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1 Introduction

Consider an m-variate random variable Y with joint pdf h(y1, . . . , ym). Let f1(y1), . . . , fm(ym)

denote the corresponding marginal pdf’s. Assume that the marginals are known up to a

parameter vector β (β collects the distinct parameters of all marginals). The dependence

structure is not given. We observe a random sample {yi}Ni=1 = {y1i, . . . , ymi}Ni=1. We are

interested in estimating β efficiently without assuming anything about the joint distribution

except for the marginals.

As a simple example consider the setting of a standard panel (small T , large N). We

have a well specified marginal for each of T cross section (e.g., logit models, duration models,

stochastic frontier models, etc.) and we are interested in efficient estimation of the parameters

in the marginal distributions without assuming a parametric form on dependence between

them. This setting is typical for microeconomic applications. The variable of interest yt,

t = 1, . . . , T , can be the duration of unemployment in period t, or the use of social services in

period t. Additional motivation for this problem comes from insurance. In particular, it arises

in models of survival of multiple lives, where the two or more durations are dependent (see,e.g.,

Frees and Valdez, 1998). In life insurance of spouses this effect is known as the “broken heart”

syndrome. In finance, a similar setting arises in the so called SCOMDY models (Chen and

Fan, 2006a,b), where interest is in estimation of individual conditional distribution parameters

and innovations of the univariate GARCH models are allowed to have arbitrary dependence.

We will use the well known representation of log-joint-density in terms of log-marginal-
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densities and the log-copula-density:

lnh(y1, . . . , ym; β) =
m∑
j=1

ln fj(yj; β) + ln c(F1(y1; β), . . . , Fm(ym; β)), (1)

where c(· · · ) is a copula density and Fi denotes the corresponding marginal CDF’s. This

decomposition is due to Sklar’s (1959) theorem which states that any continuous joint dis-

tribution can be represented by a unique copula function of the corresponding continuous

marginal CDF’s.

It is well understood that the parameters of the marginals can be consistently estimated

by maximizing the likelihood under the assumption of independence between marginals –

this is the so called quasi maximum likelihood estimator, or QMLE. The copula term in (1)

is zero in this case. However, QMLE is not efficient if marginals are not independent. For

highly dependent marginals, the efficiency loss of QMLE relative to the full likelihood MLE

may be quite large. In the context of a two-stage estimation of parametric copula models,

Joe (2005) reports that FMLE asymptotic variance estimates for β are up to 93% smaller

than those of QMLE. Recently, Prokhorov and Schmidt (2009) investigated the conditions

for copula redundancy, that is when using the copula score does not improve efficiency over

QMLE. The redundancy conditions they derive are fairly strong so incorporating information

about dependence into parametric estimation problem will usually bring efficiency gains.

It is also well understood that, unlike QMLE, FMLE is generally not robust to copula

misspecification. That is, the efficiency gains will come at the expense of an asymptotic bias

if the joint density is misspecified. Prokhorov and Schmidt (2009) point out that there are
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robust parametric copulas, for which pseudo MLE (PMLE) based on an incorrectly specified

copula leads to a consistent estimation. But a copula that is robust in one problem may not

be robust in another, and some robust copulas are robust because they are redundant. So

finding a general class of robust non-redundant parametric copulas is difficult if at all possible.

In this paper we address the issue of robust and efficient estimation of β using nonpara-

metric methods. That is, we investigate whether we can obtain a consistent estimator of the

parameters of marginals, which is more efficient than the QMLE, by modelling the copula

nonparametrically. So the questions we ask are how to estimate β semiparametrically, what is

the semiparametric efficiency bound for the estimation of β, and whether we can achieve it. To

answer this questions we propose a sieve MLE (SMLE) procedure, which estimates β and ln c

simultaneously (in one-step). Even though other nonparametric methods are available, e.g.,

kernel, local linear estimators, we choose the linear sieve method because of its simplicity. In

effect we are replacing the true copula term in FMLE with its sieve approximator. Given the

approximator, the problem becomes essentially identical to regular parametric FMLE. Sub-

ject to an approximation error, this produces a generally robust and usually non-redundant

copula term, in the sense explained above.

What is not well understood is how such a semiparametric estimator compares to QMLE.

Both QMLE and SMLE have the same parametric part – the correctly specified (up to a pa-

rameter vector) marginal distributions. They both involve no assumption on the dependence

structure and, unlike FMLE, are robust to copula misspecification. However, it is unclear

which estimator is more efficient. One the one hand, the SMLE uses dependence information

and, as we shall show, is semiparametrically efficient. On the other, SMLE involves estimation
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of a number of extra parameters.

The paper is related to the literature on efficient semiparametric estimation of copula

parameters with nonparametric marginals (see, e.g., Chen et al., 2006) and on efficient esti-

mation of nonparametric marginals when the copula is fully known (see, e.g., Segers et al.,

2008). More generally, it is related to the literature on seive-based estimation of models that

contain unknown functions (see, e.g., Ai and Chen, 2003; Newey and Powell, 2003). It is

also related to the literature on two-step semiparametric estimation (see, e.g., Newey and

McFadden, 1994; Severini and Wong, 1992) and the literature on semiparametric efficiency

bound (see, e.g., Severini and Tripathi, 2001; Newey, 1990).

The paper by Chen et al. (2006) considers a problem which is the converse of ours – a

sieve MLE estimation when the copula has a known parametric form but the marginals are

unknown. In that setting, sieves are employed to approximate univariate marginal densities.

We are employing sieves to approximate a multivariate (log-)density. So the main difficulty

of our setting is that, in high dimensions, we will suffer from the curse of dimensionality. For

low dimensional problems, simulations show that SMLE is feasible and can lead to efficiency

gains of up to 40% over QMLE.

We present theory of SMLE for our problem in Section 2. Section 3 contains simulation

results, while Section 4 presents an insurance application. Section 5 contains concluding

remarks.

5



2 Sieve MLE

Denote the true copula density by co(u), u = (u1, . . . , um), and denote the true parame-

ter vector by βo. Let co(u) belong to an infinite-dimensional space Γ = {c(u) : [0, 1]m →

[0, 1],
∫

[0,1]m
c(u) = 1} and βo belong to B ⊂ Rp. Given a finite amount of data, optimization

over the infinite-dimensional space Γ is not feasible. The method of sieves is used to overcome

this problem. Define a sequence of approximating spaces ΓN , called sieves, such that
⋃
N ΓN

is dense in Γ. Optimization is then restricted to the sieve space. Grenander (1981) is cred-

ited for observing that the MLE optimization, which is infeasible over an infinite dimensional

space, is remedied if we optimize over a subset of the parameter space (i.e. over the sieve

space) and then allow the subset to grow with the sample size. See Chen (2007) for a recent

survey of sieve methods.

Chen (2007) suggests that a convenient finite dimensional linear sieve for approximating

a multivariate log-pdf on [0, 1]m is a tensor product of linear univariate sieves on [0, 1]:

ΓN =

{
cJN (u) = exp

{
JN∑
k=1

a1kAk(u1) · . . . ·
JN∑
k=1

amkAk(um)

}
, (2)

u ∈ [0, 1]m,

∫
[0,1]m

cJN (u)du = 1

}
, (3)

JN →∞
JN
N
→ 0, (4)

where {Ak} contains known basis functions and {ajk} contains unknown sieve coefficients.

Specific examples of the basis functions Ak(u) include power series, trigonometric polynomi-

als, splines, wavelets, neural networks and many others. For example, in simulations and
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application we use the trigonometric sieve basis functions:

Ak(u) = ak cos(kπu) + bk sin(kπu),

where u ∈ [0, 1] and ak, bk ∈ R. The number of sieve elements in the tensor sieve JmN is the

smoothing parameter analogous to bandwidth in kernel estimation – it sets the quality of

sieve approximation.

Since in general there is no analytic solution for the MLE of the sieve coefficients, the

practical implementation of tensor sieves is often complicated. As an alternative we con-

sider using Bernstein polynomials, in particular the Bernstein copula density introduced by

Sancetta and Satchell (2004):

cJN (u) = JmN

JN−1∑
v1=0

· · ·
JN−1∑
vm=0

ωv

m∏
l=1

 JN − 1

vl

uvll (1− ul)JN−vl−1, (5)

where ωv denotes parameters of the polynomial indexed by v = (v1, . . . , vm) such that 0 ≤

ωv ≤ 1 and
∑JN−1

v1=0 · · ·
∑JN−1

vm=0 ωv = 1. For the initial values of the parameters we may use

the multivariate empirical density (histogram) estimator, i.e. ωv = 1
N

∑N
i=1 I(Ui ∈ Hv), where

Ui = (F1(y1), . . . , Fm(ym)), I(·) is the indicator function and

Hv =

[
v1

Jn
,
v1 + 1

Jn

]
× · · · ×

[
vm
Jn
,
vm + 1

Jn

]
. (6)

Note that the sieve above can be represented by a weighted sum of β-distributions. The

relation between the empirical density and the MLE solution for ω still needs to be inves-
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tigated but we found this sieve to converge faster in simulations than the tensor product

sieve. Sancetta (2007) derives rates of convergence of the Bernstein copula to the true copula.

Ghosal (2001), and references therein, discusses the rate of convergence of the sieve MLE

based on Bernstein polynomial (only for one-dimensional densities.)

We can now write the sieve for Θ = B×Γ as ΘN = B×ΓN . Further, let θ = (β′, c), then

the sieve MLE can be written as

θ̂ = arg max
θ∈ΘN

N∑
i=1

lnh(yi; θ) (7)

This estimator is easy to implement – the estimation problem is in effect a parametric likeli-

hood maximization problem once we replace Θ with ΘN .

The parameter θ contains a parametric part that comes from the marginals β and a

nonparametric part that describes the copula density c. We are interested in the asymptotic

distribution of β̂, the first p elements of θ̂. By the Gramér-Wold device, this distribution

is normal if, for any λ ∈ Rp, ‖λ‖ 6= 0, the distribution of linear combination λ′β is normal.

Note that λ′β is a functional of θ, call it ρ(θ). Its distribution given the sieve estimate θ̂ is

known to depend on smoothness of the functional ρ(θ) and on the convergence rate of the

nonparametric part of θ̂ (see, e.g., Shen, 1997). In our setting, the functional is very smooth

and this will compensate for a slow convergence rate of the nonparametric part of θ̂ so that

the parametric part of θ̂ will be
√
N -consistent.

In establishing asymptotic normality we follow the standard route (see, e.g., Chen et al.,

2006). First, we show smoothness of λ′β and then employ the Riesz representation theorem,

8



to show normality of
√
Nλ′(β̂ − β). In showing semiparametric efficiency of the SMLE of

β we follow the standard method of looking for the least favorable parametric submodel. A

recent simplified version of this approach can be found in Severini and Tripathi (2001). In

effect, by finding the Riesz representer we establish semiparametric efficiency exactly using

that approach.

We first list standard identification and smoothness assumptions used in sieve based esti-

mation (see, e.g., Chen, 2007; Chen et al., 2006).

Assumption 1 (identification) βo ∈int(B) ⊂ Rp, B is compact and there exists a unique θo

which maximizes E[lnh(Yi; θ)] over Θ = B × Γ.

A common smoothness assumption in nonparametrics is to restrict the class of considered

functions by a certain smoothness property (see, e.g., Shen, 1997; Chen et al., 2006). Let

g denote a real-valued, J times continuously differentiable function on [0, 1]m whose J-th

derivative satisfies the following condition for some K > 0 and r ∈ (J, J + 1]:

|DJg(x)−DJg(y)| ≤ K|x− y|r−JE , for all x, y ∈ [0, 1]m, (8)

where Dα = ∂α

∂x
α1
1 ...∂xαmm

, α = α1+. . .+αm is the differential operator, and |x|E = (x′x)1/2 is the

Euclidean norm. Then g is said to belong to the Hölder class on [0, 1]m, denoted Λr([0, 1]m). It

is also called r-smooth on [0, 1]m. Linear sieves are known to approximate r-smooth functions

well.

Assumption 2 (smoothness - Hölder class for copula; differentiability for marginals) Γ =
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{c = exp(g) : g ∈ Λr([0, 1]m), r > 1/2,
∫
c(u)du = 1} and ln fj(yj; β), j = 1, . . . ,m, are twice

differentiable w.r.t. β

Now we introduce new notation that will be used in proofs of continuity of ρ(θ) = λ′β

and of asymptotic normality and semiparametric efficiency of
√
N(β̂ − β). First, we define

the directional derivative of the loglikelihood in direction ν = (ν ′β, νγ)
′ ∈ V , where V is the

linear span of Θ− {θo},

l̇(θo)[ν] ≡ limt→0
lnh(θ+tν,y)−lnh(θ,y)

t

∣∣∣
θ=θo

= ∂ lnh(θo,y)
∂θ′

[ν]

=
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′ + 1
c(F1(y1,βo),...,Fm(ym,βo))

∂c(u1,...,um)
∂uj

∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
νβ

+ 1
c(F1(y1,βo),...,Fm(ym,βo))

νγ(u1, . . . , um)

Similarly, define

ρ̇(θo)[ν] ≡ limt→0
ρ(θ+tν)−ρ(θ)

t

∣∣∣
θ=θo

= λ′νβ

= ρ(ν)

Then, we define the Fisher inner product 〈·, ·〉 ≡ E
[
l̇(θo)[·]l̇(θo)[·]

]
on space V and the Fisher

norm ||ν|| ≡
√
〈ν, ν〉, where expectation is with respect to the true density h. The closed

linear span of Θ− {θo} and the inner product 〈·, ·〉 form a Hilbert space, call it (V̄ , || · ||).

Since ρ(θ) = λ′β is linear on V̄ and ρ̇(θo)[ν] = ρ(ν), to show smoothness of ρ(θ), we

basically only need to establish that it is bounded on V̄ , i.e. that sup06=θ−θo∈V̄
|ρ(θ)−ρ(θ0)|
||θ−θo|| <∞.
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This will imply that ρ(θ) is continuous and its directional derivative is bounded as well, i.e.

sup06=ν∈V̄
|ρ̇(θo)[ν]|
||ν|| <∞. This is the case if and only if supν 6=0,ν∈V̄

|λ′νβ |2
||ν||2 <∞. So we now show

when this condition holds.

Similar to Chen et al. (2006) and Ai and Chen (2003), we find the sup by writing

supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = supν 6=0,ν∈V̄

{
|λ′νβ|2

(
E
[
l̇(θo)[ν]2

])−1
}

= λ′
(
ESβS

′
β

)−1
λ,

(9)

where

S ′β =
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′ +
(

1
c(u)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
+ 1
c(F1(y1,βo),...,Fm(ym,βo))

g∗(u1, . . . , um)

(10)

and (g∗1, . . . , g
∗
p), which belong to the product space of square integrable zero-mean functions

on [0, 1]m, are the solutions to the following infinite-dimensional optimization problem for

q = 1, . . . , p:

inf
gq
E

[
m∑
j=1

{
∂ ln fj(yj, βo)

∂βq
+

(
1

c(u)

∂c(u)

∂uj

)∣∣∣∣
uk=Fk(yk,βo)

∂Fj(yj, βo)

∂βq

}
(11)

+
1

c(u)

∣∣∣∣
uk=Fk(yk,βo)

gq(u1, . . . , um)

]2

.

So the required condition is that ESβS
′
β is finite and positive definite.

Assumption 3 (nonsingular information) Assume that ESβS
′
β is finite and nonsingular.

Having established smoothness of ρ(θ) we can now appeal to the Riesz representation the-
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orem (see, e.g., Kosorok, 2008, p. 328) to derive the asymptotic distribution of λ′β. Basically,

the theorem states that for any continuous linear functional L(ν) on a Hilbert space there

exists a vector ν∗ (the Riesz representer of that functional) such that, for any ν

L(ν) = 〈ν, ν∗〉,

and the norm of the functional defined as

||L||∗ ≡ sup
||ν||≤1

||L(ν)||

is equal to ||ν∗||. The representer is used in derivation of normality and semiparametric

efficiency of the sieve MLE.

Application of the theorem to ρ̇(θo)[ν] = ρ(ν) suggests that there exists the Riesz repre-

senter ν∗ ∈ V̄ such that λ′(β̂−βo) = 〈θ− θo, ν∗〉 and ||ν∗|| = sup||ν||≤1 ||ρ(ν)||. The first claim

implies that the asymptotic distributions of β̂−βo and of 〈θ−θo, ν∗〉 are identical – the latter

is easier to use in proofs of normality than the former (see, e.g., Chen et al., 2006, Proof of

Theorem 1). The second claim is used in proofs of semiparametric efficiency (Severini and

Tripathi, 2001). Both are used to find the representer.

In fact we already found ν∗ when we showed smoothness of ρ(θ) by finding supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 .

Since supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = sup||ν||≤1 ||ρ(ν)||2, the representer is a vector whose norm, if squared,

is equal to supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = λ′

(
ESβS

′
β

)−1
λ. The vector is

ν∗ =
(
I, g∗

′
)′ (

ESβS
′
β

)−1
λ
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It is not difficult to show that

||ν∗||2 = E
[
l̇(θo)[ν

∗]l̇(θo)[ν
∗]
]

= λ′
(
ESβS

′
β

)−1
λ,

so the required condition holds.

The last assumption required for asymptotic normality is an assumption on the rate of

convergence for the sieve MLE estimator of the unknown copula function. As in other sieve

estimation literature, the sieve estimator is allowed to converge arbitrary slowly – smoothness

of ρ(θ) compensates for that and the parametric part of the estimator is nevertheless
√
N

normal. For a discussion of convergence rates of different sieves see Chen (2007).

Assumption 4 (convergence of sieve MLE) Assume that ||θ̂ − θo|| = OP (δN) for (δN)w =

o(N−1/2), w > 1.

It is a variation of standard results (see, e.g. Shen, 1997; Severini and Tripathi, 2001; Chen

et al., 2006) that, under these assumptions, β̂ is consistent and the asymptotic variance of

N1/2(β̂ − β) is equal to the semiparametric efficiency bound ||ν∗||2.

Theorem 1 Under Assumptions 1-4,
√
N(β̂ − βo)⇒ N(0, (E[SβS

′
β])−1) and β̂ is semipara-

metrically efficient.

Given the consistent SML estimates β̂ and ĉ, g∗q ’s can be estimated consistently in a sieve
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minimization problem as follows

arg min
gq∈AN

[
N∑
i=1

m∑
j=1

{
∂ ln fj(yji, β̂)

∂βq
+

(
1

ĉ(ûi)

∂ĉ(û1i, . . . , ûmi)

∂uj

)∣∣∣∣
ûki=Fk(yki,β̂)

∂Fj(yji, β̂)

∂βq

}

+
N∑
i=1

1

ĉ(F1(y1i, β̂), . . . , Fm(ymi, β̂))
gq(û1i, . . . , ûmi)

]2

,

where q = 1, . . . , p and AN is one of the sieve spaces discussed above. Given consistent

estimates β̂, ĉ, and ĝ∗, a consistent estimate of E[SβS
′
β] is easy to obtain if we replace the

expectation evaluated at the the true values with a sample average evaluated at the estimates.

3 Simulations

Our initial simulations with linear tensor sieves, including splines, polynomials, and trigono-

metric polynomials, exhibit slow convergence rates. In contrast, using Bernstein polynomials,

we were able to obtain the convergence within reasonable time. We therefore present the

results for the latter sieve.

One of the practical problems we face is the choice of the degree of polynomials JN in finite

samples. While some asymptotic results on the rate of convergence and its dependence on JN

are available, they are not informative in the finite sample situation. The literature on sieves

suggest using typical model selection techniques, such as BIC, AIC. However, the theoretical

implications of using these techniques in the context of sieves are not explored. Similar to

bandwidth selection in kernel estimation, it should be possible to devise data driven methods

for choosing the number of elements in sieve but we do not pursue this point in this paper.

The DGP we use in simulations is similar to Joe (2005) who studied asymptotic relative
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efficiency (ARE) of likelihood based estimators, i.e. the ratio of asymptotic variance of Full

MLE to that of QMLE of parameters in marginals. Joe (2005) finds that the ARE depends on

the specification of marginals and copula. In particular, the higher is the dependence implied

by the copula, the lower is the ARE of the QMLE, i.e. the more efficient is FMLE compared

to QMLE. We take the case where the ARE is the lowest and investigate whether we may

improve the efficiency of the QMLE by using the semiparametric sieve MLE technique.

We consider bivariate DGP with exponential marginals in which both mean parameters

µ1 and µ2 are set to 0.5. The dependence is modelled by the Plackett copula with dependence

parameter set equal to 0.002, which implies that we are close the lower Frechet bound for

dependence. Joe (2005) reports ARE of 0.064 for QMLE of (µ1, µ2) in this specific case. In

the simulation we use correctly specified marginals up to the two parameters to be estimated,

while the copula function is modelled using the Bernstein polynomials sieve. We use the

BIC to determine the degree of elements in the sieve JN . The number of observations us

N = 1, 000.

Table 1 contains simulation results. BIC is minimized at JN = 8. Thus we are estimating

64 nuisance parameters in the sieve and 2 parameters of the marginals. The optimization

is complicated by the restrictions on sieve parameters and parameters of the marginals. We

used standard constrained maximization routine in Matlab. Because of time constraints we

used only 100 simulation runs. This will be extended in the future. We report the simulated

mean of the Sieve MLE, QMLE and Full MLE estimators, their simulated variance and the

simulated relative efficiency (RE) of the QMLE with respect to the Sieve MLE, i.e. the ratio

of the SMLE simulated variance to that of QMLE.
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Table 1: Simulated mean and variance for QMLE, SMLE, Plackett copula based FMLE
µ1 SMLE QMLE FMLE µ2 SMLE QMLE FMLE

JN = 8
Mean 0.488679 0.501630 0.499924 0.488633 0.498784 0.499509
Var 0.000126 0.000194 0.000012 0.000159 0.000233 0.000012
RE 0.649485 0.682403
JN = 9
Mean 0.489800 0.501900 0.499951 0.489600 0.498300 0.500001
Var 0.000118 0.000194 0.000012 0.000153 0.000234 0.000012
RE 0.607530 0.653698

The result suggests that in this specific situation we were able to improve the efficiency

relatively to the QMLE substantially. The efficiency gain was as high as 32-40%. It appears

that there is some evidence of downward bias in the estimates based on Sieve MLE for JN = 8.

Therefore, we try JN = 9 in which case the bias seems to become smaller and the variance is

also improved. This may suggest that BIC may not be the optimal procedure to select JN .

Note that this case corresponds to extremely high negative dependence between the marginals.

In simulations using a weaker dependence, the improvements were not as substantial.

4 Application from insurance

We demonstrate the use of SMLE with an insurance application. We have data on 1,500

insurance claims. For each claim, we have the amount of claim payment, or loss, (Y1) and

the amount of claim-related expenses (Y2). The claim-related expenses known as ALAE

(allocated loss adjustment expense) include the insurance company expenses attributable to

an individual claim, e.g. the lawyers’ fees and claim investigation expenses. The claim amount

variable is censored – there is a dummy variable, d, which is equal to one if a given claim has
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surpassed the policy limit and zero if not. For details of the data set, see Frees and Valdez

(1998).

The claim amount and ALAE are assumed to be distributed according to the Pareto

distribution with parameters (λ1, θ1) and (λ2, θ2), respectively:

Fj(Yj) = 1−
(
λj + Yj
λj

)−θj
, j = 1, 2. (12)

Interest lies in efficient estimation of the marginal distribution parameters (λ1, θ1, λ2, θ2),

making efficient use of the strong dependence between the claim amount and ALAE. Addi-

tional complications arise due to censoring of Y1. The likelihood contributions for censored

observations will not be the same as for the uncensored ones and we need to account for that.

Define the marginal pdfs fj(yj), j = 1, 2. The QMLE log-likelihood contribution of an

uncensored observation is ln fj(yj), j = 1, 2. For a censored observation, the contribution is

ln(1 − F1(y1)) = θ1(ln(λ1) − ln(λ1 + y1)). So for QMLE, the log-likelihood contribution of

claim i is

lQi = (1− di) ln f1(y1i) + di ln(1− F1(y1i)) + ln f2(y2i).

Now consider the joint likelihood. Define the joint cdf H(y1, y2) and joint pdf h(y1, y2).

The FMLE contribution of an uncensored observation is lnh(y1, y2) = ln f1(y1) + ln f2(y2) +

ln c(F1(y1), F2(y2)). To derive the contribution of a censored observation we follow Frees and

Valdez (1998) in observing that Prob(Y1 ≥ y1, Y2 ≤ y2) = F2(y2) − H(y1, y2). So the log-

likelihood contribution of a censored observation is f2(y2) − H2(y1, y2), where H2(y1, y2) =
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∂H(y1,y2)
∂y2

. But H(y1, y2) = C(F1(y1), F2(y2)) so H2(y1, y2) = C2(F1(y1), F2(y2)) f2(y2), where

C2(u1, u2) = ∂C(u1,u2)
∂u2

. Therefore the full log-likelihood contribution for observation i can be

written as

lFi = (1− di)[ln f1(y1) + ln f2(y2) + ln c(F1(y1), F2(y2))]

+di[ln f2(y2) + ln(1− C2(F1(y1), F2(y2)))].

The main difficulty imposed by censoring is that we need to evaluate an additional term

involving a copula derivative. For the SMLE, the term is approximated along with ln c.

For the FMLE, the term can be derived analytically for a given copula family or evaluated

numerically.

The extra term will carry over to the variance problem (11) and a consistent estimate of

the SMLE variance, V̂ , will now be

arg min
gq∈AN

[
N∑
i=1

(1− di)

{
2∑
j=1

(
∂ ln fj(yji, β̂)

∂βq
+

1

ĉ(ûi)

∂ĉ(ûi)

∂uj

∂Fj(yji, β̂)

∂βq

)
+

1

ĉ(û1i, û2i)
gq(û1i, û2i)

}

+
N∑
i=1

di

{
∂ ln f2(y2i, β̂)

∂βq
− 1

1− Ĉ2(û1i, û2i)

(
2∑
j=1

∂Ĉ2(ûi)

∂uj

∂Fj(yji, β̂)

∂βq
+

∫ 1

0

gq(s, û2i) ds

)}]2

,

where β = (λ1, θ1, λ2, θ2)′, ûki = Fk(yki, β̂) and q = 1, . . . , 4. We will need to evaluate both gq

and its integral over u1.

The three estimators, QMLE, FMLE and SMLE, and their standard errors are given in

Table 2. The QMLE is an estimator based on the assumption of independence. It is known

to be robust in the sense that it is consistent even if independence is a false assumption

but to obtain the correct standard errors a “sandwich” formula for variance is needed. We
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report the robust standard errors in the table. The FMLE estimator is based on a fully

specified parametric joint likelihood. We follow Frees and Valdez (1998) and assume the

Frank copula with dependence parameter α, which along with the Pareto marginals completely

parameterizes the model. Consistency of this estimator, sometimes called Pseudo-MLE, relies

on correctness of the assumed copula family. If Frank is an incorrect copula family the FMLE

results in a bias. The SMLE estimator is robust in the sense that it does not rely on a

correctly specified parametric copula family. But it is not as efficient as any fully parametric

model. So we should expect SMLE to be close to QMLE in terms of the estimates and to be

between FMLE and QMLE in terms of standard errors.

Estimation results support this intuition. Our FMLE estimates using the Frank copula

(which turn out almost identical to those in Frees and Valdez (1998)) provide evidence of

an estimation bias that is not present in QMLE and SMLE, both of which are very close.

This is an indication of robustness of QMLE and SMLE versus FMLE against a copula

misspecification. While the FMLE standard errors are usually smaller than those of QMLE,

which is an indication of higher efficiency – a compensation for the lack of robustness. The

point we wish to stress is that the SMLE standard errors are smaller than those of QMLE

and this gain comes at no robustness cost but at some computational cost. To obtain the

SMLE, we used the cosine sieve with three elements in the sieve (JN = 3). The choice was

based on BIC.
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Table 2: Estimates and standard errors of QMLE, SMLE, Frank copula based FMLE for
insurance application

QML Est. SML Est. FML Est.
(Rob.St.Er.) (St.Er.) (St.Er.)

λ1 14,442.57 14,438.91 14,561.68
(2,385.31) (1,434.87) (1,392.08)

θ1 1.135 1.136 1.115
(0.127) (0.067) (0.065)

λ2 15,133.78 15,133.78 16,708.93
( 2,172.04) (1,549.66) (1,833.18)

θ2 2.223 2.223 2.312
(0.246) (0.142) (0.188)

α 3.158
(0.175)

LogL -31,950.80 -31,813.60 -31,778.41

5 Concluding Remarks

We have proposed an efficient semiparametric estimator of marginal distribution parameters.

This is a sieve maximum likelihood estimator based on a finite-dimensional approximation

of the unspecified part of the joint distribution. As such, the estimator inherits the costs

and benefits of the multivariate sieve MLE. The major benefit permitted by sieve MLE is

the increased relative asymptotic efficiency compared to quasi-MLE. We showed that the

efficiency gains are non-trivial. In some simulations the relative efficiency with respect to

QMLE was about 0.6 – a 40% improvement.

The gains come at an increased computational expense. The MLE convergence is slow for

the traditional sieves we considered. We found that the Bernstein polynomial is preferred to

other sieves in simulations. The running times are greater than QMLE or full MLE assuming

a parametric copula family but they are still reasonable (at least for the two dimensional

problems we consider). Moreover, simulations reveal a downward bias in SMLE, which seems
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to be caused by the sieve approximation error – it decreases as the number of sieve elements

increases.

A simple alternative to the proposed method is a fully parametric ML estimation problem.

Although simpler computationally, it imposes an assumption on the dependence structure,

which, if violated, renders the ML estimates inconsistent. In this respect, the semiparametric

approach is more robust but clearly no more efficient than any parametric alternative.
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