On the adjacency matrix of a threshold graph
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Abstract

A threshold graph on n vertices is coded by a binary string of length n — 1. We
obtain a formula for the inertia of (the adjacency matrix of) a threshold graph in terms
of the code of the graph. It is shown that the number of negative eigenvalues of the
adjacency matrix of a threshold graph is the number of ones in the code, whereas the
nullity is given by the number of zeros in the code that are preceded by either a zero
or a blank. A formula for the determinant of the adjacency matrix of a generalized
threshold graph and the inverse, when it exists, of the adjacency matrix of a threshold

graph are obtained. Results for antiregular graphs follow as special cases.
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1 Introduction

The graphs we consider are simple, that is, without loops or parallel edges. For basic
terminology and definitions we refer to [1],[5].

Let G be a connected graph with vertex set V(G) = {1,...,n} and edge set E(G). The
adjacency matrix A(G), or simply A, is the n x n matrix with (4, j)-element equal to 1 if
vertices ¢ and j are adjacent, and equal to 0 otherwise.

A threshold graph is a graph with no induced subgraph isomorphic to the path on 4
vertices, the cycle on 4 vertices, or to two disjoint copies of Ko, the complete graph on 2
vertices. Threshold graphs admit several equivalent definitions, in particular, a recursive
definition based on a binary code will be relevant to this paper, and will be described later.

We refer to the definitive [2] for further information concerning threshold graphs.
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An antiregular graph is a graph with at most two vertices of equal degree [3], [4]. These
graphs enjoy several nice properties. There is a unique connected antiregular graph on n
vertices, up to isomorphism. It can be shown that antiregular graphs are threshold graphs.

We introduce some notation. Let aq - - a,—1 be an (n — 1)-tuple of real numbers. We
define a generalized threshold graph on n vertices as follows. The graph is defined recursively.
We start with a single vertex and label it as 1. We then add vertex 2 and make it adjacent
to 1 by an edge of weight «aq, if a7 is nonzero. If oy = 0, then 1 and 2 are not adjacent. We
then add vertex 3 and make it adjacent to 1 and 2 by edges with weight as, if a9 is nonzero.
The process is continued. Having constructed the graph on vertices 1,..., k, we add vertex
k+1 and make it adjacent to 1, ...,k by edges of weight a1 if a1 #0,k=2,3,...,n—1.
We denote the resulting graph on n vertices by Glag - - - a,—1]. Note that if each «; is either
0 or 1, then the resulting graph is a threshold graph. Hence we refer to Glag -+ a,—1] as a
generalized threshold graph.

If ap - v, are alternately 0 and 1 (where « is either 0 or 1) then the resulting graph
is an antiregular graph. Furthermore, if a,,—1 = 1 (respectively, 0,) then the graph is the
unique connected (respectively, disconnected) antiregular graph on n vertices. If g -+ - a1
are alternately zero and nonzero (where ay is either zero or nonzero), then we refer to
Glag -+ - an—1] as a generalized antiregular graph.

We now describe the results of this paper. Recall that the inertia of the symmetric
n X n matrix A is the triple (ny(A),no(A),n_(A)) = (n4,np,n—), where ny,ng and n_
are respectively the number of eigenvalues of A that are positive, zero and negative. By the
inertia of a graph we mean the inertia of its adjacency matrix. It is well-known (see, for
example, [3],[4]) that if G is an antiregular graph on n vertices, then the inertia of G is given
by (5,0, 5) if n is even, and by (”7’1, 1, ”771) if n is odd.

In Section 2 we obtain the inertia of a threshold graph. It is shown that if G is a connected
threshold graph with the adjacency matrix A, then n_(A) is the number of ones in the code,
whereas ng(A), or the nullity of A is given by the number of zeros in the code that are
preceded by either a zero or a blank. We remark that some partial results concerning n_(A)
and an equivalent formula for ng(A) are proved in [4]. Results for the inertia of an antiregular
graph mentioned earlier follow as special cases from the results on threshold graphs.

In Section 3 we obtain a formula for the determinant and the inverse, when it exists, of

the adjacency matrix of a threshold graph.

2 Inertia of a threshold graph

We begin by showing that the adjacency matrix of a generalized threshold graph may be

reduced to a certain tridiagonal matrix by row and column operations.



Theorem 1 Let A be the adjacency matriz of Glay - ay—1], where aq,

numbers. Then there exists an n X n matrix P with det P = 1 such that
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Replace the first row (column) of A by the first row (column) minus the second row (column).

The resulting matrix is
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o
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0

where A(1]1) is the submatrix of A obtained by deleting the first row and column. Note that
if @ is the matrix obtained by replacing the first row of I,,, the identity matrix of order n,
by the first row minus the second row, then QAQ’ = B. Clearly, det Q = 1. We may assume,
as an induction assumption, that there exists an n x n matrix R with determinant 1 such
that
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Let S = ( 0 R ) . The result is proved by setting P = S~1(Q.




As consequences of Theorem 1, we obtain a formula for the inertia of a threshold graph

and a generalized antiregular graph. We first prove a preliminary result.

Lemma 2 Let n > 2 be a positive integer and let

-2 1 0 0
) 0

T,=| 0 1 =2 0
: 1

0 0 -~ 1 0

Then detT,, = (—1)""Y(n — 1). Furthermore, the inertia of Ty, is (1,0,n — 1).

Proof: We prove the result by induction on n, the cases n = 2,3 being easy. Assume the

result to be true for Tj,2 < k <n — 1. A simple Laplace expansion shows that

detT,, = —2detT,,_1—detT,_o
= (-2)(-1)"?(n-2) - (-1)"*(n-3)
= ()" n—1).

It follows by the Cauchy interlacing inequalities that the inertia of T, is
(1,0,n — 1). This completes the proof. ]

Theorem 3 Let G be a connected threshold graph on n vertices with the code oy - - a1
where each «; is 0 or 1 and a,—1 = 1. Let A be the adjacency matriz of G. Then n_(A)
equals the number of ones in the code, while ng(A) equals the number of zeros in the code
that are preceded by a zero or a blank (a zero is preceded by a blank if it is the first element
of the code).

Proof: Let the code a; -+ - a,,—1 be given by

th s1 to 52 tr Sk
where t{+- - -+tp+5s1+---+5sr = n—1. Since A and PAP’ have the same inertia for a nonsin-
gular P, by Theorem 1, A has the same inertia as the matrix on the right side of (1). Let O,,
be the m x m null matrix and let T}, be the n xn matrix defined as in Lemma 2. It can be seen
that the matrix on the right side of (1) is the direct sum of Oy, , Tg, 41, Oy —1, Tsyt1, -+ Ot —1
and T, y1. By Lemma 2, Ts, 1 has s; negative eigenvalues, i = 1,..., k, and therefore A has
S1 + - - - + sk negative eigenvalues. Note that s; + - -+ + si is the number of ones in the code.
The zero eigenvalues of A come only from O, ,O;,_1,---,Oy,—1 and their total number is
t1 + (ta — 1) + -+ + (tx — 1), which is precisely the number of zeros in the code that are
preceded by a zero or a blank. This completes the proof. [ ]



Theorem 4 Let G be a connected generalized antireqular graph on n vertices with the code
n

ai---an_1. Let A be the adjacency matriz of G. If n is even, then ny(A) = n_(A) = 3,
and if n is odd, then ny(A) =n_(A) = 251

Proof: First let n = 2m be even. Then as = oy = -+ = ag—2 = 0, whereas the remaining

a;’s are nonzero. The matrix on the right side of (1) is the direct sum of

—2&1 (65} —2&3 Qs —2an,1 Qp—1
oq 0 ’ a3 0 ’ ’ Oy —1 0 .

O

Since ! OZ has negative determinant, it has one positive and one negative eigen-
a;

value, i = 1,3,...,n — 1. Hence by Lemma 2, A has m positive and m negative eigenvalues.

The proof is similar when n is odd. [ ]

As remarked earlier, Theorem 4 is well-known in the case of antiregular graphs, see
[3],[4]. An equivalent description of the nullity of a threshold graph (ng(A) in the notation
of Theorem 3) as well as some partial results concerning the inertia of a threshold graph are

given in [4].

3 Determinant and inverse

Theorem 5 Let G be a connected threshold graph on n vertices with the code

0---01---10---01---1---0---01---1,
N —— —— —_———
t1 81 to s2 tk Sk
where t1 + -+t +s1+ -+ s = n— 1. Let A be the adjacency matriz of G. Then
det A=0 ity >0 o0rift; >2 for somei € {2,....k}. Ifty =0 and t; = 1,01 = 2,... )k,
then det A = (—1)s1++sk Hle S

Proof: If t; > 0 or if ¢; > 2 for some ¢ € {2,...,k}, then by Theorem 3, A has a zero
eigenvalue and det A = 0. So we assume that t; =0 and ¢t; = 1,7 = 2,..., k. The result will

be proved by induction on n. Let the code

1---101---10---01---1
N e S~
S1 S2 Sk
be denoted as a - - - ay,—1. By Theorem 1, det A equals the determinant of the matrix on the
right side of (1).
Let G; and G2 denote the graphs obtained from G by deleting vertex 1 and vertices
1,2 respectively and let A; and A;s be the corresponding adjacency matrices. A simple

determinant expansion shows that

det A = —2a; det A — a% det A;s. (2)



We consider cases:

Case (i): ap = 1,05 = 0,3 = 1.

By the induction assumption and (2), det A = —2(0)—(—1)s2Ts* HLQ s;. Since 81 = 1,
det A = (—1)st s [T ;.

Case (ii): an = 1,00 = 1,3 = 0.

By the induction assumption and (2), det A = —2(—1) 52+ +sx T[¥_ s, — 0. Since s, =
2, det A = (—1)s1ttsr T8 s,

Case (iii): on = 1,as = 1,03 = 1.

By the induction assumption and (2),
det A = —2(—1)Br— st Fon(g _1)5y.. 5

_ (_1)(51*2)+S2+”'+Sk (51— 2)s9 - sk

= (—1)81+'“+Sk82"'8k(281 —2—81 +2)
k
— (_1)51+“'+5k H s
i=1
and the proof is complete. [ |
The next result follows readily from Theorem 5.

Corollary 6 Let G be the connected antireqular graph on n = 2m vertices, and let A be the
adjacency matriz of G. Then det A = (—1)™.

We now turn to the inverse of the adjacency matrix of a threshold graph. Let sq,..., sk
be positive integers with s; + -+ 4+ sy + k = n, and consider the threshold graph G on n
vertices with the code
1---101---10---01---1.
N S~—~—
S1 S2 Sk

Let X7 be the (s; +2) x (s1 + 2) matrix given by

1 1 . 1 _1
S1 1 S1 S1 S1
1 S 1 _1
S1 S1 1 S1 S1
X1 = :
1 1 1
o a1l -5
_1 _1 1
S1 S1 S1

For r =2,...,k — 1, define the (s, 4+ 2) x (s, + 2) matrix



Sr Sr Sr Sr
1 1 .. 1 _1
Sr Sr 1 Sr Sr
X, = :
1 1 _1
Sp Sr Sr
1 ce. 1 1
Sr Sr Sr

Finally, define the (sx + 1) x (sg + 1) matrix

1 1 1 1

Sk Sk Sk Sk

11 1 1

wow 1 o o

Xy =

1 1 _ 1

Sk Sk 1 Sk

1 1 1

w0 W w1

For r=0,1,...,k —2, let C, be the n X n matrix whose principal submatrix indexed by

the rows and the columns s1+---+s,.+r+1,...,s1+ -+ 8,41 +7+2 equals X, and with
its remaining entries equal to zero. Let Ck_1 be the n X n matrix whose principal submatrix
indexed by the rows and the columns s +---+sg_1+k,...,81+ -+ s+ k equals X and

with its remaining entries equal to zero. With this notation we have the following result.

Theorem 7 Let sq,...,s; be positive integers with s1 + ---+ s + k = n, and let G be the
threshold graph on n vertices with the code
1---101---10---01---1.
— —— ——
S1 S2 Sk

If A is the adjacency matriz of G, then A is nonsingular, and A~' = Cy + -+ + Cr_1.

Proof: By Theorem 3, A does not have an eigenvalue equal to zero and hence A is nonsin-
gular. Let J,, denote the m x m matrix of all ones, and let 1 be the column vector of all
ones of appropriate order. We let J,, denote the p x ¢ matrix of all ones. The boldface 0
will denote the matrix of all zeros, whose size will be clear from the context. We have

1 1
X, = ( sifont Lo =5 )
147 1 :
—+1

S1

For r=2,...,k — 1, we may write
) 1 1 1
X, =— 1 Js, — splg, -1
Sp
-1 -1/ 1




Finally,
X

1

Sk

(

1 1 )

1 Jsk — SkIsk

The result is proved by verifying that A(Cy + Cy + --- + Cx—1) = I,,. For clarity, we

illustrate the argument for k = 3. The general case is similar. If £ = 3, then we have

Joy41 — Iy 41 0 J(s141) x 52 0 J(s141)xs3
0 0 1 0 1
A= sy x(s1+1) 1 Js, — I, 0 Jsyxss ;
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0| 0| 0| 1| J,—ssl,
A routine calculation shows that
Iiei | -1l ol o] o
0 0 0 0 0
ACy 0 -1 0 0 o |,
0 0 0 0 0
0 -1 0 0 0
0 1 -1 0
0 1 0 -1 0
Ac,=|o | 1|1, | -1 | 0],
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0 1 -1 0
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1

I
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It follows that ACy + AC, + ACy = I,, and hence A~! = Cy + C; + Cs. In the general case
we can similarly conclude that A=! = Cy + C; + --- + Cj_1 and the proof is complete. M

Inverse of the adjacency matrix of an antiregular graph

Define the matrices

-1 -1 1 -1 -1 1

Let G be the connected antiregular graph on n = 2m vertices. Let Hy be the n xn matrix
whose principal submatrix indexed by the rows and the columns 1, 2,3 equals U and with
its remaining entries equal to zero. For r =1,...,m — 2, let H, be the n X n matrix whose
principal submatrix indexed by the rows and the columns 2r + 1,2r + 2,2r + 3 equals V'
and with its remaining entries equal to zero. Let H,,_1 be the n x n matrix whose principal
submatrix indexed by the rows and the columns 2m — 1, 2m equals V and with its remaining
entries equal to zero. With this notation we have the following result, which follows from
Theorem 7.

Theorem 8 Let G be the connected, antireqular graph on n = 2m vertices, and let A be the

adjacency matriz of G. Then A= = Hy+--- + H,,,_1.

We conclude with an example. The adjacency matrix of the connected antiregular graph

on 8 vertices is given by

01010101
1001 01 01
0001 01O01
A 11100101
0 000 O0OT1TO0T1
11111001
000 0O0O0TO0T1
11111110



Then

0 1 -1 0 0 0 0
1 0 -1 0 0 00
-1 -1 2 1 -1 0 00
. 0 0 0 -1 0 00
0o 0 -1 -1 2 1 -1 0 |’
0 0 0 0 -1 0
0 0 -1 -1 21
0 0 0 0 0

thereby verifying the formula given in Theorem 8.
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