ|ht, σ̂)U
∞
Aℓ(σ̂|ht, ℓ) = U∞

Aℓ(σ̂|ht, ℓ)

≥
L∑

ℓ=1

(νℓ|ht, σ̂)U
∞
Aℓ(σ̂

P , σAℓ)|ht, ℓ). (17)

But (16) and (17) then show that σ̂ is a Perfect Bayesian equilibrium. It is by construc-

tion a pooling equilibrium. This thus concludes the proof.
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6 Equilibrium Contracts in the Finite-Horizon

While the result on pooling equilibrium shows that there are plenty of pooling contracts

that are perfect Bayesian equilibrium of repeated games between the principal and the

agent, we know that the optimal contract for the single-period is a separating contract

in the sense that a menu of contracts is offered with each option in the menu meant for

an agent of a particular type. Here we show that the only perfect Bayesian equilibrium

of the repeated contract game with finite-horizon is the one in which the second-best

optimal contract is offered in period 1, and then the first-best complete information

contract is offered in the subsequent periods. It is well known that in the single-period,

second-best optimal contract, the least efficient type with the highest marginal cost θL is

offered TL = θLqL for the output qL. That is, the single-period optimal contract is such

that

UL(qL, TL) = TL − θLqL = 0.

Further, for ℓ ̸= L, the incentive compatible offers all satisfy the condition that

Uℓ(qℓ, Tℓ) = Tℓ − θℓqℓ > 0.

In this standard environment, the first-best outcome, in which the principal maximizes

his profit, is characterized by

S ′(q⋆ℓ ) = θℓ for all ℓ

where the efficient outcome is obtained by equating the principal’s marginal benefit to

the agent’s marginal cost. We first examine what happens in a T -period contract. For

this, we assume the monotone hazard rate property:∑i−1
k=1 νk
νi

<

∑i
k=1 νk
νi+1

for all ℓ = 1, · · · , L− 1.

From the literature on optimal contracts we know that this assumption implies that

the second-best single-period contract will fully separate types in the sense that, in the

optimal menu, the output levels assigned to the different types will be distinct; that is

there will be no bunching.

Recall that when the principal offers the menu of contracts, it has to satisfy the

following constraints:

(i) Tℓ − θℓqℓ ≥ Tk − θkqk for all ℓ, k and

(ii) Tℓ − θℓqℓ ≥ 0 for all ℓ.
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The first constraints (i) are the incentive compatibility constraints. The second con-

straints (ii) are participation constraints. This problem can be reduced greatly as fol-

lows. First, as in the two-type case, the least efficient agent’s participation constraint is

binding because Tℓ − θℓqℓ ≥ Tℓ − θℓqL ≥ TL − θLqL ≥ 0. Second, since the agent’s utility

function meets the single-crossing conditions, ∂
∂θ

[
− ∂U/∂q

∂U/∂T

]
= 1 > 0, we can impose the

monotonicity constraints such as qℓ ≥ q2 ≥ · · · ≥ qL)
4. In addition, we can restrict

our attention on the local incentive constraints between two adjacent types and these

incentive constraints will bind at the optimum.5

The reduced problem is given by

Maximize{qℓ,Tℓ}

L∑
l=1

vl(S(qℓ)− Tℓ))

such that

(i) Tℓ − θℓqℓ = Tℓ+1 − θℓqℓ+1 for ℓ = 1, · · · , L− 1,

(ii) TL − θLqL = 0,

(iii) q1 ≥ q2 ≥ · · · ≥ qL.

The analysis is a quite straightforward extension of the standard two-type model. There

is no distortion on the most efficient type agent’s output. However, for the less efficient

types, the production levels are distorted downward.

We turn to the next benchmark in which the principal makes a long term con-

tract with the agent. In a dynamic model, the commitment is an important issue. The

contractual outcome would be very different if the principal is not able to commit to

renegotiating the initial contract. The reason is well-known in the literature. When the

type of the agent is revealed in the first period, the principal can exploit this informa-

tion fully if renegotiation is feasible. Below, we allow renegotiation in any period and

investigate the renegotiation-proof contracts.

Denote the contract offered to type ℓ in period t by (Tℓ,t, qℓ,t). Suppose that the

principal offers a separating contract for the first time in period t̂. Thus from periods 1

through t̂ − 1, the principal offers a pooling contract. After the separating contract in

period t̂, the principal can offer the complete-information first-best contract.

4Consider the following the incentive constraints for θℓ ̸= θk; Tℓ − θℓqℓ ≥ Tk − θℓqk and Tk − θkqk ≥
Tℓ − θkqℓ. Summing the two constraints, we obtain (θl − θk)(qk − qℓ) ≥ 0.

5Any global incentive constraint is implied by the two local incentive constraints. Consider θi <
θk < θj . The incentive constraint between θi and θk is Ti − θiqi ≥ Tk − θiqk. Similarly, the incentive
constraint between θk and θj is Tk−θkqk ≥ Tj−θkqj . Adding the two constraints, we obtain Ti−θiqi ≥
Tj − θiqk + θk(qk − qj). It is immediate that Ti − θiqi ≥ Tj − θiqj .
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For the pooling contract in period t ≤ t̂−1, we assume that the principal wants to

induce the participation of the least efficient agent. Then, the pooling contract is simply

q⋆L so that T ⋆
L,t − θLq

⋆
L,t = 0. After separation in period t̂, the first-best contract can be

offered because the type of the agent is fully revealed so that tℓ = θℓq
⋆
ℓ for all ℓ. This

fully separating contract is robust to the possibility of renegotiation because there does

not exist a Pareto-improving contract. Thus, we can apply the revelation principal to

find the separating contract in period t = t̂.

Note however, that in order to induce the agent to produce the level of output that

would reveal his true type, the principal has to compensate the agent for the revelation of

his type. Thus, to induce information revelation in period t̂, type-ℓ agent’s intertemporal

incentive constraint has to satisfy

Tℓ,̂t − θℓql,̂t ≥ Tℓ+1,̂t − θℓqℓ+1,̂t +
T∑

t=t̂+1

δt−t̂
(
T ⋆
ℓ+1,t − θℓq

⋆
ℓ+1,t

)
.

Note that from period t̂, the agent’s type is fully revealed and so each type of agent

receives zero rent onward until T , i.e., T ∗
l,t = θlq

∗
l,t.

In the long term contract with finite periods, a difference is that type ℓ < L agent

will get an additional rent
∑T

t=t̂+1
δt−t̂ (θℓ+1 − θℓ) q

⋆
ℓ+1,t. This tightens the IC constraints,

but does not affect the other constraints. Thus, in t = t̂, the principal’s problem is given

by

Maximize{qℓ,t,Tℓ,t}

T∑
t=t̂

δt−t̂
L∑

ℓ=1

νℓ(S(qℓ,t)− Tℓ,t)

such that

(i) Tℓ,̂t − θℓqℓ,̂t = Tℓ+1,̂t − θℓqℓ+1,̂t +
T∑

t=t̂+1

δt−t̂
(
T ⋆
ℓ+1,t − θℓq

⋆
ℓ+1,t

)
(ii) TL,t − θLqL,t = 0, and

(iii) q1,t ≥ q2,t ≥ · · · ≥ qL,t.

Lemma 1 In period t = t̂, the optimal separating contract is the second-best contract

given by

q1,̂t = q⋆1 and qℓ,̂t = qSBℓ for ℓ ≥ 2.

The proof of this lemma is omitted because it is a straightforward extension of the

single period case. The principal’s expected intertemporal profit can now be written as

T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂) =
t̂−1∑
t=1

δt−1 {S(q⋆L)− θLq
⋆
L}
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+δt̂−1

{
ν1(S(q

⋆
1)− θ1q

⋆
1) +

L∑
ℓ=2

νℓ(S(q
SB
ℓ )− θℓq

SB
ℓ )−

[
L∑

ℓ=1

νℓ(θℓ+1 − θℓ)q
SB
ℓ+1

]}

−δt̂−1

 T∑
t=t̂+1

δt−t̂
L∑

ℓ=1

νℓ(θℓ+1 − θℓ)q
⋆
ℓ+1

+
T∑

t=t̂+1

δt−1
L∑

ℓ=1

νl {S(q∗l )− θlq
∗
l } .

The first term in the RHS is the principal’s profit from the pooling contract from t = 1 to

t = t̂ − 1. The term in the second line of the RHS is her profit from the separating

contract in period t = t̂. The first term in the third line is the informational rent that

the principal has to pay for early revelation. Note that the principal has to pay two types

of information rent to induce truth-telling. The first is the typical information rent in a

single period. The second is the one for early revelation. The last term on the RHS is

her profit from the first-best contract from t = t̂+ 1 to t = T.

What would be the optimal timing of separation? The answer is not a priori clear

because the principal has to compensate a large amount of information rent for the

agent’s early revelation.

Lemma 2 The optimal timing of separation is t̂ = 1.

Proof: The principal’s intertemporal profit can be rewritten as

T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂) =
t̂−1∑
t=1

δt−1 {S(q⋆L)− θLq
⋆
L}

+δt̂−1

{
ν1(S(q

⋆
1)− θ1q

⋆
1) +

L∑
ℓ=2

νℓ(S(q
SB
ℓ )− θℓq

SB
ℓ )−

L∑
ℓ=1

νℓ(θℓ+1 − θℓ)q
SB
ℓ+1

}

+δt̂−1
T∑

t=t̂+1

δt−t̂

{
L∑

ℓ=1

νℓ
[
(S(q⋆ℓ )− θℓq

⋆
ℓ )− (θℓ+1 − θℓ)q

⋆
ℓ+1

]}
.

Note that the information rent given by
∑T

t=t̂+1
δt−t̂ ∑L

ℓ=1 νℓ(θℓ+1−θℓ)q
⋆
ℓ+1,t is now part of

the third term. For expositional simplicity, let us denote the Principal’s expected payoff

when the expected output vector of the agent is (q1, q2, · · · , qL) by

ŨP (q1, q2, · · · , qL) =
L∑

ℓ=1

νℓ [(S(qℓ)− θℓqℓ)− (θℓ+1 − θℓ)qℓ+1] .

Note that the informational rent paid by the principal is included in this payoff. However,

if the contract is a pooling one (q, T ) then the payoff of the principal is simply (S(q)−T ).

Thus, the principal’s intertemporal profit can now be simply rewritten as

T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂) =
t̂−1∑
t=1

δt−1(S(q⋆L)− θLq
⋆
L) + δt̂−1ŨP (q

∗
1, q

SB
2 , · · · , qSBL )

+ δt̂−1
T∑

t=t̂+1

δt−t̂ŨP (q
∗
1, q

∗
2, · · · , q∗L) (18)
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where up to period t̂− 1, the principal offers the optimal pooling contract, and then the

second-best optimal contract, and then the complete-information separating contract.

We claim that

T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂)−
T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂+ 1) ≥ 0. (19)

To see this, observe that[
T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂)−
T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂+ 1)

]

= δt̂−1
[
ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )− ŨP (q

⋆
L, q

⋆
L, · · · , q⋆L)

]
+ δt̂

[
ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L)− ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )

]
. (20)

Recall that ŨP (q1, q2, · · · , qL) =
∑L

ℓ=1 νℓ [(S(qℓ)− θℓqℓ)− (θℓ+1 − θℓ)qℓ+1] is the principal’s

reduced maximization problem in a single period contract after inserting the binding In-

centive compatibility constraints and the least efficient agent’s participation constraint

into the objective function. As the optimal solution of principal’s constrained optimiza-

tion problem is q1 = q⋆1 and qℓ = qSBℓ for ℓ > 1 we must have

ŨP (q
⋆
1, q

SB
2 , · · · , qSBL ) ≥ max

{
ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L), ŨP (q

⋆
L, q

⋆
L, · · · , q⋆L)

}
We further claim that

ŨP (q
⋆
1, q

⋆
2, · · · , q⋆L) ≥ ŨP (q

⋆
L, q

⋆
L, · · · , q⋆L).

Note that

ŨP (q
⋆
1, q

⋆
2, · · · q⋆L−2, q

⋆
L−1, q

⋆
L)− ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L−2, q

⋆
L, q

⋆
L)

= νL−1

[(
S(q⋆L−1)− θL−1q

⋆
L−1

)
− (S(q⋆L)− θL−1q

⋆
L)

]
≥ 0.

This is because q⋆L−1 = argmaxqL−1
[S(qL−1)− θL−1qL−1].

It now follows in a similar way that

ŨP (q
⋆
1, q

⋆
2, · · · , q⋆L−2, q

⋆
L−1, q

⋆
L) ≥ ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L−2, q

⋆
L, q

⋆
L)

≥ ŨP (q
⋆
1, q

⋆
2, · · · q⋆L−3, q

⋆
L, q

⋆
L, q

⋆
L).

Arguing recursively in this it now follows that

ŨP (q
⋆
1, q

⋆
2, · · · , q⋆L) ≥ ŨP (q

⋆
L, q

⋆
L, · · · , q⋆L). (21)
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Using (21) in (20) we now have[
T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂)−
T∑
t=1

L∑
ℓ=1

νℓUP (·; t̂+ 1)

]

= δt̂−1
[
ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )− ŨP (q

⋆
L, q

⋆
L, · · · , q⋆L)

]
+ δt̂

[
ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L)− ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )

]
≥ δt̂−1

[
ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )− ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L)

]
+ δt̂

[
ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L)− ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )

]
≥ δt̂−1(1− δ)

[
ŨP (q

⋆
1, q

SB
2 , · · · , qSBL )− ŨP (q

⋆
1, q

⋆
2, · · · , q⋆L)

]
≥ 0. (22)

This proves the claim in (19). Hence, the intertemporal contract that gives the principal

the highest expected profit is the one that offers the second-best contract in period 1

together with the informational rents to the types ℓ > 1 and then set output levels at q⋆ℓ

from period 2 onwards.

This result shows that in the contracting game with limited commitment that is

repeated for T periods the only possible equilibrium in the game is one in which the

principal offers the separating contract in period 1 together with the extra informational

rent, learns about the type of the agent in period 1, and then sets the output at the

first-best, efficient level for the type of the agent inferred from the output of the agent

in period 1.

Theorem 2 The unique Perfect Bayesian equilibrium in the T -period repeated contract

game is one in which the principal offers the second-best optimal contract {qℓ, Tℓ}Lℓ=1 in

period 1, together with the informational rent δ(1−δT−1)
1−δ

(θℓ+1−θℓ))q
⋆
ℓ for periods 2 through

T , if the agent produces qℓ in period 1, and from period 2 onwards sets qt = q⋆ℓ and

Tt = θℓq
⋆
ℓ .

Proof: From lemma 2 it follows that the optimal strategy of the principal in the T-period

game is to offer the second-best optimal separating contract in period 1 and then to offer

the first-best, full information contract to the agent that is consistent with his choice of

output. The principal in period 1 also offers the informational rent δ(1−δT−1)
1−δ

(θℓ+1− θℓ)q
⋆
ℓ

to ensure that the agent of type ℓ for ℓ = 1, · · · , L − 1, has no incentive to produce

differently then the output consistent with his type.

The best response of the agent in period 1 to this offer is to produce the output

level consistent with its type given the payment of the informational rent in period 1.

The updated belief of the principal is then that prob.(ℓ̂) = 1 if q1 = qSB
ℓ̂

and prob.(ℓ) = 0
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otherwise. The principal then offers the contract (qt = q⋆
ℓ̂
, Tt = θℓ̂qℓ̂) for t ≥ 2. The

agent’s best response, given this, is to produce the output level qt = qℓ̂ in every period.

Thus in the standard adverse selection model with limited commitment, the princi-

pal prefers to separate in the first stage and then offer the complete-information, first-best

contract after that in the finite-horizon case. A pooling contract is never part of a perfect

Bayesian equilibrium in the finite-horizon case. This contrasts sharply with theorem 1.

Example 1 An example in the Two-period Case.

Consider the case where the principal’s revenue function is given by S(q) =
√
q and

the marginal cost of the agent is either θ = 1 and θ̄ = 2 with Prob(θ = 1) = Prob(θ̄ =

2) = 1
2
. It can be checked that the first-best outcome is

q⋆ =
1

4
and q̄⋆ =

1

16

as S ′(q⋆) = 1 and S ′(q̄⋆) = 2, respectively.

Consider now the case when the principal offers a pooling contract in the first

period. In this case the principal cannot learn the type of the agent. Thus, the optimal

contract in the second period contract is the single-period second-best contract given by

q⋆ =
1

4
and q̄SB =

1

36
.

If the principal offers a pooling contract in period 1, then that offer should be q = q̄⋆ = 1
16

with the payment T1 = 2× ( 1
16
). The principal’s expected profit over the two periods is

1

8
+

δ

6
. (23)

Now consider the situation in which the principal offers a separating contract in

the first period. The principal now fully learns the type of the agent. As a result, the

principal offers the first-best contract in the second period

q⋆ =
1

4
and q̄⋆ =

1

16
.

In this case, the efficient agent would be able to get an extra information rent of δ
16
,

in the second period, if he chose the contract meant for the inefficient agent. Thus, in

order for the first period contract to be separating and incentive-compatible the principal

has to compensate the efficient agent with this extra information rent in addition to the

informational rent the efficient agent derives from the second-best optimal contract in

period 1. The first period offer is thus the second-best output levels

q⋆ =
1

4
and qSB =

1

36
,
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with the efficient agent being offered T 1 =
5
18
+ δ

16
in period 1. Note that this includes the

informational rent 5
18

of the second-best contract and the additional rent of δ
16

so that

the efficient agent does not mimic the less efficient agent in period 1. The principal’s

expected profit over the two periods is then

1

6
+

5

32
δ. (24)

Comparing (23) and (24) one can verify that the principal’s expected profit from sepa-

rating in the first period is greater than if he pooled in the first period for all δ ≤ 1. This

thus illustrates the result in theorem 2. In fact it is also interesting to observe that for a

fairly low discount factor when δ = 0.5, the increase in the expected stream of profit of

the principal over the two periods from offering the separating contract is

1
24

− δ
96

1
8
+ δ

6

=
7

192
5
24

=
7

40

or a 17 percent increase in the expected profit of the principal.

The result that in the finite-horizon the principal would prefer to offer a separating

contract raises the question about the nature of the optimal contract in the infinite-

horizon case. In the following sections we investigate this issue, and show that the

principal can do even better in the infinite-horizon, by offering a separating contract,

but not of the kind that is an equilibrium contract in the finite-horizon case.

7 Separating Long Run Contracts

We show here that in the infinite-horizon game not only is a pooling contract a perfect

Bayesian equilibrium but so a separating contract in which the principal offers the second-

best separating contract in period 1 and then continues to offer the terms of the second-

best contract for the agent-type that is revealed in period 1.

Theorem 3 There is a perfect Bayesian equilibrium in which the optimal single-period

contract is offered in period 1, and from period 2 onwards, the only contract offered in

equilibrium is (Tℓ, qℓ) if qℓ is the output produced in period 1. In this Perfect Bayesian

equilibrium the more efficient agent continues to earn the informational rent every period.

Proof:The claim is that the strategy combination {(σ̃P , σ̃Aℓ)Lℓ=1} described below is a

Perfect Bayesian equilibrium.

B (i)In period 1 the principal’s strategy σ̃P
1 is to offer the menu {Tℓ, qℓ}Lℓ=1.

(ii) In period 2, the principal offers (Tℓ̂, qℓ̂) if in period 1 the agent chose the offer (Tℓ̂, qℓ̂)
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from the menu {Tℓ, qℓ}Lℓ=1, otherwise offer T = θLq for any q the agent produces in each

period for the next K periods.

(iii) If the past history has been (Tℓ̂, qℓ̂) in every period up to t − 1 then again offer

(Tℓ̂, qℓ̂) in period t.

(iv) If the principal offers (q, T ) ̸= (Tℓ̂, qℓ̂) in any period t ≥ 2 and both the principal

and the agent had offered and produced (Tℓ̂, qℓ̂) in all previous periods, then the agent

produces q = 0 from time t + 1 onwards for K periods. This is a phase I punishment

strategy.

(v) If the agent produces q ̸= qℓ̂ in any period t and both the principal and the agent had

offered and produced (Tℓ̂, qℓ̂) in all previous periods, then the principal offers T = θLq

for K periods after that. This is a phase I punishment for the agent.

(vi) If there are no deviations during a phase I punishment by either the principal or

the agent, then after the length of time K, the principal offers (Tℓ̂ + ϵ, qℓ̂), such that

Tℓ̂ + ϵ < S(qℓ̂) if the principal had been the deviator, and offers (Tℓ̂ − ϵ, qℓ̂) such that

Tℓ̂ − ϵ− θℓ̂qℓ̂ > 0 and if ℓ̂ = 1, · · · .L− 1, and (TL, qL) if ℓ̂ = L, if the agent had been the

deviator.

(vii) If the agent deviates during a phase I punishment for the principal, then the offer

switches to T = θLq if q is the output in that period, for a length of time K. If the

principal deviates while punishing the agent during a phase I punishment then the offer

switches to q = 0 for the next K periods. Such a punishment is a phase II punishment.

(viii) After a phase II punishment for the principal, the offer switches to (qℓ̂, Tℓ̂ + ϵ) and

after a phase II punishment for the agent the offer becomes (qℓ̂, Tℓ̂ − ϵ).

(ix) If the principal deviates after a phase II punishment, then the phase I punishment

for the principal is played after which the offer becomes (qℓ̂, Tℓ̂ + ϵ).

(x) Finally, if the agent deviates after a phase II punishment, then the phase I punishment

for the agent is played after which the offer becomes (qℓ̂, Tℓ̂ − ϵ).

We note that the strategy described in (i) through (x) is similar to the strategy

used for the pooling equilibria of theorem 1. Similar arguments then show that there is

a δP and a δA such that for all δ ≥ δP , the principal cannot gain by offering a different

stream of contracts than the one proposed and for all δ ≥ δA the agent, whatever be his

type, cannot gain by producing an output different from the one meant for the type in

the menu.

We now show that the strategy combination σ̃ = {(σ̃P , σ̃Aℓ)Lℓ=1} is a perfect

Bayesian equilibrium of the repeated contract game. Consider first the case in which

the optimal single-period contract is such that it completely separates types. That is,
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qℓ̂ ̸= qŝ if ℓ̂ ̸= ŝ. In this case consider the belief system

νℓ̂|ht,σ̃ = 1, and νŝ|ht,σ̃ = 0 for all ŝ ̸= ℓ̂ if h1 = (Tℓ̂, qℓ̂).

This is an updated belief system that is consistent with σ̃ as in period 1 the the only

possible outcome for this strategy is in the set {(qℓ̂, Tℓ̂)}Lℓ̂=1
. From the construction of

σ̃ it should be clear that if the principal updates beliefs such that νℓ̂ = 1 for some

ℓ̂ ∈ {1, · · · , L} then neither the principal nor the agent, if he is type ℓ̂, can gain by

deviating from σ̃ after any history ht. Thus the updated belief system together with the

strategy σ̃ is a perfect Bayesian equilibrium of the repeated contract game.

Notice that the principal can infer information about the type of the agent after

observing the output level of the agent, and will only offer the contract meant for the

type of agent that is consistent with the output produced in period 1. It is interesting

to note that the offers are different from the complete information offers, as the more

efficient types can expect to receive informational rents in each period, whereas the least

efficient type is never required to produce q = q⋆L, where q⋆L maximizes S(q) − θLq, but

only qSB from period 2 onwards. The reason for this is that if the agent suspects that the

principal will renege on the implicit arrangement of not paying the informational rent,

then in period 1 the agent will never produce anything but q̄SB. Thereafter, the agent

will always react to attempts by the principal to use the information fully by reverting

to a punishment phase of not producing any output for a number of periods. Even in

the case of the least efficient agent, the agent may not want to produce any more than

qSB as the agent has nothing to gain. The principal may in some cases prefer this, as

the informational rent that has to be given to the agent, is in some cases, less than the

informational rent that has to be given if the complete-information first-best contract is

to be implemented.

We next examine the case in which there is Bunching, that is, the same contract is

offered to several distinct types. Let Sℓ denote the set of types that are bunched together

with type ℓ, that is Sℓ = {s|(qℓ̂, Tℓ̂) = (qs, Ts)}. Define the following belief system belief

system.

νs|ht,σ̃ =
νs∑

λ∈Sℓ
νλ

if h1 = (Ts, qs) and s ∈ Sℓ, and νn|ht,σ̃ = 0 if n ̸∈ Sℓ.

Thus it is possible that the Principal may offer a sequence of second-best contracts until

types have been fully separated. It could be that the perfect Bayesian equilibrium is one

in which the σ̃ after any history ht. Thus, this belief system together with the strategy

σ̃ is a perfect Bayesian Equilibrium of the repeated contract game.
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8 Separating and Efficient Contracts

Having examined both the nature of pooling contracts as well as separating contracts,

we now investigate whether it is possible to find a perfect Bayesian equilibrium in which

the complete information efficient contract is offered at some point. As before we will

look for contracts that are stationary over long periods. We reconsider again the menu

of the optimal single-period contract given by {Tℓ, qℓ}Lℓ=1. We know that this single-

period optimal contract is incentive compatible and may partially separate types but

there could be bunching in the sense that the same offer is made to several different

types. Let Sn = {s : Ts = Tn and qs = qn} denote the types that are made the same

offer as type n. In the case of repeated contracts when there is bunching and an offer

(Tℓ, qℓ) is taken by the agent, the updated belief of the principal is that the agent’s type

is in Sn. If the belief of the principal about the type of the agent is given by {νℓ}Lℓ=1,

then the updated belief of the principal after observing output level qs is that the type

of the agent is among those in Ss the set of types that will take the offer (Ts, qs). The

probability distribution that then gives the updated belief of the principal is

ν1
s =

νs∑
k∈Ss

νk
and ν1

ℓ = 0 if ℓ ̸∈ Ss.

In this case the optimal single-period contract that the principal can offer the agent is

the menu that solves the following problem

maximize
L∑

ℓ=1

ν1
ℓ (S(qℓ)− Tℓ)

such that Tℓ − θℓqℓ ≥ Tℓ′ − θℓ′qℓ for all ℓ
′ ̸= ℓ, and

Tℓ − θℓqℓ ≥ 0 for all ℓ = 1, · · · , L.

Let (T 1
ℓ , q

1
ℓ ) denote the menu that solves the principal’s problem given above. Again it

is possible that the offer of several types may be bunched together, in which case, in

the following round, the principal after updating his belief will offer a menu of contracts

that maximizes the principal’s expected payoff given the updated beliefs, subject to the

incentive constraints and the participation constraints. This is the optimal contract of

the principal after a second round of updating beliefs and we will denote this contract

as (T 2
ℓ , q

2
ℓ ). In general the optimal contract of the principal will be denoted by (Tm

ℓ , qmℓ )

after k rounds of updating of the principal’s belief. As the principal continues to update

his belief it will lead to a full separation of types after at most M rounds. What we show

in the next result is that there is a perfect Bayesian equilibrium in the repeated contract

game in which after K periods, the only contract offered is for the agent-type that is
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consistent with the principal’s inference about the type of the agent from observing

the output levels over the K-periods. Let {T ⋆
ℓ , q

⋆
ℓ}Lℓ=1 denote the complete information

efficient contract for the L different types. Then we have the following.

Theorem 4 (Optimality) The Perfect Bayesian equilibrium that gives the highest ex-

pected profit to the principal is the separating perfect Bayesian equilibrium in which the

principal offers the single-period second-best optimal contract in period 1 and from period

2 onwards the agent of type θℓ is paid Tℓ and asked to produce qℓ in every period. That is,

the agent is paid in each period what he would have received in the second-best optimal

contract. The updated belief of the principal about the type of the agent is consistent with

the type of the agent revealed in period 1.

Proof: From the proof of lemma 2 we have that

L∑
ℓ=1

νℓŨP (q
⋆
1, q

SB
2 , · · · , qSBL ) ≥

L∑
ℓ=1

νℓŨP (q
⋆
1, q2

⋆, · · · , q⋆L)

≥
L∑

ℓ=1

νℓŨP (q
⋆
L, q

⋆
L, · · · , q⋆L).

These expected payoffs include the informational rents that have to paid in order for

the agent to choose an output level consistent with its type, and thus show that the

discounted payoff from the separating contract, in which the second-best optimal contract

is offered in every period, is the one that is optimal for the principal.

Example 2 Pooling versus a separating contract in the infinite-horizon case.

Consider the same set up as in example 1 in which the principal’s revenue function is

given by S(q) =
√
q and the marginal cost of the agent is either θ = 1 and θ̄ = 2 with

Prob(θ =) = Prob(θ̄ = 2) = 1
2
.

According to Theorem 1, a pooling contract (q̂, T̂ ), such that q̂ < 1
4
and

√
q̂ >

T̂ > 2q̂, can be a perfect Bayesian equilibrium in a infinite horizon game. It is clear that

the pooling contract is sub-obtimal. Note that q̂ = q̄⋆ is the payoff-maximizing pooling

contract. It can be verified as in example 1 that the pooling contract that is optimal for

the principal among all pooling contracts is the pooling contract given by

q̂ = q̄⋆ =
1

16
and T̂ =

1

8
.

The expected discounted sum of profits of the principal from this pooling contract is

1

8(1− δ)
. (25)
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The second-best optimal contract is given by

q⋆ =
1

4
, qSB =

1

36
and T =

5

18
, T̄ =

1

18
.

The expected profit of the principal from the second-best optimal contract is

1

2
(
1

2
− 5

18
) +

1

2
(
1

4
− 1

8
) =

1

6
.

By theorem 4, the expected discounted sum of profit of the principal from offering the

second-best contract is

1

6(1− δ)
. (26)

Comparing (25) and (26) shows that the increase in the expected profit of the principal

when he uses the second-best contract and separate types is,

1
6(1−δ)

− 1
8(1−δ)

1
8(1−δ)

=
1

3
,

or an increase in expected profit of 33 percent.

9 Conclusion

The results here indicate the nature of contracts that one would expect to see in situations

that involve repeated interactions between a principal and an agent. We see that learning

can take place, and if it does, it happens quickly as the agent can be induced to reveal

his type as long as the principal does not take too much advantage of this information.

One of the more interesting feature about these long run contracts is the sharp difference

that exists between the finite-horizon contracts and the infinite-horizon contracts. This

is primarily because there is no credible way in which the principal can offer not to take

full advantage of the information that would be revealed by the agent. Thus, all the

information rent of the agent has to be paid up front in period 1 itself. In the case

of the infinite-horizon, the information rent can be paid every period and the payment

can be phased out over the long run. This is another important difference between the

equilibrium contracts between the finite and infinite-horizon cases. While in the case

of the finite horizon there is the possibility that the agent may simply walk away after

being paid all the information rent in a lump sum in period 1 unless it is part of the

contractual obligation. In the case of the infinite-horizon this possibility does not arise

as the informational rent is part of the payment that the more efficient type of the agent
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is paid in every period. In fact this implicit understanding between the principal and

the agent, about how the agent will be paid in a perfect Bayesian equilibrium in each

period, makes it possible to have an implicit payment plan that does not require an

explicit enforceable contract.

It is important to ask at this point as to why the first-best complete information

contract is not part of any perfect Bayesian equilibrium in the infinite-horizon case. We

have already observed that if the principal wants to implement the first-best complete

information contract, the principal has to pay the more efficient type of the agent a

much higher informational rent in order to induce the more efficient types to produce

optimally. The principal thus has a higher expected payoff from going with the second-

best contract. Once the principal decides to use the second-best optimal contract, even

after the agent’s type is revealed, the principal cannot use that information to implement

the first-best contract as it is not part of the perfect Bayesian equilibrium of the repeated

contract game, and a deviation by the principal from the proposed equilibrium contracts

in the repeated contract game leads to a punishment phases. It might also be the case

that once the principal and the agent knows that the principal has inferred the type of

the agent, the agent and the principal may want to renegotiate and propose sharing the

additional surplus that would be generated if the agent produced the efficient output

given his type. This is certainly possible when the terms of the agreement are given by

the second-best contract as in the perfect Bayesian equilibrium of the infinite-horizon

repeated contract game. However, this requires both the principal and the agent to

deviate simultaneously from the perfect Bayesian equilibrium, and cannot be done by

either the principal or the agent unilaterally. These issues do not arise in the case of the

pooling contracts as the type of the agent is never inferred by the principal.

One might ask as to why information about the type of the agent is not revealed

more slowly over time. The answer seems to be that with discounting there is no advan-

tage for the principal to have any delay in the revelation of the information. The agent

too does not gain by waiting to disclose the information about his type as the agent is

appropriately rewarded for revealing the information. It is worth noting that if there

is no mechanism to deter the principal from taking full advantage of the information

revealed by the , and the agent knows this, then the agent would be much less willing to

reveal his type and the resulting output may be much less than optimal for the principal

and the output may not even be given by the second-best optimal contract.

While we have discussed a general adverse selection model in this paper, we note

that it would also be useful to study this problem to study the more specific case of

adverse selection in insurance markets, using some of the results developed here, and
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examine the nature of optimal contracts when there is repeated interaction between the

insured and the insurer. We believe that the results obtained here may tell us much

about the nature of the optimal contracts in insurance markets when there is adverse

selection.
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