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Brazil.

bCORRESPONDING AUTHOR’S ADDRESS: Rodrigo Novinski, Ibmec Business School,
Av. Presidente Wilson, 118, Rio de Janeiro, Brazil.

cFaculdade de Economia, Universidade Nova de Lisboa, Portugal.



Abstract: We say that a consumer is wary if she overlooks gains but not losses

in remote sets of dates or states. We formulate this by requiring preferences to

be upper but not lower Mackey semi-continuous and Bewley’s result on existence

of Arrow-Debreu equilibrium whose prices are not necessarily countably additive

holds. We relate wariness to some concepts studied in decision theory like lack of

myopia and ambiguity aversion. Wary infinite lived agents are not impatient, have

optimality conditions, in the form of weaker transversality conditions, that allow

them to be creditors at infinity and bubbles occur for positive net supply assets

completing the markets. In a two date economy, with infinite states, wary agents

are not myopic and bubbles occur, as asset prices do not have to equal the series

of returns weighted by state prices. A large class of efficient allocations can only

be implemented with asset bubbles. Pessimistic attitudes lead agents to overvalue

assets or durable goods with hedging properties, like gold.

JEL classification numbers: D52, D53, G12.

Keywords and Phrases: General Equilibrium, Wariness, Bubbles, Ambiguity,

Impatience, Myopia, Transversality Condition, Pure Charges.



1 Introduction

Occurrence and bursting of bubbles in the prices of assets in positive net supply

are important phenomena, but the theory of general equilibrium has not managed

to accommodate these events satisfactorily. Contrary to the well known examples

of bubbles in long lived assets traded by overlapping generations, there was no

robust case when both agents and assets are either infinite lived or short lived. In

this paper, we show that wary consumers have precautionary demands for assets

and the resulting equilibrium prices may include a bubble, even under positive

net supply. We say that a consumer is wary when she neglects gains but not

losses in consumption that happen in a remote set of dates or states. This notion

can be formulated by modeling consumption bundles as bounded sequences (on a

countable infinite set of dates or states) and assuming that preferences are upper

but not lower Mackey semi-continuous.

Wariness encompasses some important concepts discussed in decision theory.

It is related to lack of impatience, as infinite lived wary agents are only semi-

impatient, in the sense of overlooking what they earn but not what they lose at

far away dates. Similarly, in a finite horizon economy with a countable infinite

set of states, wary consumers are only semi-myopic, tending to ignore increases in

consumption but not decreases in remote events.

Examples of wary preferences can be obtained in a context of ambiguity aversion,

for instance, when agents maximize the minimum expected utility over probabili-

ties that dominate some convex capacity, as in Schmeidler [32] 1. In this context,

wariness at some consumption plan is equivalent to the discontinuity of the capac-

ity at the full set (by a result in Epstein and Wang [14]). This is the case for the

ε-contamination capacity, which generates a utility that deviates from separable

utility by adding a term dealing specifically with the infimum of the utilities (at

all states or dates), as in our main examples. The discontinuity at the full set is as

if some state (or date) is missing and the asset bubble can be intuitively thought

of as the asset’s payoff at that missing node.

A multiple discount factors model was suggested by Gilboa [15] and explored by

Marinacci [26] to characterize complete patience. This model can portrait a con-

1Similar maxmin problems have been studied in the recent macroeconomics literature on
robust decision rules under model misspecification (see Hansen and Sargent [18, 19]).
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sumer being unsure about his own preferences in a distant future. The multiplicity

of future preferences has motivated some authors to model the incompleteness of

preferences (see Dubra, Maccheroni and Ok [12]), but our approach allows us to

get interesting insights while preserving completeness.

Mackey discontinuous preferences have been studied before in the general equi-

librium literature and, initially, in the context of a contingent claims economy

with a single budget constraint. Bewley’s [5] stronger result, on the existence

of Arrow-Debreu (AD for short) equilibrium with countably additive prices, does

not hold. However, the weaker version states that equilibrium prices are bounded

finitely additive set functions, which can be decomposed into a countably additive

functional and a pure charge2. We identify conditions that prevent AD prices from

being countably additive and give examples that are related to earlier examples

by Araujo [1], Barrios [4], Sawyer [30] and Werner [36]) 3. We believe that Gilles

and LeRoy [17] were the first to have suggested the relevance of non-countably

additive AD prices for the study of bubbles. These authors refered to such prices

as bubbles, although it was not clear what was the precise relation between these

AD prices and the bubbles of financial assets.

We implement AD equilibria with non-countably additive prices in two different

contexts: an infinite horizon deterministic or an infinite states two date economies.

In both, the AD budget equation is replaced by countably many budget constraints

and the asset used to transfer wealth has a bubble.

In the infinite horizon case, the transversality condition, necessary for individual

optimality, becomes more flexible. It may be optimal to be a creditor at infin-

ity if that covers some desired asymptotic excess of consumption over resources.

Transversality conditions are now compatible with bubbles in the prices of long

lived assets in positive net supply, even for deflators yielding finite present value

of wealth. Implementation is achieved by imposing (as it is usual in the litera-

ture) a portfolio constraint that mimics the transversality condition (or a related

constraint bounding debt date by date, but in a more flexible way than as been

done before). This constraint prevents, in the limit, a non-financed excess of

2See Appendix A.2 on the definition of pure charge and the decomposition result.
3Radner [28] and Kurz and Majumdar [24] had already discussed and illustrated this in the

context of linear production problems.
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consumption over endowments (that is, precludes asymptotic bankruptcy).

Other types of portfolio constraints could either fail to implement or be too

restrictive, introducing a non-necessary friction. Huang and Werner [21] gave an

example of an AD equilibrium with a price pure charge that could be implemented

with an asset bubble, under a portfolio constraint unrelated to the transversality

condition and requiring the asset position to be constant after some date. Kocher-

lakota [23] introduced constraints independently of what agents’ preferences are,

so that the lower bound on asset positions, exogenous but no longer non-positive,

prevents agents from selling the bubble on the initial holdings. If the standard bor-

rowing constraints, which guaranteed existence of equilibrium under impatience,

were used instead, positive net supply assets would be free of bubbles, in com-

plete markets, unless the present value of wealth is infinite (as in the example by

Bewley [6]), by Theorem 3.1 in Santos and Woodford [29] (see also Magill and

Quinzii [25]) 4. Moreover, the presence of wary consumers could prevent efficient

allocations from being implemented under standard constraints.

Our analysis of infinite horizon economies led us to important results. We show

that asset prices must be found by using as deflator the countably additive part

of the AD price. This is the only possible choice (under interiority and some

differentiability conditions), since the deflator ratios must be the marginal rates of

intertemporal substitution, which coincide with the ratios of elements in the AD

countably additive component. Thus, the present value of bounded endowments is

finite. We show also that there are AD equilibria whose sequential implementation

using a positive net supply asset, paying dividends, requires a price bubble, as long

as the constraint satisfies some minimal requirement 5. We give also an example

where one agent is impatient but the other one is not. The optimal consumption

of the former is not uniformly bounded away from zero (as she sells gradually

the endowments to the latter, who places a higher value on distant consumption)

and this allows for AD prices with pure charges, implementable with asset price

bubbles. Bubbles in infinite horizon economies are addressed in Section 4.

4Even under incomplete markets such bubbles could only occur, for finite present values of
wealth, if uniform impatience failed (and Ponzi schemes were avoided in another manner, say
by imposing no-short sales).

5When the constraint implies the inclusion of the sequential choice set in the AD budget set
or allows for the admissibility of a scalar multiple of the equilibrium portfolio plan, for a scalar
close enough to one (see Theorems 1 and 2, respectively, in Subsection 4.3).
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Bubbles in short-lived assets have not been treated successfully before. In the

literature, the fundamental value has been defined as the series of deflated returns

on an infinite set of dates and the excess of price over it was the limiting deflated

price, as time went to infinity, which would be zero in the case of a short-lived

asset. We will now define a bubble of a short-lived asset as the difference between

the price and the infinite series of returns on states of nature, weighted by state

prices. When consumers are wary, the non-arbitrage functional may fail to be

countably additive and prices of short-lived assets have two components. One (the

fundamental value) is the series of returns weighted by the state prices computed

using the countably additive part of this functional. The other (the bubble) is

determined by the value that the pure charge part of this functional takes at the

sequence of returns. This observation holds also under incomplete markets. There

are not yet very general results on existence of equilibrium for infinite states two

dates incomplete markets6. However, in the single good and countable states case,

these difficulties are avoided by applying Bewley’s [5] existence theorem to the

subspace spanned by the assets. There is also an interesting two goods case that we

address, when there is a durable good serving at the same time as a precautionary

vehicle to hedge against undesirable persistent endowment shocks. This durable

good, that might be though of as a commodity-money, has a speculative price

(determined by the pure charge of the non-arbitrage functional, evaluated at the

sequence of relative commodity prices), even without having to appeal to infinite

horizon features. Bubbles in two date economies are addressed in Section 5.

2 Guiding Examples

Consider a deterministic infinite horizon economy with a single commodity and

two agents (indexed by i = 1, 2) whose preferences depart from the standard

time separable utilities as agents are particularly worried about the worst life-

time outcome of each consumption plan x = (xt)t ∈ `∞+ (the set of bounded and

nonnegative sequences, equipped with the supremum norm):

U i(x) =
∑
t≥1

κt−1ui (xt) + β inf
t≥1

ui(xt)

with κ ∈ (0, 1), β ∈ [0,∞).

6Even under state-separability of utility, existence is only guaranteed under the assumption
of positivity of endowments accrued by asset returns.
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This precautionary behavior is equivalent to a maxmin attitude: the consumer

looks for a plan that maximizes the worst discounted time separable utility, within

a class of discount factors (not necessarily of the exponential form) having κt−1

as lower bound at each date t. It is as if the consumer were unsure about the

discount factor that should be used and, therefore, uses the severest one. More

precisely (as shown in Appendix B.1),∑
t≥1

κt−1ui (xt) + β inf
t≥1

ui(xt) = inf
(ϑt)t≥1∈A

∑
t

ϑtu
i (xt)

where A is the set of all real sequences (ϑt)t≥1 such that
∑

t≥1 ϑt = 1
1−κ + β and

ϑt ≥ κt−1 for every date. We will explore the connection with the ambiguity

literature in Section 3.2.2.

Examples 1 and 2 compute AD equilibrium and address the sequential imple-

mentation using an infinite-lived asset paying Rt = 1, for t > 1, with initial

holdings zi0 > 0. Agents trade an amount zt ∈ IR of the asset at a price qt. AD

endowments W i and sequential endowments ωi are related by ωit = W i
t − Rtz

i
0,

where zi0 must be such that ωi ≥ 07. We will see that the asset has a price bubble

even though the present value of endowments is finite (for the non-arbitrage kernel

deflator given by the countably additive part of the AD price). Sequential budget

constraints are

xt + qtzt ≤ ωit + (qt +Rt)zt−1 ∀ t ≥ 1. (1)

Portfolio constraints must be added to avoid Ponzi schemes.

Example 1: Bubble with Converging Net Trades

To start with a simple example we pick an economy where the AD equilibrium

consists in exchanging the endowment sequences, that is, xi = W j for i 6= j. This

happens just for specific endowment and preferences parameters. Our second

example illustrates a more general situation. Given h ∈ (0, 3/4), let u1(r) =
√
r, W 1 = ( t+8

t
− h)t≥1 and u2(r) = ln(r+ h), W 2 = 1

4
([ t+8

t
]2)t≥1 and take κ to

be the same for the two agents. We claim that the common supporting-price π at

xi = W j, for i = 1, 2, is given by

7Notice that the endowments ωi of the sequential economy accrued by the returns from asset
initial holdings are the resources that each agent has when she does not trade in the asset market
and, therefore, these resources should coincide with the AD endowments W i.
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πx =
∑
t≥1

t

t+ 8
κt−1 xt + β LIM(x) (2)

where LIM : `∞ → IR is a generalized limit (that is, any linear and norm contin-

uous functional on `∞ taking at x a value on [lim inf x, lim supx] and, therefore,

coinciding with limx when this limit exists). This follows by Proposition 4 (in

Subsection 3.3). If, in addition, π(xi) = π(W i) holds, then (π, x1, x2) is an AD

equilibrium. This is the case for some (κ, β) (for other combinations agents should

not be exchanging endowments). In particular, for κ = 1/2 we can find the com-

patible β > 0 (see details in Appendix C.2).

We implement (x1, x2) sequentially. Take (z10 , z
2
0) = (1/8, 1/8). Then, ωi1 = W i

1

and, for t > 1, ωit = W i
t −Rtz

i
0 = W i

t − 1/8. Given (pt)t≥1 = ( t
t+8

(1
2
)t−1)t≥1, define

asset prices by p1q1 = π(R) =
∑

t>1 pt + β and qt = pt−1

pt
qt−1 − 1 for t > 1. The

countably additive component (pt)t of AD price π is the non-arbitrage deflator

(and this is the only possible choice, up to a scalar multiple, as established in

Proposition 7, in Section 4.2). Thus, β/p1 is the asset bubble, at t = 1, as 1
p1

∑
t>1 pt

is the fundamental value.

The portfolio zi that implements the above consumption allocation is given by

zi1 = 1
q1

(W i
1 − xi1) + 1

8
and, for t > 1, zit = zit−1 + 1

qt
(ωit − xit + zit−1).

Now, we claim that (q, (xi, zi)i) is an equilibrium for the sequential economy

under some portfolio constraints that will mimic the necessary transversality con-

dition, which requires (see Remark 4 in Subsection 4.1.2):

lim
t
ptqtz

i
t = β lim

t
(xit − ωit) (3)

Contrary to the standard case, agents can have an asymptotic (present value) long

position, as they try to avoid a bad outcome at distant dates. Following the usual

approach, we impose on every portfolio a borrowing constraint that mimics (3):

lim
t
ptqtzt ≥ β lim sup

t
(x(z)t − ωit) (4)

where (x(z), z) are such that (1) holds with equality at each date t. To see that

zi is optimal under (1) and (4), it is enough to show that for any plan (x(z), z)

satisfying (1) and (4), x(z) must belong to the AD budget set. Multiplying both

sides of (1) by pt and summing over dates gives
∑

t≥1 pt(x(z)t − ωit) = p1q1z
i
0 −

limt ptqtzt (as non-arbitrage equations hold at each t by construction). Hence
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π(x(z) −W i) =
∑

t pt(x(z)t − ωit) + βLIM(x(z) − ωi) − zi0π(ll) = − limt ptqtzt +

βLIM(x(z)−ωi) ≤ 0, by (4). Moreover, the equality holds at xi and, therefore, xi

is optimal. Besides, commodity and asset markets clear, thus, (q, (x1, z1), (x2, z2))

is a sequential equilibrium with a bubble.

Example 2: Bubble with Non-converging net trades

Suppose ui(r) =
√
r and there are endowment shocks that agents try to get rid

of. Let W 1 = ( t+1
t

+ϕt)t≥1 and W 2 = ( t+1
t
−ϕt)t≥1, where ϕt is 1/2 when t is even

and −1/4 when t is odd. Let us find an AD equilibrium. Again by Proposition

4, given a > 0, the plan xa = a (W 1 + W 2) = 2 a ( t+1
t

)t≥1 is optimal under the

budget constraint πax ≤ πaW i when prices πa are given by

πax ≡
∑

t κ
t−1u′(xat )xt+βu′(inf xa)LIM(x) = 1√

23a

[∑
t κ

t−1
√

t
t+1

xt + βLIM(x)
]

and πaxa = πaW i. The homogeneity of the budget constraint allows us to rewrite

prices π as
πx ≡

∑
t

κt−1
√

t

t+ 1
xt + βLIM(x)

and, picking out a(i) = π(W i)/π(W 1 +W 2), for the plans xi = xa(i), the condition

πxi = πW i holds for i = 1, 2.

An example for the functional LIM is a Banach limit B, i.e., a generalized limit

that satisfies the additional requirement B((xt)t) = limn
1
n

∑n
t=1 xt when this limit

exists. Let LIM ≡ B on the AD prices formula 8. Since x1 + x2 = W 1 + W 2, we

have that (π, x1, x2) is an AD equilibrium.

In the sequential implementation we can choose zi0 ∈ (0, 1/2), as W i
t > 1/2, ∀ t.

Taking as deflator (pt) = (κt−1
√

t
t+1

), asset prices are given by p1q1 =
∑

t≥1 pt +

limt ptqt and ptqt = pt+1(qt+1 + 1) ∀t, so the bubble is positive at t = 1. The

transversality condition, when net trades are not converging, is

lim
t
κt−1u′(xit)qtz

i
t ∈ [β lim inf

t
(qt(z

i
t−1 − zit) + zit−1), β lim sup

t
(qt(z

i
t−1 − zit) + zit−1)]

which becomes the usual one when β = 0.

As we did before, we impose the following portfolio constraint, which mimics

the above transversality condition on every feasible portfolio plan: lim ptqtzt ≥

ν(x(z) − ωi), where ν is the pure charge component of the AD price (that is,

the non-countably additive part given by βB(.)). The remaining argument is

analogous to the one done in the previous example.
8Notice that the choice of the generalized limit will determine the coefficient a(i) and, there-

fore, the real equilibrium allocation.
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3 Wariness and Arrow-Debreu Equilibrium

3.1 Wariness

Let us introduce our basic hypothesis on preferences.

Assumption A1: Preferences % on `∞+ are complete, transitive, monotonous 9

and norm continuous on `∞+
9.

The attitude of consumers with respect to gains or losses in remote sets of dates

or states can be described using the Mackey topology, the finest topology on `∞ for

which the dual is `1. Let us refer to the Mackey upper and lower semi-continuities

as Mackey usc and lsc, respectively.

Assumption A2: Preferences % are Mackey usc.

The counterparty is not assumed as we want to allow for wariness, the willing-

ness to neglect gains but not losses in distant sets of dates or in events with very

small likehood. More precisely,

Definition: A consumer whose preferences satisfy A1-A2 is wary at a point

x ∈ `∞+ when ∃ y � x such that ∀ n, x % (y1, ..., yn, 0, 0, ...). If this condition holds

at every point, she is said to be wary.

We have the following characterization (proven in Appendix A.1).

Proposition 1: Wariness

Under A1, preferences % are not Mackey lsc at x if and only if ∃ y � x such that,

∀ n, x % (y1, ..., yn, 0, 0, ...).

That is, we can not find n large enough for which we do not have a reversal of the

preference ordering due to losses beyond n. Analogously, the upper semi-continuity

could characterized by the non-reversal of the ordering for gains occuring beyond

some n large enough (see Lemma 4 in Appendix A.1).

3.2 Relationship with Several Decision Theory Concepts

We show that Mackey continuity of preferences turns out to be equivalent,

when consumption bundles are bounded nonnegative sequences, to the axiom of

monotone continuity proposed by Arrow [3], building on Villegas [35] work on

9The preferences % are monotonous when x > x′ implies x � x′. Notation and some basic
concepts of the space `∞ and of the theory of charges can be found in Appendix A.

8



bets. Let us formalize this axiom, in our framework. Let ll be the sequence whose

terms are all equal to one; and, for each n ∈ N, En be the set of natural numbers

bigger than n. Given x ∈ `∞+ and A ⊂ N, let xA be the sequence whose s-th term

is equal to xs if s ∈ A and is equal to zero otherwise.

Monotone Continuity:

If y � x, given m ∈ IR+ and a decreasing sequence (An)n of subsets of N with

empty intersection, there is n0 such that (i) yAcn0 + mllAn0 � x and (ii) y �

xAcn0 +mllAn0 .

That is, the preference ordering should not change when one of the bundles is

modified only on a far enough tail of an infinite subset of N (as this tail is a distant

enough term of a vanishing sequence of events or date sets).

Our Proposition 1 already shows that lack of Mackey lsc at x implies that (i)

fails (for the sequence An = En and m = 0). We can say more:

Proposition 2: Under A1, preferences % are Mackey continuous if and only if

satisfy monotone continuity.

Sufficiency follows from Proposition 1 and Lemma 4, whereas necessity follows

from Lemma 3 (both lemmas are in Appendix A.1) 10 . This characterization is

crucial as it shows that the willingness to pay for consumption at arbitrarily remote

states or dates is zero if and only if preferences are Mackey continuous.

As we will be assuming Mackey usc for existence purposes, a pure charge in

a supporting price occurs at x ≫ 0 only if the consumer is wary at x (as will

become clearer in subsection 3.3). Such pure charges will induce bubbles in the

prices of assets implementing efficient allocations.

3.2.1 Impatience and Myopia

The concept of myopia has been proposed and applied both to the infinite

states case and the infinite horizon case, refered too as impatience in the latter.

Preferences are said to be strongly myopic if x � y implies, for any z ∈ `∞+ ,

x � y+ zEn for n large enough (recall that zEn is the tail of z after n). That is, if

x is better than y, no matter how large the terms of a sequence z might be, there

10Bewley [5] had already remarked a version of the necessity with An = En.
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is always some n such that adding just the tail of z beyond n to y will not make

it become better than x. It was shown by Brown and Lewis [8] that the Mackey

topology is the strongest topology for which any continuous preference is strongly

myopic. Actually, by Lemma 4 in Appendix A.1, strong myopia is equivalent to

Mackey usc, provided preferences are monotonous and norm continuous.

However, strong myopia captures only one form of myopia that we can refer to

as upper semi-myopia (or upper semi-impatience in a dynamic context). Wary

consumers never satisfy lower semi-myopia, defined by x − zEn � y, for any z

such that x− z ∈ `∞+ , when x � y and n is sufficient large. Lower semi-myopia is

equivalent to Mackey lsc, under monotonicity and norm continuity.

It is interesting to note that the necessary and sufficient condition for Mackey

lsc that we found in Proposition 1 is exactly the same as Assumption (IV) in

the note by Prescott and Lucas [27] on pricing in infinite dimensional spaces: for

y � x, there is n0, such that, ∀n ≥ n0, (y1, ..., yn, 0, 0, ...) � x 11. This assumption

implies another notion of lower semi-impatience, proposed by Chateauneuf and

Rébillé [9]), which requires, for any x, (x+ εll)Ecn � x when n is large enough.

3.2.2 Ambiguity Aversion and Imprecise Future Preferences

Ambiguity refers to a situation where agents have a collection of beliefs (that is,

probability distributions). Gilboa and Schmeidler [16] and Schmeidler [32] mod-

eled ambiguity aversion by considering an utility functional which is the minimum

of the expected utilities over this collection of beliefs. More precisely, preferences

are described by an utility function U :

U(x) = min
η∈C

∫
N
u ◦ x dη, (5)

where u : IR+ → IR and C is a convex and weak∗ closed subset of ba 12 (the

refered papers discussed axiomatically this representation). The minimal integral

over beliefs represents a precautionary or pessimistic behavior. The minimization

solution η∗ puts more weight on sets where u attains its lowest values. In our

applications we assume that u is increasing, concave and C1 on (0,+∞)

11For this reason, the results by Bewley [5] and Prescott and Lucas [27] on countable additivity
of equilibrium prices are equivalent when `∞+ is the consumption set.

12See Dunford and Schwartz [13], ch. III.2, for the definition of integral with respect to a
charge η.
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Let us look at a less general case by specifying the set C. Denote by 2N the

collection of all subsets of N. We say that a set function ν : 2N → IR is a capacity

if ν(∅) = 0, and ν(A) ≤ ν(B) whenever A ⊆ B. A capacity ν is convex when

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B) ∀A,B ⊂ N. We normalize ν(N) = 1. The

core of a capacity ν is core(ν) = {η ∈ ba : η ≥ ν, η(N) = 1}. When C is the

core of a convex capacity ν 13, more can be said about the absence of Mackey lsc.

A capacity ν is said to be continuous at certainty if, for any sequence (An) ⊂ 2N

such that each An ⊂ An+1 ⊂ N and ∪nAn = N, we have lim ν(An) = ν(N). Now,

U is Mackey lsc if and only if the capacity is continuous at certainty (by Theorem

2.1 in Epstein and Wang [14]). The discontinuity at certainty can be interpreted

as if there were a missing state.

Remark 1: (i) For preferences represented by utilities of the form (5) where C

is the core of a convex capacity, Mackey lsc becomes equivalent to the impatience

notion proposed by Chateauneuf and Rébillé [9] (as the authors noticed).

(ii) An example of upper semi-myopic preferences that are not lower semi-myopic

is given by taking a utility given by (5) generated by a convex capacity which is

not continuous at certainty 14.

We give now a well known example of a convex capacity. Given a probability

measure µ, let νε be the convex capacity obtained through a linear distortion of µ

with coefficient (1− ε) ∈ (0, 1], i.e., taking νε(A) = (1− ε)µ(A) for A $ N and

νε(N) = 1. This is called the ε-contamination capacity with respect to µ and allow

us to rewrite (5) as 15

U(x) = (1− ε)
∫
N
u ◦ x dµ+ ε inf u ◦ x. (6)

Actually, in this case, the minimum over normalized dominating charges coincides

with the infimum over dominating probability measures (see Lemma 9 in Appendix

B). That is, U(x) = infη∈ca∩core(νε)
∫
N u ◦ x dη. Clearly, νε is discontinuous at

certainty and, therefore, this utility represents wary preferences at some point 16.

13In this case, the utility function is a Choquet integral (see Schmeidler [32]).
14In fact, (5) for any convex capacity represents upper semi-myopic preferences but the dis-

continuity at certainty precludes the Mackey lsc and, therefore, preferences are not lower semi-
myopic.

15This notion appears in statistical works since the fifties (see, Hodges and Lehmann [20]).
The fact that the Choquet integral coincides with the right hand side of (6) can be seen, for
instance, in Dow and Werlang [10].

16Wariness holds actually at every x ≫ 0 as lack of Mackey lsc can be seen by letting
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In a deterministic setting, agents may be unsure about the discount factor and,

by analogy, we say that (5) or (6) represent ambiguous discounting. Gilboa [15]

had remarked that the use of the Choquet integral as a representation of deter-

ministic preferences is appropriate when the agent dislikes wobbles in consumption

and is concerned with the worst outcome. Under this interpretation, for (ζ, β) pro-

portional to ((1− ε)µ, ε), the utility can be rewritten (up to a scalar multiple) as

U(x) =
∞∑
t=1

ζtu (xt) + β inf
t≥1

u(xt) (7)

By (5), this utility function can be reinterpreted as the minimal separable utility

when the discount factors have a lower bound given by ζt
17. Consumers end up

maximizing the worst discounted utility, over a set of possible discount factors.

Imprecise discounting may be a particular case of a more general situation where

the agent does not know what she will be later on (having what is called a divided

self ) or where a random element affects future preferences. Uncertainty about

future tastes has interesting connections with recent work on the incompleteness

of preferences (see Dubra, Maccheroni and Ok [12]) and has also been addressed

in terms of preferences for flexibility (see Kreps [22]). The approach just described

addresses this uncertainty while preserving the completeness hypothesis and the

determinacy of current choices. Moreover, even if each agent had standard dis-

counted utilities, a policy-maker ignoring individual discount factors but worried

about not leaving some agent extremely unhappy, might want to use a represen-

tative consumer model with the above imprecise discounting feature.

3.3 Arrow-Debreu Equilibrium

Suppose that there is a finite number I of consumers. Each consumer i is

characterized by preferences %i on `∞+ and endowments W i ∈ `∞+ .

Assumption A3: Preferences % on `∞+ are represented by the restriction to `∞+

of U : `∞ → IR ∪ {−∞} which is a concave function, that has finite values on its

zn = (1+ε) xEc
n
. Notice that zn → (1+ε)x in the Mackey topology (by Lemma 3 in Appendix),

but, when ε > 0 is small enough, we have for all n that U(zn) < U(x) (as inft u(znt ) = u(0) <
infs u(xs)). So the lower contour set of x is not Mackey closed.

17If u(yt0) = inft u(yt) and this is the only date for which this holds, t0 utility is discounted
by the rate (ζt0 + β)1/(t0−1). The degree of impatience for each date changes according to the
relative level of consumption.
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effective domain D and takes the value −∞ outside 18.

Assuming that preferences %i satisfy A3, we denote by U i its the utility function

given by this assumption. For prices π given by a positive linear functional on

`∞, we define the AD budget set of consumer i as the set BAD(π,W i) = {x ∈

`∞+ : π(x−W i) ≤ 0}. An AD equilibrium is a couple (π, (xi)Ii=1) such that, ∀i, xi

maximizes U i on BAD(π,W i) and
∑I

i=1(x
i −W i) = 0.

By Bewley’s [5] existence theorem, if preferences are convex, satisfy assumptions

A1-A2 and W i ≫ 0 ∀i, then there exist equilibrium prices π ∈ ba++ and, under

the additional assumption of Mackey lsc, π ∈ `1++. We gave examples where AD

equilibrium prices are not countably additive (Section 2), but we postponed some

details that we now justify. The following lemma (proven in Appendix C) shows

that, under A1, A2 and A3, a pure charge in a supporting price occurs at x≫ 0

only if the consumer is wary at x.

Lemma 1: Let U be an increasing concave utility function on `∞+ . If U is Mackey

continuous, then ∂U(x) ⊂ `1 for x≫ 0.

For U given by (7), a sufficient condition to get ∂U(x) not contained in `1 is that

the infimum of x be a cluster point of x, as the next two propositions (that are

consequences of Lemma 10 in Appendix C.1) show. Given x ∈ `∞+ , let x ≡ inf x.

Proposition 3: If U is given by (7) with u : IR+ → IR concave, increasing and

of class C1(0,∞), then, given x≫ 0,

a) If x is not a cluster point of x, ∂U(x) ⊂ `1;

b) If x is attained for infinite indices t, ∂U(x) ∩ `1 6= ∅ but ∂U(x) /⊂ `1

c) If x is not attained, ∂U(x) ∩ `1 = ∅.

Proposition 4: Under the same hypotheses of Proposition 3, if x is a cluster

point never attained of the sequence x, then x is maximal for U in BAD(π,W )

when (i) W is such that πW = πx and (ii) π ∈ ba is given by

πy =
∑
t≥1

ζt u
′(xt) yt + β u′(x) LIM(y)

18Under A3, U is finite and norm continuous at x if and only if U is bounded from below in
some norm neighborhood of x. Even when D = `∞+ , A1 and A3 are not in contradiction, as A1
is stated for preferences and the restriction of U to `∞+ is continuous. Monotonicity implies that
`∞+ ⊂ D.
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where LIM is a generalized limit such that LIM(x) = x.

(When x converges to x, any generalized limit LIM fulfills the requirement)

Remark 2: In Proposition 4, βu′(x) LIM is the pure charge component of the

supporting price 19 . Gilles and LeRoy [17] suggested that the pure charge com-

ponent of an AD equilibrium price could be interpreted as a bubble, but did not

relate it to bubbles in prices of the assets that serve to complete the markets. We

will establish this precise relation in the next section.

4 Sequential Equilibrium and Bubbles

Along this section, we assume that preferences of each agent i satisfy A1 and

A3 and that U i is the representation of %i given by the latter.

In a sequential economy agents can transfer income across different dates 20

using an infinite lived asset that pays Rt ≥ 0 units of the consumption good

at each date t > 1 (R1 = 0) and may be in positive net supply. We assume

that R = (Rt)t≥0 ∈ `∞+ . Initial asset holdings are denoted by zi0 ∈ IR+ and

sequential commodity endowments by ωi = (ωit)t≥1 ∈ `∞+ . Let the commodity

be the numeraire at each date and denote by qt ≥ 0 the asset price at date

t. The sequential problem of agent i consists in choosing a consumption plan

x = (xt)t≥1 ∈ `∞+ and a portfolio plan z = (zt)t≥1 ∈ IR∞, in order to maximize U i

subject to the sequential budget constraints (1).

This problem does not have a solution, under monotonicity of preferences, as

the agent can do Ponzi schemes. To prevent this, portfolio constraints should be

introduced. Examples of such constraints, in the previous literature, were of the

form qtzt ≥ −Mt, where M ∈ `∞+ . Given a portfolio constraint P , the sequential

P-constrained problem consists in maximizing U i subject to BP (q, ωi, zi0), where

this set denotes the set of consumption plans x ∈ `∞+ for which there is a P -feasible

portfolio z such that xt ≤ ωit + qt(zt−1 − zt) +Rtzt−1.

An equilibrium for the sequential economy with portfolio constraint P consists

in a vector of plans (xi, zi)i and asset prices q such that (i) xi maximizes, for each

19In Appendix C.2, we provide an example of an AD equilibrium with positive pure charging
prices, for preferences not given by (7), assuming x≫ 0 but no other assumption on x.

20As we are interested in efficient bubbles, we focus on deterministic economies, but we could
have examined also sequentially complete markets.
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i, U i on BP (q, ωi, zi0), (ii)
∑

i(x
i
t−ωit) =

∑
iRtz

i
0 and

∑
i(z

i
t− zi0) = 0 for all t ≥ 1

and (iii) xi = xi(zi) where xi(z)t ≡ ωit + qt(zt−1 − zt) +Rtzt−1.

The following property of an optimal plan x∗ will be assumed in most results

(but not in general statements found in the Appendix).

Assumption A4: U i is differentiable along any canonical direction at the optimal

solution x∗ for the sequential P-constrained problem, that is,

∀t, ∃ δU i(x∗; et) ≡ µit.

Under this assumption, all supergradient of U i at x∗ have the same countably

additive component µi. If U i given by (7), A4 holds when the infimum of con-

sumption is not attained (as in Examples 1 and 2, with µit = κt−1(ui)′(xit)).

For these preferences, if decisions were made only tomorrow, would the choices

for next dates remain the same? Consistency holds when the infimum of utilities

in not attained (as it is the case for the endowments in the guiding examples) and

would hold for any plan x if we would define the utility for the problem starting at

t with a coefficient βt, dependent on the values of x up to t. However, our results

hold for more general Mackey discontinuous preferences.

4.1 Necessary Conditions for Optimality

To study the optimal solutions for the sequential P-constrained problem 21, we

need to define the concept of admissibility. Given a portfolio constraint P , the

sequence v is said to be a right-admissible direction at x ∈ BP (q, ω, z0) when

∃ ε′ > 0 such that x + τv ∈ BP (q, ω, z0) ∀τ ∈ [0, ε′). It is said to be left-

admissible when τ ∈ (−ε′′, 0] instead, for some ε′′ > 0, and is said to be admissible

if it is right and left-admissible. If z∗ is optimal and v is an admissible direction

(at x(z∗)), then the directional derivative δU(x(z∗); v), when it exists, is zero.

4.1.1 Euler Conditions

Consider the direction v(t) = −qtet+(qt+1+Rt+1)et+1. We suppose that portfolio

constraints are such increases in asset positions at a particular date are always

allowed at x� 0, that is, the right-admissibility of v(t) at x always holds.

21As we will be studying the problem of an individual agent we omit, in this subsection, to
simplify the notation, the indices refering to the specific agent. For instance, if A4 holds for x∗,
µt denotes δU(x∗; et).
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Proposition 5: Let x∗ � 0 be an optimal solution to the sequential P-constrained

problem satisfying A4. Then

qtµt ≥ (qt+1 +Rt+1)µt+1. (8)

(The proof can be found in Appendix D)

Remark 3: (i) Under left-admissibility (which may fail when decreases in asset

positions violate the constraint), the opposite inequality would hold too.

(ii) If x∗ ≫ 0, even without A4, we can always say that ∃T ∈ ∂U(x∗) : qtTet ≥

(qt+1 +Rt+1)Tet+1
22. For other v(t′), the supergradient might be different.

4.1.2 Transversality Conditions

Transversality conditions should not be confused with constraints that have been

imposed by several authors to guarantee the existence of a solution to sequential

problems. The former are properties that the optimal solution must exhibit. The

latter restrict the choice set by requiring portfolio plans to mimic that property.

We need to study some directions for changes in the portfolio plan.

Given a portfolio z and n ∈ N, let y(n) be defined by y(n)t = 0 if t < n,

y(n)n = −qnzn and y(n)t = qt(zt−1 − zt) + Rtzt−1 = x(z)t − ωt if t > n. We

will always assume the left-admissibility of y(n), which means that constraint P

allows, at any t > n, for the replacement of (zt)t≥n by ((1 + h)zt)t≥n with h < 0

arbitrarily close to 0 (the absolute value of the portfolio is decreased at date t).

Sometimes we will impose the counterpart:

Assumption A5: For constraint P, direction y(n) is right-admissible at x(z).

A5 holds for constraints qtzt ≥ −Mt if (qtzt)t ≫ −M and always for constraints

that mimic transversality conditions (classical or the ones we present). In this case,

the absolute value of the portfolio can be increased at date t. Anyway, we shall

always assume that constraints should always be such that, for every n, if y(n) is

right-admissible, then y(n+ 1) is also right-admissible, for any plan z.

Proposition 6: Transversality Conditions

Let x∗ ≫ 0 be an optimal solution to the sequential P-constrained problem satis-

fying A4 and let z∗ be such that x∗ = x(z∗). Then,

22Under left-admissibility, the opposite inequality holds for some T ′ ∈ ∂U(x∗) and, as ∂U(x∗)
is convex, Euler equation holds for some T ′′ ∈ ∂U(x∗).

16



(i) ∃ pure charge ν : ν(x∗ − ω) ≥ lim supµnqnz
∗
n and µ+ ν ∈ ∂U(x∗);

(ii)Under A5, ∃ pure charge η : η(x∗ − ω) ≤ lim inf µnqnz
∗
n and µ+ η ∈ ∂U(x∗);

(This follows from Lemma 11 in Appendix D.1)

Remark 4: For U given by (7), when inf x∗ is never attained, we can compute

the directional derivative δU(x∗; llEn) =
∑

t>n ζtu
′(x∗t ) + βu′(inf x∗), whose limit,

as t → ∞, is βu′(inf x∗). As A4 holds in this case, we get, using Lemma 8 (in

Appendix A.3), limµnqnz
∗
n ∈ βu′(inf x∗)[lim inf(x∗ − ω), lim sup(x∗ − ω)].

4.2 Sequential Implementation and Room for Efficient Bubbles

We say that an AD equilibrium (π, (xi)i), for the endowments (W i)i, is imple-

mented sequentially, under given portfolio constraints, with an asset with returns

R ∈ `∞+ if we can find initial holdings zi0 > 0, verifying ωi ≡ W i − (Rtz
i
0) ≥ 0,

prices q and portfolios (zi)i so that (q, (xi, zi)i) is an equilibrium of this sequential

economy. The implementation depends on the choice of a deflator:

Definition: Given asset returns R and prices q, a sequence λ = (λt)t � 0 is a

non-arbitrage deflator if λtqt = λt+1(qt+1 +Rt+1) for every t ≥ 1 23.

At any date t, λtqt =
∑

s>t λsRs + lims λsqs, where both the series and the limit

are finite, since R ≥ 0 and qt is finite 24. For this deflator, the asset fundamental

value and the asset bubble at t are, respectively, 1
λt

∑
s>t λsRs and 1

λt
lims λsqs.

Note that if xi � 0 satisfies A4 and (8) with equality at each t, (µit) is a non-

arbitrage deflator. If, in addition, xi ≫ 0, we can use the `1 component p of the

AD price as a deflator, as the first order condition of the AD problem requires 25

∃ ρi > 0 : ρiπ ∈ ∂U i(xi). (9)

Can we use a deflator which is not, up to a scalar multiple, equal to the countably

additive part of the AD price? Could we distribute the pure charge across all dates

to get a different deflator? This could not be done when utilities are of the form

(7) and the infimum is not attained (as in Examples 1 and 2)). More generally:

23Given R and q, the sequence λ is uniquely determined up to the choice of some term, say
the initial term λ1. Conversely, given λ and R, q is uniquely determined up to one term.

24Notice that if R≫ 0, as in the guiding examples, λ must be in `1.
25See Zeidler [37], p.391, Theorem 47.C.
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Proposition 7: `1 AD Deflators

Let (π, (xi)i) be an AD equilibrium such that, for each i, xi ≫ 0 satisfies A4. For

portfolio constraints that allow an agent with a long position at t to reduce it by

a small enough amount, if the asset is in positive net supply or (xit)i 6= (W i
t )i ∀t,

then the countably additive component p of π is, up to a scalar multiple, the only

possible choice of a deflator to implement sequentially (π, (xi)i).

Proof: We can not implement (π, (xi)i) with positive shadow prices for the port-

folio constraints, otherwise the uniquely defined marginal rates of intertempo-

ral substitution would be different across agents (as at each date, some agent

must be purchasing the asset and does not have the constraint binding at that

date), contradicting efficiency. Then, for any non-arbitrage deflator λ, λt/λt+1 =

(qt+1 +Rt+1)/qt = δU i(xi; et)/δU
i(xi; et+1) = pt/pt+1. Q.E.D.

When discussing implementation we use the following (proven in Appendix D):

Lemma 2: Let π = p + ν be such that ν is a pure charge, p ∈ `1 is a deflator

for (R, q) with q � 0. Given x ∈ `∞+ , take z to be such that (1) holds. Then, for

ωit = W i
t −Rtz

i
0, we have x ∈ BAD(π,W i) if and only if

ν(xi(z)− ωi)− lim
t
ptqtzt ≤ z0(ν(R)− lim ptqt), (10)

Actually, (10) holds with equality when πx = πW i. In this case, ∃ limt ptqtzt.

Could we use standard portfolio constraints to implement sequentially efficient

allocations? Given a deflator λ, take three types of constraints that have been

extensively used to avoid Ponzi schemes under impatience assumptions:

(a) limλtqtzt = 0 (transversality constraint);

(b) λtzt ≥ −Mt with M ∈ `∞+ (bounded short-sales);

(c) λtqtzt ≥ −
∑

s>t λsω
i
s (debt dependent on future ability to repay).

It is well known that these types of constraints rule out bubbles for positive net

supply assets, in the deterministic case (actually in the complete markets case),

when the present value of wealth is finite. Besides, in equilibrium, even with zero

net supply, (b) or (c) imply limλtqtz
i
t = 0 when λ ∈ `1 (see Appendix D.3) 26.

26‖λ‖1 < +∞ is sufficient for the present value of wealth to be finite and also necessary when∑
i(ω

i + (Rtz
i
0)t) ≫ 0.
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Proposition 8: Standard Constraints Do Not Implement AD

Let (π, (xi)i) be an AD equilibrium such that, for each i, xi ≫ 0 satisfies A4 and

π has a pure charge that is non-zero valued at (xi0 −W i0) of some agent i0.

Under portfolio constraints of type (a) or (b) or (c), it is impossible to implement

sequentially (π, (xi)i) when
∑

i z
i
0 > 0 or (xit)i 6= (W i

t )i ∀t.

Proof: Suppose (π, (xi)i) can be implemented as (q, (xi, zi)i). By Proposition 7,

p is, up to a scalar multiple, the unique deflator. Let i be such that ν(xi−W i) > 0.

Since ν(xi−W i) = ν(xi−ωi)−zi0ν(R) and, in equilibrium, limt ptqtz
i
t = 0, Lemma

2 implies ν(xi −W i) ≤ −zi0 limt ptqt ≤ 0, a contradiction. Q.E.D.

In Examples 1 and 2, ν(xi −W i) = βLIM(xi −W i) which is positive for one

agent and negative for the other, in the AD equilibrium. At least for constraints of

type (a) (even in the weaker form limλtqtzt ≥ 0), if (xi)i 6= (W i)i and a consumer

i has U i(xi)∩`1 = ∅, it can be shown that the result in Proposition 8 holds without

having to assume A4 or that the AD price pure charge ν has ν(xi −W i) 6= 0 for

some i (which does not hold when (xit −W i
t )→ 0). Do positive net supply assets

have price bubbles when other portfolio constraints are used instead?

The first important observation is that, under wariness, transversality conditions

do not prevent bubbles. When, for each i, xi ≫ 0 satisfies A4, by (i) in Proposition

6 and condition (9),
∑

i lim ptqtz
i
t ≤

∑
i α

i(lim sup(xi−W i) + zi0 lim supR), where

αi ≥ 0 is given by Lemma 8 in Appendix A.3. If αi > 0 ∀i, even when xi −W i

converges, by normalization of utilities (to have αi = 1, adjusting ρi), we get

limt ptqt ≤ lim supR, which does not rule out bubbles under a finite present value

of wealth (as p ∈ `1 and W i ∈ `∞).

On the contrary, if utilities U i were Mackey continuous, then, at norm interior

optimal bundles, the supergradients had to belong to `1 (see Lemma 1) and, if

Euler condition (8) holds with equality at each t (assuming A4), the transversality

conditions became lim ptqtz
i
t = 0, implying (

∑
i z

i
0) lim ptqt = 0, that is, bubbles

of assets in positive net supply would be ruled out (under the deflator given by

Proposition 7, which yields a finite present value of wealth). Intuitively, impatient

agents would like to sell the bubble. However, in the absence of initial holdings

and under appropriate portfolio constraints, agents may be prevented from doing

19



it. We say that the agent wants to sell the bubble, at date t and when consuming

x, if there is some h > 0 such that U i(x + h(qtet −
∑

τ>tRτeτ )) > U i(x). We

have the following result (proven in Appendix D.4) is in the spirit of Tirole’s [33]

argument that bubbles can not survive an infinite horizon arbitrage.

Proposition 9: Impatient Agents Sell the Bubble

Suppose U i (given by A3) is increasing, Mackey continuous and such that A4 holds

at x≫ 0. If there were a bubble in the asset price and x satisfies, for each t, (8)

with equality, then agent i would want to sell the bubble at every date.

4.3 On the necessity of bubbles

A large class of AD allocations must be implemented with bubbles. We provide

general results that are illustrated by Examples 1 and 2. In this results, the equi-

librium of the sequential economy must satisfy (10) with equality. Additionally,

xi must be optimal in the sequential choice set BP (q, ωi, zi0). For this it suffices

that BP (q, ωi, zi0) is contained in the AD budget set.

We look at portfolio constraints that mimic transversality conditions. When

A4 and A5 hold at zi and xi = xi(zi), the necessary transversality condition

demands limµitqtz
i
t = νi(xi − ωi), for the common `1 component µi of all super-

gradients of U i at xi and the pure charge component νi of one of these supergra-

dients. We consider constraints that require, for every feasible portfolio plan z,

limµitqtzt ≥ νi(xi(z) − ωi) for one of those pure charges. Such constraints pre-

vent a non-financed asymptotic excess of consumption over endowments (that is,

precludes asymptotic bankruptcy). A possible choice is to pick the pure charge

of the supergradient that satisfies the first-order condition of the AD equilibrium

(see condition (9)). This is equivalent (dividing both sides by ρi) to require, at q

in the set Q(p) of asset price sequences for which p is a non-arbitrage deflator,

lim ptqtzt ≥ ν(xi(z)− ωi) (11)

for any z. The constraint ptqtzt ≥ −
∑

s>t psω
i
s + ν(xi(z)− ωi) implies (11). Next

we show, for a suitable choice of q, that (11) implies the inclusion of BP (q, ωi, zi0) in

the AD budget set27 and that, when
∑

i z
i
0 > 0 and R ≫ 0, a bubble is necessary

to implement an equilibrium (π, (xi)i) with a pure charge component in π.

27Also, this inclusion implies (11) when the direction q1e1−
∑

t>1Rtet is left-admissible (when
one can buy some arbitrarily small amount of the asset and hold this additional position forever).
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Theorem 1: Necessity of Bubbles

Let (π, (xi)i) be an AD equilibrium, with π = p + ν with p ∈ `1, ν a positive pure

charge and, ∀ i, at xi ≫ 0, A4 holds. If the portfolio constraint is (11), then

(i) If R � 0, (π, (xi)i) is implemented with asset prices q such that lims psqs =

ν(R). In this case, BP (q, ωi, zi0) = BAD(π,W i) ∀i;
(ii) If

∑
zi0 > 0 and (π, (xi))i is implemented with q ∈ Q(p), then lims psqs ≥

ν(R). Thus, there is a bubble when R ≫ 0;

(iii) If R = 0, (π, (xi)i) is implemented if zi0 = 0 ∀i. In this case, we could use any

q ∈ Q(p) such that lims psqs > 0. Further, BP (q, ωi, zi0) = BAD(π,W i) ∀i.

Proof: (i) Define q by ptqt =
∑

s>t psRs + ν(R) > 0 (that is, lims psqs = ν(R)).

Since xi = xi(zi) ∈ BAD(π,W i), Lemma 2 implies lim psqsz
i
s = ν(xi − ωi), so,

xi ∈ BP (q, ωi, zi0). If x ∈ BP (q, ωi, zi0), satisfies condition (11) and, therefore, (10).

(ii) If (π, (xi))i is implemented with prices q′, by Lemma 2, ν(xi−ωi)−limt ptqtz
i
t =

zi0(ν(R) − lim ptqt). Since (xi, zi) satisfy (11), we get zi0(ν(R) − lim ptqt) ≤ 0. As

zi0 is positive for some i, lim ptqt ≥ ν(R).

(iii) For k > 0, define ptqt = k (so, lims psqs = k). As zi0 = 0 ∀i, the conditions

(10) and (11) become the same. Thus, BP (q, ωi, zi0) = BAD(π,W i). Q.E.D.

Remark 5: Example 2 illustrates Theorem 1. The results in this theorem still

hold when xi ≫ 0 fails to hold but µi is still colinear with p = π − ν, as it is the

case in Example 3 (see Subsection 4.4). Example 1 could have been presented also

with constraint (11) but we picked instead the related constraint (4), requiring

limt ptqtzt ≥ β lim supt(x(z)t − ωit), which illustrates our next theorem.

Let us address the occurrence of bubbles for non-specified portfolio constraints,

satisfying A5, when net trades (xi−ωi) converge and consumers have a well defined

way of valuing distant consumption, more precisely:

Assumption A6: At x ∈ `∞+ , limn δ
+U i(x; llEn) = limn δ

−U i(x; llEn), and we call

this common value µi∞ the marginal utility of consumption at infinity.

This assumption is satisfied by preferences given by (7) when infimum is never

attained (µi∞ = β(ui)′(x)) or the infimum is not a cluster point (µi∞ = 0).
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Theorem 2: More on the Necessity of Bubbles

Let (π, (xi)i) be an AD equilibrium such that π = p + ν where p ∈ `1, ν is a

positive pure charge and, ∀i, xi ≫ 0 satisfies A4, A5 and A6. Suppose (π, (xi)i)

is implemented using an asset with prices q and
∑

i z
i
0 > 0. If (xi − ωi) converges

∀i, then q ∈ Q(p) and lim ptqt = ν(R) (there is a bubble whenever R ≫ 0) 28.

Proof: A4 and A6 imply that for each T ∈ ∂U i(xi) there is a generalized limit

LIMT such that T = µi+µi∞LIMT (see Lemma 6 and Lemma 8 in Appendix A). As

(xi−ωi) converges, LIMT (xi−ωi) = µi∞ lim(xi−ωi), and we can make two remarks.

First, Proposition 6 give us lims µ
i
sqsz

i
s = µi∞ lim(xi−ωi). Since xi ≫ 0, we get, by

conditon (9), ∃ρi such that ρi(p+ ν) ∈ U i(xi). Then, ρiν(xi − ωi) = µi∞ lim(xi −

ωi) = lims ρ
ipsqsz

i
s. Summing over i, lims psqs = ν(R). Secondly, δU i(xi; y(t))

exists ∀t, and, so it must be equal to zero. As zitv(t) = y(t)−y(t+1), zitT (v(t)) =

T (y(t)) − T (y(t + 1)) = 0 ∀T ∈ ∂U i(xi), ∀t. Given t, in equilibrium, zit > 0 for

some i. Thus, δU i(xi; v(t)) = 0 for this i, which implies µitqt = µit+1(qt+1 + Rt+1).

From (9), ptqt = pt+1(qt+1 +Rt+1) ∀t, so p is a deflator. Q.E.D.

4.4 Coexistence with an Impatient Agent Does Not Kill the Bubble

If some agents are impatient and other agents are not, we can still obtain efficient

bubbles in the prices of assets in positive net supply.

Huang and Werner [21] already gave an example where the impatient agent, with

time separable linear preferences, consumed zero after the initial date and the AD

price had a pure charge induced by the preferences of the other agent. Sequential

implementation was obtained for portfolio constraints that require asset positions

to be constant after some date. In this example, the impatient agent chose zero

consumption after the initial date and this was compatible with the pure charge

in prices. One may wonder what are, in general, the features of the impatient

agent’s problem that allow for bubbles under other constraints.

If U i is Mackey continuous, then, at x ≫ 0, ∂U i(x) ⊂ `1 (see Lemma 1). In

this case, x could not be the optimal choice for an AD price π = p + ν with a

positive pure charge ν. In fact, the necessary and sufficient (together with the

28For portfolio constraints that allow an agent with a long position at t to reduce it by a small
enough amount, the result in Theorem 2 holds assuming A5, A6 and the convergence of net
trade for just one agent.
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budget constraint) optimality condition (see Zeidler [37], p.391, Theorem 47.C) is

that, for some ρi > 0, we have

ρi π ∈ ∂U i(x) + ∂χ
`∞+

(x) (12)

where χ
`∞+

is the extended real valued functional that takes value 0 on `∞+ and −∞

elsewhere. Now, by Lemma 12 in Appendix D.5, the superdifferential ∂χ
`∞+

(x) is

the set {T ∈ ba : T (y) ≥ 0 ∀y ∈ `∞+ and T (x) = 0}. Hence, if x ≫ 0, then

∂χ
`∞+

(x) = {0} and, therefore, as ∂U i(x) ⊂ `1, π could not have a pure charge.

That is, when the AD price has a pure charge, impatient agents must choose

bundles with subsequence converging to 0. This holds trivially in the example by

Huang and Werner [21], but it is compatible with a larger class of preferences,

namely when U is strictly concave and Inada conditions hold, so that the agent is

not consuming only at the first date, in spite of being impatient. An agent with

Mackey continuous utility can satisfy (12) at a norm boundary point x � 0 of

`∞+ for an AD price with a pure charge ν. In fact, ∂χ
`∞+

(x) only contains pure

charges 29 and the pure charge η of the element of ∂χ
`∞+

(x) cancels out the price

pure charge (ρiν = η) 30. Let us illustrate this.

Example 3: Coexistence with an Impatient Agent

Utilities are U1(x) =
∑∞

t=1 ζ1(t)
√
xt and U2(x) =

∑∞
t=1 ζ2(t)

√
xt + 6 inft

√
xt.

The discount factors are given by ζ1(t) = (1
4
)t−1 t

1+t
and ζ2(t) = (1

2
)t−1 t

1+t
, which

are both in `1. Agents have the same endowments, given byW i
t = 1

2
(1+7(1

4
)t−1)(1+t

t
)2.

We show that an AD equilibrium is given by x1t = 7
(
1
4

)t−1
(1+t

t
)2, x2t = (1+t

t
)2 and

prices π such that, for x ∈ `∞+ , π(x) = 1
2

∑∞
t=1(

1
2
)t−1( t

1+t
)2xt + 3B(x).

Let us start by checking that the budget constraint holds for agent 1 (which im-

plies also that the budget constraint of agent 2 holds). Now 1
2

∑∞
t=1(1/2)t−1( t

1+t
)2(x1t−

W 1
t ) + 3B(x1 −W 1) = 1

4

∑∞
t=1(

1
2
)t−1(7(1

4
)t−1 − 1)− 3/2 = 1

4
(8− 2)− 3/2 = 0.

The first order optimality conditions of agents 1 and 2 are given by (12). The

latter holds (by making ρ2 = 1 and noticing that x2 ≫ 0) since π is according to

29Take T ∈ ∂χ
`∞
+

(x), with countably additive and pure charge components γ ≥ 0 and η ≥ 0,

respectively. Tx = 0 implies γx = η(−x) ≤ −α lim inf x for some α > 0 (by Lemma 6 in
Appendix A.2). Hence, γx = 0 and since γet ≥ 0,∀t, we get γ = 0.

30By Mackey continuity, the countably additive component of any supergradient of U at x is a
supergradient (see Lemma 14 in the Appendix D.5) and can replace the supergradient satisfying
condition (12) (by moving the associated pure charge to the supergradient of χ

`∞
+

).
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Proposition 4. To check the former, recall that we can make the price pure charge

cancel out with the pure charge of the element of ∂χ
`∞+

(x1). Hence, it suffices to

find ρ1 ≥ 0 verifying ρ1π(et) = ζ1(t)

2
√
x1t

for each t. That is, we must have ρ1 = 1/
√

7.

Although W 1 ≫ 0, consumption of agent 1 tends to zero. This happens since

the wary agent 2 is placing a high value on consumption at arbitrarily large dates,

inducing the impatient agent 1 to sell endowments at distant dates.

The AD equilibrium can be implemented imposing the transversality condition

of the wary agent on the portfolio of both31 or (for an appropriate choice of (zi0)i)

by imposing on each agent a constraint that mimics the respective transversality

condition. In the former we use (11) (that is, denoting by p the `1 component

of π, limt ptqtzt ≥ 3B(x(z) − ωi)) on both agents and, as seen in Subsection 4.3

(see Remark 5), BP (q, ωi, zi0) ⊂ BAD(π,W i). In the latter, agent 1 faces the usual

constraint limt ptqtzt = 0. Let, for t > 1, Rt = (1+t
t

)2 and define q by p1q1 = pR+3

and pt−1qt−1 = pt(qt + Rt) for t > 1. Thus, lim ptqt = ν(R) = 3B(R) = 3. We

choose z10 = 1/2. Since x1 ∈ BAD(π,W 1) and ν(x1−ω1) = ν(x1−W 1)+z10ν(R) =

−3/2 + 3z10 = 0, Lemma 2 implies lim ptqtz
1
t = 0. Moreover, as p is colinear

with µ1 ∈ ∂U1(x1) (see Lemma 14 in Appendix D.5), individual optimality holds:

U1(x(z))− U1(x1) ≤ µ1(x(z)− ω1) + µ1(ω1 − x1) = limµ1
t qtz

1
t − limµ1

t qtzt ≤ 0.

5 Two Date Economies and Bubbles

The AD equilibria can be implemented as equilibria of a two date economy

with a complete set of assets traded at the initial date and paying returns on

the countable infinite set of states at the second date. When the AD price is

not in `1 and the complete set of assets consists of Arrow securities, the price

of an asset whose returns are uniformly bounded away from zero will exceed the

series of returns weighted by state prices (given by the Arrow security prices).

Even for other asset structures, the series of returns, deflated by marginal rates of

substitution, should be interpreted as the fundamental value (see Proposition 10)

and the asset price has a bubble, which is related to the pure charge component

in the AD price evaluated at the returns stream.

31Given a constraint choice, agent 2 demands all the asset supply, as t → ∞. So, if one is to
impose the same constraint on both agents, it is reasonable to choose one that mimics agent 2
transversality condition.
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Our previous examples could be adapted to this two date setting, but we chose

to look at a more provocative case, when a durable good (say gold) that has no

pure charge in the respective marginal utility turns out to have a bubble due to

its role in hedging against fluctuations in the endowment of the other commodity.

That is, consumers are not specifically wary about the consumption of gold (as

the partial utility function on gold is Mackey continuous) but gold has a bubble.

The asset structure is described by the returns linear operator R : `∞ → `∞,

mapping a portfolio z ∈ `∞ of countably many assets into a bounded sequence of

payoffs over the countably many states. Asset j is identified by its returns R(ej).

Let q ∈ ba+ be the vector of asset prices. We allow for initial holdings zi0 ≥ 0.

At date 0, besides the choice a portfolio z ∈ `∞, it is possible to trade and

consume a perishable good (the numeraire) and gold. The numeraire endowment

is ωi0 > 0 and gold endowment is ei0 > 0. Consumptions of the numeraire and gold

are denoted by c0 and g0, respectively. Date 0 budget constraint of agent i is

c0 + ρ0g0 + q(z) ≤ ωi0 + ρ0e
i
0 + q(zi0), (13)

where ρ0 > 0 is the gold relative price. Each unit of gold consumed at t = 0 is

still available at date 1. This durable good can be seen as an commodity-money

that serves to transfer wealth and hedge against variations in the numeraire.

At the next date, there are state-dependent endowments of the numeraire ωi1 ∈

`∞+ and gold ei1 ∈ `∞+ . Let ρ1 ∈ `∞+ be the state-dependent relative price of gold.

State-dependent consumptions of the numeraire and gold, c1 and g1, lie in `∞+ .

Date 1 budget constraints: at each s ∈ N

c1s + ρ1sg1s ≤ ωi1s + ρ1s(e
i
1s + g0) +R(z)s, (14)

Denoting ρ = (ρ0, ρ1) and analogously for the other date-dependent variables,

let BG(ρ, q, ωi, ei, zi0) ≡ {(c, g) : (13) and (14) hold for some z ∈ `∞}.

Preferences are represented by a concave and monotonous utility function U

such that for each T ∈ ∂U(c∗, g∗), with (c∗, g∗0) ≫ 0, the partial supergradient

on gold has no pure charge (as the next example illustrates). That is, there

exist µN0 , µ
G
0 ∈ (0,+∞), µN , µG ∈ `1+ and a positive pure charge νN so that

T (c, g) = µN0 c0 + µG0 g0 + (µN + νN)(c1) + µG(g1) for all (c, g). This leads us to:
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Proposition 10: Asset Pricing

Suppose x∗ = (c∗0, c
∗
1, g
∗
0, g
∗
1), with (c∗0, c

∗
1, g
∗
0) ≫ 0, maximizes U on BG(ρ, q, ωi, ei, zi0).

For each µN + νN + µG ∈ ∂U(x∗),

(i) if there exists δU(x∗, vj) for vj = (−q(ej), R(ej), 0, 0), then

µN0 q(ej) =
∞∑
s=1

µNs R(ej)s + νN(R(ej));

(ii) if there exists δU(x∗, v) for v = (−ρ0, ρ1, 1, 0), then

µN0 ρ0 = µG0 +
∞∑
s=1

µNs ρs + νN(ρ).

(The proof is immediate as, for each T ∈ ∂U(x∗) and any of the directions w

considered, T ·w = δU(x∗;w) = 0; the directional derivatives exist in the Example

4 below but even when these do not exist we can establish inequality conditions)

Remark 6: The weights µNs are the state prices, whereas νN(R(ej))/µ
N
0 and

νN(ρ)/µN0 (when positive) are the price bubbles in the financial assets and gold,

respectively. The bubble on gold is the excess of its price over both the marginal

rate of substitution between gold and the numeraire at date 0 and the series of its

deflated prices at date 1 32.

Definition: An equilibrium for the two date economy is a vector (ρ, q, (ci, gi, zi)i)

such that: (i) ∀i, (ci, gi) maximizes U i on BG(ρ, q, ωi, ei, zi0) and (ci, gi, zi) satisfies

(13) and (14); (ii)
∑I

i=1(c
i
0 − ωi0) = 0 and

∑I
i=1(c

i
1 − ωi1 − R(zi0)) = 0; (iii)∑I

i=1(g
i
0 − ei0) = 0 and

∑I
i=1(g

i
1 − ei1 − gi0) = 0; (iv)

∑I
i=1(z

i − zi0) = 0.

We will relate the two date economy and an associate AD economy whose con-

sumption bundles are of the form (c0, c1, g0, g1). AD endowments are related to the

two date endowments by W i
0 = ωi0, W

i
1 = ωi1 +R(zi0), E

i
0 = ei0 and Ei

1 = ei1 + ei0ll.

AD prices (taking c0 as numeraire) are specified by prices for (c1, g0, g1) given

by (π, γ0, γ1), where π ∈ ba, γ0 ∈ (0,+∞) and γ1 ∈ ba. The AD budget set

BAD(π, γ,W i, Ei) is the set of bounded vectors (c0, c1, g0, g1) ≥ 0 satisfying

c0 −W i
0 + γ0(g0 − Ei

0) + π(c1 −W i
1) + γ1(g1 − Ei

1) ≤ 0. (15)

32Asset pricing could have been characterized using a non-arbitrage deflator, not necessarily
given by the marginal rates of substitution. Without gold, in the absence of arbitrage opportu-
nities, there exists π in the dual of `∞ such that q · z = π ◦R(z). Non-arbitrage in the presence
of a durable good could be characterized also (see Araujo, Fajardo and Páscoa [2] for the finite
state case).
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Proposition 11: AD and Two Date Budgets

(i) If (c, g) ∈ BG(ρ, q, ωi, ei, zi0) with (13) and (14) holding with equality at some

z and there exists π is such that q(y) = π ◦ R(y) ∀y ∈ `∞, then (c, g) ∈

BAD(π, γ,W i, Ei), where γ0 = ρ0−π(ρ1) and γ1(g̃1) = π((ρ1sg̃1s)s) ∀g̃1 ∈ `∞.

(ii) Assume that R is onto and zi0 is such that W i
1 −R(zi0) ≥ 0.

If (c, g) ∈ BAD(π, γ,W i, Ei) and ∃ ρ1 ∈ `∞ : γ1(g̃1) = π((ρ1sg̃1s)s) ∀g̃1 ∈ `∞,

then we have (c, g) ∈ BG(ρ, q, ωi, ei, zi0) where ρ0 = γ0 + π(ρ1) and q(y) =

π ◦R(y) ∀y ∈ `∞.

Remark 7: Proposition 11 (proven in Appendix E) can be used to relate AD

and two date equilibria. Under injectivity (besides surjectivity) of R, the former

induces the latter. In fact, by item (ii), at the AD allocation, consumption plans

lie in BG(ρ, q, ωi, ei, zi0); optimality within this set follows by item (i) and, finally,

asset market clearing holds by injectivity of R since
∑

i(c
i
1s−W i

1s+ρ1s(g
i
1s−Ei

1s+

ei0 − gi0)) = 0 ∀s implies R(
∑

i(z
i − zi0)) = 0. The converse is also true (by using

items (i) and (ii) in the reverse order).

Example 4: A Bubble in Gold

Consider two consumers i = 1, 2 whose preferences are described by

U i(c, g) =
√
c0 + g0 + (1− ε)

∞∑
s=1

µs(
√
c1s + g1s) + ε inf

s∈N

√
c1s,

where ε ∈ (0, 1) and µs = (1
2
)s−1 for any s ≥ 1. Numeraire endowments are

W i
0 = 1,W 1

1 = (( s+1
s

)2 + ψs))s∈N,W
2
1 = (( s+1

s
)2 − ψs))s∈N, with ψs = −1/4 if s is

even and ψs = 1/2 if s is odd. Gold endowments are Ei
0 = 1/2, Ei

1 = ll. We claim

that AD prices are defined by

π̃(c, g) = c0 + 2g0 + (1− ε)
∞∑
s=1

µs

(
s

s+ 1
cs + 2gs

)
+ ε(B(c1) +B(ρ1g1)),

where ρ1 = (2 (s+1)
s

)s∈N and B is a Banach limit. AD consumption plans are

xi = (ci, gi) with ci = (1, (( s+1
s

)2)s∈N) and g1 = (1
2
, 2llO), g2 = (1

2
, 2llOc), where O

is the set of odd natural numbers.

In fact, since 1
2
π̃ ∈ ∂U i(xi) + ∂χ`∞+ (xi) and π̃(xi − (W i, Ei)) = 0 holds for an

appropriate choice of ε (see Appendix E), xi is optimal by condition (12). Notice

that the absence of a pure charge in the partial supergradient of U i with respect
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to gold is compensated by a pure charge in the respective supergradient of χ`∞+

(as g11 is on the norm boundary of the orthant). Market-clearing is immediate.

At last, using Remark 7, we get an equilibrium for the two date economy with

a bubble in gold. Selling gold helps to hedge the numeraire shocks.

When markets are incomplete and there is just one commodity, defining the

consumption set of each agent i as (R(`∞) + W i) ∩ `∞+ and restricting utility

functions to these sets, AD equilibrium prices will be bounded linear functionals on

the set of net trades R(`∞)33. Existence of AD equilibrium with these consumption

sets follows from Theorem 1 in Bewley (1972), provided that R(`∞) is Mackey

closed. Redoing Propositions 10 and 11 for the one good case, when dimR(`∞) is

not finite, pure charges in AD prices induce asset bubbles 34.

6 Concluding Remarks and Further Extensions

We show that when infinite lived consumers are wary, positive net supply assets

can have bubbles, even under complete markets and finite present value of wealth.

Transversality conditions no longer prevent a creditor at infinity. In our examples,

the wary attitude is formulated as a maxmin problem. Agents maximize the

minimum series of discounted utilities, over a certain class of discount factors (more

specifically, a Choquet integral with respect to a convex capacity not continuous

at the full set). This is an aversion to ambiguity in discount factors. A large class

of efficient allocations (illustrated in the examples and characterized in the two

theorems) are sequentially implementable with a bubble in the price of the infinite

lived asset that complete the markets. Thus, this bubble is efficient. Moreover,

the bubble is essential, as the allocations can not be implemented without it.

Similar examples, in a two date context, with a countable infinite set of states,

exhibit an analogous aversion to ambiguity in beliefs. In both contexts, Arrow-

Debreu prices fail to be countably additive and are implemented with asset prices

above the series of deflated returns, even when present values of wealth are finite

and assets are in positive net supply. We addressed the precautionary bubble in

a durable good (as gold) that plays the role of a commodity-money, even when

33The restriction of an element in (`∞)∗ to R(`∞) is a bounded linear functional on R(`∞).
34However, as not all Arrow securities are available, some states will have more than one state

price (given by different non-arbitrage deflators).
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agents are not wary with respect to its consumption. Actually, if agents were

concerned about the infimum of the consumption of the durable good itself (as in

the case of housing), it could much easier to give an example of a bubble.

A study of the bursting of bubbles was beyond the scope of this paper. How-

ever, it seems to us to be a promising issue, as the realization of some events

may change the precautionary attitude. For instance, in a stochastic sequential

economy with preferences analogous to the ones in the guiding examples, if the

precaution coefficient β is path-dependent or in a subtree consumption is higher

at infinity than at some date, the bubble could burst.

In spite of difficulties, evidenced by Theorems 1 and 2, to deal with assets whose

returns are not strictly positive, we intend to explore this framework to study fiat

money and monetary equilibria as well as other macroeconomic issues such as

Ricardian equivalence and taxation.

APPENDIX

A Notation and Basic Concepts

A.1 The Space `∞

The space `∞ is the Banach space of real bounded sequences equipped with the

norm defined by ‖x‖ = supt |xt|. The space `1 is the Banach space set of absolutely

convergent real sequences equipped with the norm defined by ‖x‖1 =
∑∞

t=1 |xt|.

Given x ∈ `∞, we denote by xs its s-th term. We say that x is nonnegative (and

write x ≥ 0) when xs ≥ 0 ∀s ∈ N. We write x� 0, when xs > 0 ∀s, and x ≫ 0,

when ∃h > 0 such that xs ≥ h for each s. Given x and x′ in `∞, we write x > x′ if

(x−x′) ≥ 0 and x 6= x′. The positive orthant of a Banach space X with respect to

a pre-order is the subset X+ of elements that dominate the origin (in particular,

`∞+ = {x ∈ `∞ : x ≥ 0}). The set int‖.‖`
∞
+ denotes the interior of `∞+ with respect

to the norm topology. Now, x ∈ int‖.‖`
∞
+ if and only if x ≫ 0. Moreover, 〈y, x〉

denotes
∑∞

s=1 ysxs, when this series is defined. We denote by et the t-th canonical

direction, that is, the sequence such that (et)t = 1 and (et)s = 0 otherwise.

When `∞ is endowed with a particular topology Γ, its (topological) dual with

respect to Γ is the set of linear Γ-continuous functionals on `∞. If Γ is the norm
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topology, the dual is denoted by (`∞)∗. A coarser topology is the Mackey topology,

defined as the strongest topology on `∞ for which 35 the dual is `1. A net (xα)

converges to x in this topology if and only if, for any weakly compact subset A of

`1, 〈xα, y〉 → 〈x, y〉 uniformly on y ∈ A. We give now the proof of Lemma 3 (that

will be used often and is crucial to understand why continuity of preferences with

respect to the Mackey topology characterizes impatience):

Lemma 3: ∀x ∈ `∞, given a decreasing sequence (An)n of subsets of N with

∩nAn = ∅, xAn → 0 in the Mackey topology.

Proof: We have to show that, for any weakly compact subset K of `1, 〈y, xAn〉

tends to zero, uniformly on y ∈ K. Denote by y+ and y− the positive and the

negative parts of y, so that y = y+ − y− and |y| = y+ + y−. Let x and x be the

supremum and the infimum, respectively, of the sequence x. Then x 〈y+, llAn〉 −

x 〈y−, llAn〉 ≤ 〈y, xAn〉 ≤ x 〈y+, llAn〉 − x 〈y−, llAn〉.

We know that 〈y, llAn〉 converges to zero uniformly in y ∈ K (see Bewley [5],

Remark 24, p.534). Now, 〈|y| , llAn〉 = 〈y, llAn〉 + 2 〈y−, llAn〉, where 〈y−, llAn〉 =∑
t∈An y

−
t ≤

∑
t∈An |y|t. As K is weakly compact, the set {|y|}y∈K will be weakly

sequentially compact (see Corollary 10 in Dunford and Schwartz [13], p.293).

Hence,
∑

t≥n |y|t converges uniformly to zero on y ∈ K (by Theorem 9 in Dunford

and Schwartz [13], p.292).

Now, for each n let m(n) = minAn. Then, An ⊂ {m(n),m(n) + 1, ...} and

m(n) → ∞ (otherwise ∩nAn would not be empty). Then
∑

t≥m(n) |y|t converges

uniformly to zero on y ∈ K and, as
∑

t∈An |y|t ≤
∑

t≥m(n) |y|t, the result follows

since y+ = 1
2
(y + |y|) and y− = 1

2
(|y| − y). Q.E.D.

Proof of Proposition 1:

The condition is sufficient, since yEcn → y in the Mackey topology and x %/ y.

Now, in order to show the necessity, suppose that the lower contour set of x is not

Mackey closed. There is a net (yα) converging to some y, in the Mackey topology,

such that y � x and x % yα ∀α. Thus, 〈yα − y, z〉 → 0 uniformly in z belonging

to any weakly compact subset of `1. Given n, let Kn = {e1, ..., en}, then, for

1 ≤ j ≤ n, the real net yαj converges to yj. Moreover, x % yαEcn ∀α. On the other

35Observe that each x ∈ `1 can be identified with a linear functional by the rule y 7→ 〈x, y〉.
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hand, yαEcn → yEcn in the norm topology, so x % yEcn (since the lower contour set of

x is norm closed). Q.E.D.

Lemma 4: Under A1, preferences are not usc at x if and only if ∃ y ≺ x and

∃m ∈ IR+ such that, ∀n, x - (y1, ..., yn,m,m, ...).

Proof: It is easy to adapt the proof of Proposition 1. Sufficiency is immediate

and necessity follows by noticing that when the net (yα) converges in the Mackey

topology to y, with x - yα for each α, this net is bounded (as it is weak∗ conver-

gent), say by m ∈ IR+. So x - yαEcn +mllEn ∀α. Q.E.D.

A.2 The Norm Dual of `∞, the Space of Charges

The norm dual (`∞)∗ is larger than `1. Let us recall its characterization.

Given a set Ω and a field F of its subsets, a set function µ : F → IR is said to

be a charge (or bounded finitely additive) when (i) µ(∅) = 0, (ii) there is m ∈ IR+

such that |µ(A)| ≤ m ∀A ∈ F and (iii) if A,B ∈ F are such that A∩B = ∅, then

µ(A ∪ B) = µ(A) + µ(B). Besides, we say that µ is countably additive whenever

A1, A2, ..., An, ... ∈ F , with ∪∞n=1An ∈ F and Aj ∩ Ak = ∅, for k 6= j, implies

µ(∪∞n=1An) =
∑∞

n=1 µ(An).

We say that a charge is nonnegative (and write µ ≥ 0) when µ is such that

µ(A) ≥ 0 for all A ∈ F . If µ ≥ 0 and there is A ∈ F such that µ(A) > 0, we say

that µ is positive (and write µ > 0). If a charge µ ≥ 0 is countably additive, it is

called a measure on (Ω,F). A measure µ with µ(Ω) = 1 is said to be a probability

measure. Denote by ba(Ω,F) and ca(Ω,F), the sets of charges and of countably

additive set functions on (Ω,F), respectively (so, ca(Ω,F) ⊂ ba(Ω,F)). When

Ω = N and F = 2N, we let µn = µ({n}) and ba = ba(N, 2N) (and ca = ca(N, 2N)).

The space ba can be put in a one-to-one isometric correspondence with (`∞)∗

by associating with µ ∈ ba the functional x 7→
∫
N xdµ ∀x ∈ `∞. Similarly, ca

can be put in a one-to-one isometric correspondence with `1 by associating µ ∈ ca

with y ∈ `1 by the rule 〈y, x〉 =
∫
N xdµ ∀x ∈ `∞. On the first correspondence,

the operator
∫
· dµ denotes the Dunford integral, whereas on the second one, it

denotes the Lebesgue integral 36 . These two isomorphisms allow us to use the

notation µ(x), x ∈ `∞, for a given charge µ.

36See Dunford and Schwartz [13] on these two results, p.258 and p.176, respectively.
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A charge ν ≥ 0 is a pure charge when [λ ∈ ca+, ν ≥ λ⇒ λ ≡ 0]. More generally,

a charge ν is a pure charge if there are pure charges ν+, ν− ≥ 0 such that ν =

ν+− ν−. Denote by pch the set of pure charges on (N, 2N). We have the following

decomposition result due to Yosida-Hewitt (see Bhaskara Rao and Bhaskara Rao

[7], Theorem 10.2.1, p.241):

Proposition 12: Any π ∈ ba can be written in the form π = µ+ ν where µ ∈ ca

and ν ∈ pch. Furthermore, this decomposition is unique.

Remark 8: If π ≥ 0 and π = µ+ν with (µ, ν) ∈ ca×pch, then µ ≥ 0 and ν ≥ 0.

Finally, we have the following useful properties.

Lemma 5: Let B be a finite subset of N. If ν ∈ pch+, then ν(B) = 0.

Proof: By Theorem 10.3.2 in Bhaskara Rao and Bhaskara Rao [7], given λ ∈ ca

and ε > 0, there is Aλ,ε ⊂ N such that λ(ACλ,ε) < ε and ν(Aλ,ε) = 0. Let us take

λ0 defined by λ0(A1) =
∑

n∈B∩A1

1
#B

for A1 ⊂ N and ε0 <
1

#B
. In this case, the

set Aλ0,ε0 must contain B. Thus 0 = ν(Aλ0,ε0) ≥ ν(B) ≥ 0, as claimed. Q.E.D.

Lemma 6: Let ν > 0 be a pure charge such that ν(ll) = 1. Then, ν(x) ∈

[lim inf x, lim sup x], for any x ∈ `∞. In other words, ν is a generalized limit.

Proof: Given x ∈ `∞ and ε > 0, ∃n0 such that lim supx+ ε ≥ xn ≥ lim inf x−

ε for all n > n0. So, (lim supx + ε)ll − xEn ≥ 0 for n large enough. Now,

ν((lim sup x+ε)ll−xEn) =
∫

[(lim supx+ε)ll−xEn ] dν ≥ 0 for n large enough (see

Dunford and Schwartz [13], Lemma 14, p.108). Thus, lim supx+ ε = (lim sup x+

ε)ν(ll) ≥ ν(xEn) = ν(x), since ν is a pure charge, by Lemma 5. As ε > 0 is

arbitrary, lim supx ≥ ν(x). Similarly, lim inf x ≤ ν(x). Q.E.D.

Lemma 7: Given an infinite ordered subset N ′ of N, there exists a generalized

limit LIM such that, for each x ∈ `∞, LIM(x) = limn∈N ′ xn when this limit exists.

Proof: Define a continuous linear functional ν : `∞ → IR in the following way:

consider the collection of points y ∈ `∞ such that the subsequence (yni) with

ni ∈ N ′ converges. The function mapping each of these points y into limni∈N ′ yni

is linear, nonnegative and continuous in the norm topology, so it can be extended
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to a linear, nonnegative and continuous functional ν on the whole space (see

Schaefer [31], p.227, Corollary 2). Now ν is a pure charge if and only if for every

λ ∈ `1 and ε > 0 there is B ⊂ N such that ν(llB) = 0 and λ(llBc) < ε (again by

Theorem 10.3.2 in Bhaskara Rao and Bhaskara Rao [7]). This holds since we can

find a finite set B such that λ(ll) −
∑

t∈B λt < ε and, moreover, ν(llB) = 0 by

definition of ν. Q.E.D.

A.3 On Supergradients

Let U be a concave extended real valued function on `∞. A supergradient of U

at x is a functional T ∈ (`∞)∗ such that U(x + h) − U(x) ≤ Th for any h ∈ `∞.

The set of all supergradients of U at x is called the superdifferential of U at x and

is denoted by ∂U(x).

Given x ∈ D and v ∈ `∞, limh→0
U(x+hv)−U(x)

h
, when it exists, is called the

directional derivative of U at x along (the direction) v and it is denoted by δU(x; v).

The limit evaluated only for h > 0 (or only for h < 0) always exists for x ∈ D and

is called the right-directional derivative, with notation δ+U(x; v) (respectively, the

left-directional derivative, with notation δ−U(x; v)).

Let us see an additional property for pure charge components of a supergradient.

We saw in Lemma 6 that each positive pure charge is a distortion of a generalized

limit. Now, we will say more about the distortion coefficient.

Lemma 8: Let T = µ+ν ∈ ∂U(x) such that (µ, ν) ∈ ca×pch. There are a gener-

alized limit LIM and a positive constant α ∈ [limn δ
+U(x; llEn), limn δ

−U(x; llEn)]

such that ν(x) = αLIM(x) ∀ x ∈ `∞.

Proof: We just need to show that α belongs to the mentioned interval. Given

n ∈ N, it is true that δ+U(x; llEn) ≤ T (llEn) ≤ δ−U(x; llEn). Moreover, T (llEn) =∑
t>n µt + ν(llEn). Since, ∀n, ν(llEn) = ν(ll) = α and limn

∑
t>n µt = 0, we get

limn δ
+U(x; llEn) ≤ α ≤ limn δ

−U(x; llEn). Q.E.D.

Notice that the constant α in the statement of this lemma is actually the norm

of the pure charge: α = ‖ν‖ba = sup{ν(x) : ‖x‖ ≤ 1} = ν(ll).
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B On Subsection 3.2.2

B.1 On Ambiguity Aversion: Proofs

Let M(N) be the set of all probability measures on (N, 2N). Suppose that

u : IR+ → IR is continuous. We can state:

Lemma 9: If µ ∈ M(N), ε ∈ [0, 1) and ν is the ε-contamination capacity associ-

ated, then

min
η∈core(ν)

∫
N
u ◦ x dη = inf

η∈M(N)
η≥ν

∫
N
u ◦ x dη = (1− ε)

∫
N
u ◦ x dµ+ ε inf

s∈N
u(xs) (16)

is true for all x ∈ `∞+ .

Proof: Denote I(ν) = min
η ∈ core(ν)

∫
u ◦ x dη and F (ν) = inf

η∈M(N)
η≥ν

∫
u ◦ x dη. It

is clear that F (ν) ≥ I(ν). Let η ∈ ba such that η ≥ ν and η(N) = 1. Thus

(η−(1−ε)µ) ∈ ba+. So, we get
∫
u◦x dη = (1−ε)

∫
u◦x dµ+

∫
u◦x d(η−(1−ε)µ) ≥

(1− ε)
∫
u ◦ x dµ+ ε inf u ◦ x, hence I(ν) ≥ (1− ε)

∫
u ◦ x dµ+ ε inf u ◦ x.

On the other hand, let (yn) be a sequence in x(N) such that yn → inf x. Define

ςn = (1− ε)µ+ ε θn, where θn is the Dirac probability measure with mass at s ∈ N

such that xs = yn. So ςn ∈M(N), ςn ≥ ν and In :=
∫
u◦x dςn = (1−ε)

∫
u◦x dµ+

ε u(yn) ≥ F (ν). Since In → (1−ε)
∫
u◦x dµ+ε inf u◦x, we are done because we get

(1− ε)
∫
u◦x dµ+ ε inf u◦x ≥ F (ν) ≥ I(ν) ≥ (1− ε)

∫
u◦x dµ+ ε inf u◦x. Q.E.D.

C On Subsection 3.3 and Examples 1 and 5

Proof of Lemma 1:

We have U(et + x) > U(x) for any t. For any α ∈ IR, et + x− αllEn converges in

the Mackey topology to et + x. Let us pick a positive α such that x−αllEn ∈ `∞+ .

Hence, for n sufficiently large, without loss of generality bigger than t, it is true

that U(et + x− αllEn) > U(x). However, for any T ∈ ∂U(x) and n large enough,

we know that 0 < U(et + x − αllEn) − U(x) ≤ T (et − αllEn). Now, T = µ + ν,

where µ ∈ `1 and ν is a pure charge. If T /∈ `1, then, as U is increasing, µ

and ν are positively valued on int‖.‖`
∞
+ . This implies that, for n large enough,

0 < µt − α(
∑

s>n µs + ν(llEn)) < µt − αν(llEn). As ν is a pure charge, we

have ν(llEn) = ν(ll) > 0. Thus, we can choose t sufficiently large such that

µt − αν(llEn) < 0, a contradiction. Q.E.D.
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C.1 The Superdifferential of Preferences (7)

Let us characterize ∂U for U given by (7). By Lemma 6, for each T ∈ ba+

there exist a real αT ≥ 0 and a generalized limit LIMT such that, at every x ∈ `∞,

T (x) =
∑∞

t+1 T (et)xt + αT LIMT (x). Denote by ∂̂U(x) ⊂ ba the set of linear and

norm continuous operators T such that T (et) = u′(xt)(ζt+γtβ) and αT = σβu′(x)

where (i) γt ≥ 0 ∀ t ≥ 1, (ii) γt = 0, if xt > x, (iii) σ ≥ 0 is zero when x is not a

cluster point of the sequence x and (iv)
∑∞

t=1 γt + σ = 1.

If x is a cluster point of x, there exists an infinite ordered set N1 ⊂ N such

that (xn)n∈N1 converges to x. Define ∂̃U(x) as the set of charges T that fulfill (i)

through (iv) with the additional condition that LIMT (y) = limn∈N1 yn when this

limit exists. We state that:

Lemma 10: If x is a cluster point of the sequence x≫ 0, then ∂̃U(x) ⊂ ∂U(x) ⊂

∂̂U(x). Otherwise, ∂U(x) = ∂̂U(x).

Proof: First, we will show that (in any case) ∂U(x) ⊂ ∂̂U(x). Let us define

U t : IR → IR ∪ {−∞} by U t(z) = U(x1, ..., xt−1, z, xt−2, ...). Given T an operator

in ∂U(x), we have, for each t, T (et) ∈ ∂U t(xt) ≡ [ζtu
′(xt), (ζt + β)u′(xt)] and,

so, there is γt ∈ [0, 1] : T (et) = (ζt + γtβ)u′(xt). When xt > x, the directional

derivative δU(x; et) there exists and it is equal to ζtu
′(xt), which implies γt = 0.

As observed, the pure charge component of T can be written as αT LIMT . Define

σ = αT/βu′(x) ≥ 0 and N be the ordered subset of N composed by all the

indices t : xt = x. It is true that T (ll) =
∑

t≥1(ζt + γt)u
′(xt) + σβu′(x) =∑

t≥1 ζtu
′(xt) + (

∑
t∈N γt + σ)βu′(x). Now T (ll) = δU(x; ll) where δU(x; ll) =∑

t≥1 ζtu
′(xt) + βu′(x). So,

∑∞
t=1 γt + σ =

∑
t∈N γt + σ = 1. It remains to show

that σ = 0 when x is not a cluster point. Suppose σ > 0. There are ε > 0 and

t0 ∈ N such that xt > x + ε for all t > t0. Given n ∈ N, let x̃n be the sequence

(x1, ..., xn, x + ε
2
, x + ε

2
, ...). Then x̃nt − xt < −ε/2 for all t > t0. As T ∈ ∂U(x),

the inequality U(x̃n) − U(x) ≤ T (x̃n − x) holds for each n. If n > t0, it is true

that U(x̃n) − U(x) =
∑

t>n ζt(u(x̃nt ) − u(xt)) and the left hand side converges to

zero when n goes to infinity. Then, lim infn T (x̃n − x) ≥ 0. However, for all n

large enough, it is true that T (x̃n−x) ≤ − ε
2

∑
t>n T (et)+σβu′(x)LIMT (x̃n−x) <

σβu′(x)LIMT (x̃n−x). As LIMT (x̃n−x) ≤ LIMT (− ε
2
ll) < 0, we get a contradiction.
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Now, suppose that x is not a cluster point and take an operator T ∈ ∂̂U(x).

Since σ = 0 and, so,
∑

t∈N1
γt = 1, it is clear that, for every y ∈ `∞+ , we have

U(y) ≤
∑

t≥1(ζt + γtβ)u(yt) and that U(x) =
∑

t≥1(ζt + γtβ)u(xt), which implies

U(y)−U(x) ≤
∑

t≥1(ζt + γtβ)(u(yt)−u(xt)). Since u(yt)−u(xt) ≤ u′(xt)(yt−xt)

holds for each t, we get U(y)− U(x) ≤
∑

t≥1(ζt + γtβ)u′(xt)(yt − xt) = T (y − x).

If y ∈ (`∞+ )c, U(y) = −∞, so U(y) − U(x) ≤ T (y − x) is immediate. Thus, we

conclude that, in this case, ∂̂U(x) = ∂U(x).

At last, suppose that x is a cluster point of x. Given T ∈ ∂̃U(x), if σ = 0, the same

argument done in the last paragraph implies T ∈ ∂U(x). Let us address the case

σ > 0. Notice that, for y ∈ `∞+ , we get once more
∑

t≥1(ζt + γtβ)(u(yt)− u(xt)) ≤∑
t≥1(ζt + γtβ)tu

′(xt)(yt − xt). Now, we will show that inf(u ◦ y) − inf(u ◦ x) ≤

u′(x)LIMT (x − y), what implies the desired inequality U(y) − U(x) ≤ T (y − x).

In fact, inf(u ◦ y) − u(xn) ≤ u(ym) − u(xn) ∀n ∈ N1 and ∀m ∈ N. So, inf(u ◦

y) − u(xn) ≤ u′(xn)(ym − xn) holds too. Making n ∈ N1 go to infinite and using

that u is of class C1 at (0,+∞), we get inf(u ◦ y) − inf(u ◦ x) ≤ u′(x)(ym − x).

Finally, making m→ +∞, we obtain inf(u◦y)− inf(u◦x) ≤ u′(x)(lim inf y−x) ≤

u′(x)(LIMT (y)− LIMT (x)). Q.E.D.

C.2 On Examples 1 and 5

We present first the missing details of the computation of AD equilibria in

Example 1 of Section 2 and, next, we give another example.

Example 1:

The price functional (given by Proposition 4) is induced by marginal utilities,

which are the same for the two agents. In fact, for each i, (ui)′(xit) = t
t+8

and

(ui)′(inf xi) = 1. Hence, equation (2) holds with κ = 1/2. Finally, we have that

πW 2 = πx2 (and, therefore, πW 1 = πx1) for some β > 0. In fact, π(x2 −W 2) =∑
t≥1(

1
2
)t−1 t

t+8
[ t+8
t
−h− 1

4
( t+8

t
)2] +β(1−h− 1

4
) = 2−

∑
t≥1(

1
2
)t−1[h t

t+8
+ 1

4
( t+8

t
)] +

β(3
4
− h). Since 3/4 > h and [h t

t+8
+ 1

4
( t+8

t
)] > 0 ∀ t ≥ 1 and bigger than 2 for

t = 1, we can pick β = 1
3/4−h{

∑
t≥1(

1
2
)t−1[h t

t+8
+ 1

4
( t+8

t
)]− 2} > 0 in order to make

π(x2 −W 2) = 0. Thus, (π, x1, x2) is an AD equilibrium.

Example 5: Charge-Expected Utility

Consider a representative consumer economy where preferences are described by
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the following Dunford integral U(x) =
∫
u ◦ x dν for any x ∈ `∞+ , where u : IR+ →

IR is a concave strictly increasing function, of class C1 on (0,+∞), and ν ∈ ba is

not countably additive and for which νt > 0 for any t. Loosely speaking, U is an

expected utility with respect to a “probability” which is just finitely additive 37.

There exist µ ∈ ca and η ∈ pch such that ν = µ + η. Moreover µ > 0 and η > 0.

Then

U(x) =
∞∑
t=1

u(xt)µt + η(u ◦ x). (17)

Now, given x ≫ 0, denote by η(u′(x)y) the value of η at the sequence with

general term u′(xt)yt. Notice that u(yt) − u(xt) ≤ u′(xt)(yt − xt) implies η(u ◦

y) − η(u ◦ x) ≤ η(u′(x)y) − η(u′(x)x). Let T be the linear functional defined by

T (y) =
∑∞

t=1 u
′(xt)µtyt + η(u′(x)y) for any y ∈ `∞.

As the hypothesis made imply that u′(xt) ≥ h for some h > 0 and all t, the

functional y 7→ η(u′(x)y) is a positive pure charge. In fact, the functional is

clearly linear and continuous in the sup norm, so it belongs to the dual of `∞ and,

furthermore, its countably additive part is zero (as et is mapped into η(u′(x)et) = 0

since η is a pure charge). Finally, η(u′(x)ll) ≥ η(hll) > 0 and the positivity follows.

Then, T ∈ ∂U(x) and, therefore, given endowments W = x, we have that x is

maximal on the budget set {y ∈ `∞+ : T (y −W ) ≤ 0}. So, the AD equilibrium

price T /∈ ca.

Remark 9: Comparing with Examples 1 and 2, we did not need in this exam-

ple to assume certain features for the optimal consumption bundles in order to

obtain a pure charge in the Arrow-Debreu price (recall that in the previous ex-

amples, we had to suppose that the infimum consumption was a cluster point).

Notice also that the utility function in this example is not just Mackey lower semi-

discontinuous but is also Mackey upper semi-discontinuous 38 (and, therefore, the

existence theorem in Bewley [5] could not be used to guarantee that AD equilib-

37The idea that countable additivity is just a regularity hypothesis and not an integral part of
the probability concept dates back to de Finetti (in several papers from the 1930’s), as Dubins
and Savage [11] recall (p.10), sharing this view

38To show the upper semi-discontinuity, we need to show that the upper contour set might not
be Mackey closed. Given a positive scalar m and a bounded sequence y ≫ 0, let xnt = yt− ε for
t ≤ n and xnt = yt +m otherwise. Then, xn → y − εll in the Mackey topology (see Lemma 3).
Now, ∃hy > 0 : u(yt +m)− u(yt) ≥ hy,∀t and, therefore, η((u(yt +m)− u(yt))t) ≥ η(ll)hy > 0.
So ε > 0 can be chosen small enough so that η((u(yt +m))t) > η((u(yt))t) + µ(y)− µ(y − εll).
Then, U(xn) > U(y) but U(y − εll) < U(y). Changing the signs of ε and m we could show the
lower semi-discontinuity.
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ria exist). In Araujo [1] it was proven that the Mackey topology is the strongest

topology for which continuity of preferences (under the other assumptions in Be-

wley [5]) always implies the existence of equilibrium. This not precludes some

particular and important examples of existence without Mackey lower or upper

semi-continuity.

D On Section 4

D.1 On Necessary Optimality Conditions: Proofs

Proof of Proposition 5:

Consider the general case, when A4 is not assumed, stated in Remark 3 (ii).

For h > 0, U(x∗+hv(t))−U(x∗)
h

≤ 0 so δ+U(x∗; v(t)) = limh↓0
U(x∗+hv(t))−U(x∗)

h
≤ 0.

We know that there exists T ∈ ∂U(x∗) such that T (v(t)) = δ+U(x∗; v(t)) since

δ+U(x∗; v(t)) = inf{L(v(t)) : L ∈ ∂U(x∗)}, where the infimum can be replaced

by the minimum, as U is norm continuous at x∗ and therefore ∂U(x∗) is weak*

compact (see Zeidler [37], Theorem 47.A, p.387). Q.E.D.

Lemma 11: Let x∗ ≫ 0 be maximal for U subject to BP (q, ω, z0) and z∗ such

that x∗ = x(z∗). Then,

(i) lim
n
νn(x∗ − ω) ≥ lim supµnnqnz

∗
n

where µn and νn are, respectively, the countably additive and the pure charge com-

ponents of the n-th term of some weak* converging sequence (T n) ⊂ ∂U(x∗);

(ii) If the direction y(n) is right-admissible, for some n, then the following

transversality condition holds:

lim
n
νn(x∗ − ω) ≤ lim inf µnnqnz

∗
n

where µn and νn are, respectively, the countably additive and the pure charge com-

ponents of the n-th term of some weak* converging sequence (T n) ⊂ ∂U(x∗);

(iii) If the directional derivative δU(x∗; y(n)) exists and y(n) is right-admissible,

for some n, then, for every T̃ ∈ ∂U(x∗), the following transversality condition holds

ν(x∗ − ω) = limµnqnz
∗
n

where (µ, ν) ∈ ca× pch is such that T̃ = µ+ ν.
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Proof: (i) For each n,

0 ≤ limh↑0
U(x∗+hy(n))−U(x∗)

h
= T n(

∑∞
t>n(qt(z

∗
t−1 − z∗t ) +Rtz

∗
t−1)et)− qnz∗nT nen,

where T n is some supergradient of U at point x∗ (since the limit is δ−U(x∗; vt),

which is equal to max{L(vt) : L ∈ ∂U(x∗)}, as U is norm continuous at x∗). Now,

T n = µn + νn, where µn ∈ `1 and νn is a pure charge. Hence,

∞∑
t>n

(qt(z
∗
t−1−z∗t )+Rtz

∗
t−1)µ

n
t +νn(

∞∑
t>n

(qt(z
∗
t−1−z∗t )+Rtz

∗
t−1)et)−qnz∗nµnn ≥ 0. (18)

Let n→∞. The sequence (T n) lies in the weak* compact set ∂U(x∗) and there-

fore has a subsequence converging, in the weak* topology, to some T in this set.

Without loss of generality, we take this subsequence to be the initial sequence.

Let us show that the associated pure charges sequence (νn) lies in a bounded set

and, therefore, in a weak* compact set. Now, as (T n) lies in a weak* compact set,

there is N > 0 such that ‖T n‖ba ≡ max{|T n(g)| : ‖g‖ ≤ 1} ≤ N . For every g in

the unit ball of `∞, gEm is also in the unit ball. So,
∣∣∑

k>m µ
n
k(gEm)k + νn(gEm)

∣∣ =∣∣T n(gEm)
∣∣ ≤ N. Taking the limit as m goes to ∞, |ν(g)| ≤ N since ν(g) = ν(gEm)

for every m. Then we can take a subsequence of (νn) converging in the weak*

topology to some ν and along this subsequence the associated countably additive

components converges also to some µ. Again, without loss of generality, we stick

to the same sequence. Then, (µn) converges in the weak topology of `1 to µ and,

therefore, the union set of terms of the sequence and its limit constitutes a weakly

compact set.

Let ỹ(n) = y(n) + qnz
∗
nen. By Lemma 3, the sequence (ỹ(n)) tends, as n goes to

∞, to zero in the Mackey topology (and, therefore, uniformly on weakly compact

sets in `1). Hence, the series in inequality (18) tends to zero, as n goes to ∞.

Notice that, for every n, νn(y(n)) = νn(y(1)) and, as (νn) converges in the weak*

topology, lim νn(y(1)) exists. This completes the proof of item (i). The proof

of item (ii) is analogous. To see (iii), an equality holds now in (18), for any

T ∈ ∂U(x∗) decomposable into a countably additive part µ and a pure charge ν.

The series also tends to zero as n→∞. By the argument at the end of the proof

of item (i) we complete the proof. Q.E.D.

D.2 AD Budget Set and Implementation

Proof of Lemma 2:
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As x ≤ xi(z), it suffices to show that xi(z) ∈ BAD(π,W i) is equivalent to (10).

In fact, xi(z) satisfies π(xi(z) − W i) ≤ 0 if and only if
∑∞

t=1 pt(qt(zt−1 − zt) +

Rtzt−1) +ν(xi(z)−ωi)− zi0π(R) ≤ 0 where the series is equal to p1q1z
i
0− lim ptqtzt

and p1q1 = p(R) + lim ptqt. Q.E.D.

D.3 On Standard Portfolio Constraints

Now, let us see that, given a deflator λ ∈ `1, portfolio constraints of type (b) or

(c) imply, in equilibrium, limλtqtz
i
t = 0.

Each constraint implies that any feasible portfolio z satisfies lim inf λtqtzt ≥ 0

as ωi ∈ `∞+ ∀i. On the other hand, multiplying, at each t, the budget constraint by

λt and summing over t gives us
∑

t λt(x
i
t−ωit) = λ1q1z

i
0− limt λtqtz

i
t. Adding over

i, we get (
∑

i z
i
0)(
∑

t λtRt) = λ1q1(
∑

i z
i
0) −

∑
i limt λtqtz

i
t. Either for

∑
i z

i
0 > 0

(as there is no bubble) or
∑

i z
i
0 = 0,

∑
i limt λtqtz

i
t = 0, so, limt λtqtz

i
t = 0 ∀i.

D.4 Impatient Agents Sell the Bubble: Proof

Proof of Proposition 9:

By A4 and Lemma 1, ∂U i(x) = {µi}. Thus,

lim
h↓0

1

h
(U i(x+ h(qtet −

∑
τ>1

Rτeτ )− U i(x)) = µi(qtet −
∑
τ>t

Rτeτ )

As µisqs = µis+1(qs+1+Rs+1) for each s, µi is a deflator. Since there is a bubble and

the markets are complete, µi(qtet −
∑

τ>tRτeτ ) = µitqt −
∑

τ>t µ
i
τRτ > 0 which

implies U i(x+ h(qtet −
∑

τ>1Rτeτ ) > U i(x) for h > 0 sufficiently small. Q.E.D.

D.5 Coexistence with an Impatient Agent

Lemma 12: For x ∈ `∞+ , the superdifferential ∂χ
`∞+

(x) is the set {T ∈ ba : T (y) ≥

0 ∀ y ∈ `∞+ and T (x) = 0}.

Proof: Using Example 47.9 in Zeidler [37], p.385, we have, for x ∈ `∞+ , that

∂χ
`∞+

(x) is the set {T ∈ ba : T (y) ≥ T (x) ∀ y ∈ `∞+ }39. Now, applying T to 0 and

to 2x, we get, using the above inequality, T (x) = 0. Q.E.D.

Lemma 1 does not extend to boundary points. Actually, we have the following

result (that does not depend on U being Mackey continuous):

39We have changed the sign of χ
`∞
+

to make it concave and then we work with the superdif-

ferential instead of using the subdifferential.
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Lemma 13: If U : `∞ → IR ∪ {−∞} is an increasing function with effective

domain `∞+ and x is a norm boundary point of `∞+ such that ∂U(x) 6= ∅, then

∂U(x) is not contained in `1.

Proof: Given x not uniformly bounded away from zero and T ∈ ∂U(x), it is

always possible to find a nonnegative pure charge ν such that ν(x) = 0, which

implies that T + ν ∈ ∂U(x). Take the subsequence (xni) converging to zero and

let N ′ the ordered set of natural numbers constituted by the respective indices.

By Lemma 7, there is a generalized limit LIM such that LIM(x) = 0. It remains

to show that T + LIM ∈ ∂U(x). Now, U(x′) − U(x) ≤ T (x′ − x), together with

ν(x) = 0 and ν(x′) ≥ 0 for x′ ∈ `∞+ , implies that U(x′)−U(x) ≤ (T+LIM)(x′−x),

as desired. Q.E.D.

We can nevertheless say the following about superdifferentials, even on the

boundary points of `∞+ .

Lemma 14: Under A1 and A3, suppose U |D is a Mackey continuous function.

Given x ∈ `∞+ for any µ+ ν ∈ ∂U(x) with (µ, ν) ∈ ca× pch, we have µ ∈ ∂U(x).

Moreover, ν(x) = 0.

Proof: Let us show that µ is also a supergradient. Take any y ∈ `∞, we know

that yEn converges in the Mackey topology to 0. Now, given m ∈ N, there exists

n0 such that, for n > max{n0,m}, U(y) ≤ U(yEcn) + 1/m. Hence, U(y)− U(x) ≤∑n
t=1 µt(yt − xt) + 1/m. Taking the limit as m goes to ∞, we see that U(y) −

U(x) ≤
∑∞

t=1 µt(yt − xt). As the preferences are monotonous, we know that ν is

a nonnegative operator. Suppose ν(x) > 0. Let xn = (x1, ..., xn,
xn+1

2
, xn+2

2
, ...),

then U(xn) − U(x) ≤ (µ + ν)(xn − x). Now, xn converges to x in the Mackey

topology, so the left hand side tends to zero. However, the right hand side is equal

to −1
2

∑
t>n µtxt − ν(1

2
x) ≤ −1

2
ν(x) < 0, a contradiction. Q.E.D.

E On Section 5

Proof of Proposition 11:

(i) R(z) = (c1s−ωi1s+ρ1s(g1s−ei1s−g0))s∈N, so q(z) = π((c1s−ωi1s+ρ1s(g1s−ei1s−

g0))s∈N). By (13), c0+ρ0g0+π((c1s−ωi1s+ρ1s(g1s−ei1s−g0))s) = ωi0+ρ0e
i
0+π◦R(zi0).
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Thus, (c0−ωi0) + ρ0(g0− ei0) + π((c1s−ωi1s−R(zi0))s) +π(ρ1s(g1s− (ei1s + ei0))s) +

(ei0 − g0)π(ρ1) = 0, that is, (c, g) satisfies (15).

(ii) Let us define z ∈ `∞ by c1s−ωi1s+ρ1s(g1s−ei1s−g0) = R(z)s, ∀s ∈ N. It remains

to show that date 0 budget constraint holds. In fact, (c0−ωi0)+ρ0(g0−ei0)+q(z−

zi0) = (c0−ωi0)+(γ0+π(ρ1))(g0−ei0)+π((c1s−ωi1s+ρ1s(g1s−ei1s−g0))s−R(zi0)) =

(c0 − ωi0) + γ0(g0 − ei0) + π((c1s −W i
1s + ρ1s(g1s − Ei

1s))s) and this last expression

is less than or equal to zero, since (c, g) ∈ BAD(π, γ,W i, Ei). Q.E.D.

Let us prove now that, for an appropriate choice of ε, we have π̃(x1−(W 1, E1)) =

0 in Example 4. Notice that π̃(x1 − (W 1, E1)) = (1 − ε)
∑

s≥1(
1
2
)s−1(− s

s+1
ψs +

2(llO − llOc)) + ε(B(−ψ) +B(ρ(llO − llOc))). Now, B(ρ(llO − llOc)) = 0 whereas

B(−ψ) < 0. It suffices to show that
∑

s≥1(
1
2
)s−1(− s

s+1
ψs + 2(llO − llOc)) > 0.

This holds as in this series, the sum an odd term and the next even term is

(1
2
)s−1(−1

2
s
s+1

+ 1
8
s+1
s+2

+ 2− 1) > 0 (since s
s+1

< 1).
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