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Abstract

A threshold graph on n vertices is coded by a binary string of length n − 1. We

obtain a formula for the inertia of (the adjacency matrix of) a threshold graph in terms

of the code of the graph. It is shown that the number of negative eigenvalues of the

adjacency matrix of a threshold graph is the number of ones in the code, whereas the

nullity is given by the number of zeros in the code that are preceded by either a zero

or a blank. A formula for the determinant of the adjacency matrix of a generalized

threshold graph and the inverse, when it exists, of the adjacency matrix of a threshold

graph are obtained. Results for antiregular graphs follow as special cases.
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1 Introduction

The graphs we consider are simple, that is, without loops or parallel edges. For basic

terminology and definitions we refer to [1],[5].

Let G be a connected graph with vertex set V (G) = {1, . . . , n} and edge set E(G). The

adjacency matrix A(G), or simply A, is the n × n matrix with (i, j)-element equal to 1 if

vertices i and j are adjacent, and equal to 0 otherwise.

A threshold graph is a graph with no induced subgraph isomorphic to the path on 4

vertices, the cycle on 4 vertices, or to two disjoint copies of K2, the complete graph on 2

vertices. Threshold graphs admit several equivalent definitions, in particular, a recursive

definition based on a binary code will be relevant to this paper, and will be described later.

We refer to the definitive [2] for further information concerning threshold graphs.
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Government of India.
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An antiregular graph is a graph with at most two vertices of equal degree [3], [4]. These

graphs enjoy several nice properties. There is a unique connected antiregular graph on n

vertices, up to isomorphism. It can be shown that antiregular graphs are threshold graphs.

We introduce some notation. Let α1 · · ·αn−1 be an (n − 1)-tuple of real numbers. We

define a generalized threshold graph on n vertices as follows. The graph is defined recursively.

We start with a single vertex and label it as 1. We then add vertex 2 and make it adjacent

to 1 by an edge of weight α1, if α1 is nonzero. If α1 = 0, then 1 and 2 are not adjacent. We

then add vertex 3 and make it adjacent to 1 and 2 by edges with weight α2, if α2 is nonzero.

The process is continued. Having constructed the graph on vertices 1, . . . , k, we add vertex

k+1 and make it adjacent to 1, . . . , k by edges of weight αk−1 if αk−1 6= 0, k = 2, 3, . . . , n−1.

We denote the resulting graph on n vertices by G[α1 · · ·αn−1]. Note that if each αi is either

0 or 1, then the resulting graph is a threshold graph. Hence we refer to G[α1 · · ·αn−1] as a

generalized threshold graph.

If α1 · · ·αn−1 are alternately 0 and 1 (where α1 is either 0 or 1) then the resulting graph

is an antiregular graph. Furthermore, if αn−1 = 1 (respectively, 0,) then the graph is the

unique connected (respectively, disconnected) antiregular graph on n vertices. If α1 · · ·αn−1

are alternately zero and nonzero (where α1 is either zero or nonzero), then we refer to

G[α1 · · ·αn−1] as a generalized antiregular graph.

We now describe the results of this paper. Recall that the inertia of the symmetric

n × n matrix A is the triple (n+(A), n0(A), n−(A)) = (n+, n0, n−), where n+, n0 and n−

are respectively the number of eigenvalues of A that are positive, zero and negative. By the

inertia of a graph we mean the inertia of its adjacency matrix. It is well-known (see, for

example, [3],[4]) that if G is an antiregular graph on n vertices, then the inertia of G is given

by (n
2 , 0,

n
2 ) if n is even, and by (n−1

2 , 1, n−12 ) if n is odd.

In Section 2 we obtain the inertia of a threshold graph. It is shown that if G is a connected

threshold graph with the adjacency matrix A, then n−(A) is the number of ones in the code,

whereas n0(A), or the nullity of A is given by the number of zeros in the code that are

preceded by either a zero or a blank. We remark that some partial results concerning n−(A)

and an equivalent formula for n0(A) are proved in [4]. Results for the inertia of an antiregular

graph mentioned earlier follow as special cases from the results on threshold graphs.

In Section 3 we obtain a formula for the determinant and the inverse, when it exists, of

the adjacency matrix of a threshold graph.

2 Inertia of a threshold graph

We begin by showing that the adjacency matrix of a generalized threshold graph may be

reduced to a certain tridiagonal matrix by row and column operations.
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Theorem 1 Let A be the adjacency matrix of G[α1 · · ·αn−1], where α1, . . . , αn−1 are real

numbers. Then there exists an n× n matrix P with detP = 1 such that

PAP ′ =



−2α1 α1 0 0 · · · 0

α1 −2α2 α2 0 · · · 0

0 α2 −2α3 α3

...
...

...
. . .

...
...

0 · · · 0 αn−2 −2αn−1 αn−1

0 · · · · · · 0 αn−1 0


. (1)

Proof: Note that

A =



0 α1 α2 · · · · · · αn−1

α1 0 α2 · · · · · · αn−1

α2 α2 0 · · · · · ·
...

...
...

...
. . .

... αn−1
...

...
...

...
. . .

...

αn−1 αn−1 · · · · · · αn−1 0


.

Replace the first row (column) of A by the first row (column) minus the second row (column).

The resulting matrix is

B =



−2α1 α1 0 · · · 0

α1

0 A(1|1)
...

0


,

where A(1|1) is the submatrix of A obtained by deleting the first row and column. Note that

if Q is the matrix obtained by replacing the first row of In, the identity matrix of order n,

by the first row minus the second row, then QAQ′ = B. Clearly, detQ = 1. We may assume,

as an induction assumption, that there exists an n × n matrix R with determinant 1 such

that

RA(1|1)R′ =



−2α2 α2 0 0 · · · 0

α2 −2α3 α3 0 · · · 0

0 α3 −2α4 α3

...
...

...
. . .

...
...

0 · · · 0 αn−2 −2αn−1 αn−1

0 · · · · · · 0 αn−1 0


.

Let S =

(
1 0

0 R

)
. The result is proved by setting P = S−1Q.
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As consequences of Theorem 1, we obtain a formula for the inertia of a threshold graph

and a generalized antiregular graph. We first prove a preliminary result.

Lemma 2 Let n ≥ 2 be a positive integer and let

Tn =



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
... 1

0 0 · · · 1 0


.

Then detTn = (−1)n−1(n− 1). Furthermore, the inertia of Tn is (1, 0, n− 1).

Proof: We prove the result by induction on n, the cases n = 2, 3 being easy. Assume the

result to be true for Tk, 2 ≤ k ≤ n− 1. A simple Laplace expansion shows that

detTn = −2 detTn−1 − detTn−2

= (−2)(−1)n−2(n− 2)− (−1)n−3(n− 3)

= (−1)n−1(n− 1).

It follows by the Cauchy interlacing inequalities that the inertia of Tn is

(1, 0, n− 1). This completes the proof.

Theorem 3 Let G be a connected threshold graph on n vertices with the code α1 · · ·αn−1

where each αi is 0 or 1 and αn−1 = 1. Let A be the adjacency matrix of G. Then n−(A)

equals the number of ones in the code, while n0(A) equals the number of zeros in the code

that are preceded by a zero or a blank (a zero is preceded by a blank if it is the first element

of the code).

Proof: Let the code α1 · · ·αn−1 be given by

0 · · · 0︸ ︷︷ ︸
t1

1 · · · 1︸ ︷︷ ︸
s1

0 · · · 0︸ ︷︷ ︸
t2

1 · · · 1︸ ︷︷ ︸
s2

· · · 0 · · · 0︸ ︷︷ ︸
tk

1 · · · 1︸ ︷︷ ︸
sk

,

where t1+· · ·+tk+s1+· · ·+sk = n−1. Since A and PAP ′ have the same inertia for a nonsin-

gular P, by Theorem 1, A has the same inertia as the matrix on the right side of (1). Let Om

be the m×m null matrix and let Tn be the n×n matrix defined as in Lemma 2. It can be seen

that the matrix on the right side of (1) is the direct sum ofOt1 , Ts1+1,Ot2−1, Ts2+1, · · · ,Otk−1

and Tsk+1. By Lemma 2, Tsi+1 has si negative eigenvalues, i = 1, . . . , k, and therefore A has

s1 + · · ·+ sk negative eigenvalues. Note that s1 + · · ·+ sk is the number of ones in the code.

The zero eigenvalues of A come only from Ot1 ,Ot2−1, · · · ,Otk−1 and their total number is

t1 + (t2 − 1) + · · · + (tk − 1), which is precisely the number of zeros in the code that are

preceded by a zero or a blank. This completes the proof.
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Theorem 4 Let G be a connected generalized antiregular graph on n vertices with the code

α1 · · ·αn−1. Let A be the adjacency matrix of G. If n is even, then n+(A) = n−(A) = n
2 ,

and if n is odd, then n+(A) = n−(A) = n−1
2 .

Proof: First let n = 2m be even. Then α2 = α4 = · · · = α2m−2 = 0, whereas the remaining

αi’s are nonzero. The matrix on the right side of (1) is the direct sum of(
−2α1 α1

α1 0

)
,

(
−2α3 α3

α3 0

)
, · · · ,

(
−2αn−1 αn−1

αn−1 0

)
.

Since

(
−2αi αi

αi 0

)
has negative determinant, it has one positive and one negative eigen-

value, i = 1, 3, . . . , n− 1. Hence by Lemma 2, A has m positive and m negative eigenvalues.

The proof is similar when n is odd.

As remarked earlier, Theorem 4 is well-known in the case of antiregular graphs, see

[3],[4]. An equivalent description of the nullity of a threshold graph (n0(A) in the notation

of Theorem 3) as well as some partial results concerning the inertia of a threshold graph are

given in [4].

3 Determinant and inverse

Theorem 5 Let G be a connected threshold graph on n vertices with the code

0 · · · 0︸ ︷︷ ︸
t1

1 · · · 1︸ ︷︷ ︸
s1

0 · · · 0︸ ︷︷ ︸
t2

1 · · · 1︸ ︷︷ ︸
s2

· · · 0 · · · 0︸ ︷︷ ︸
tk

1 · · · 1︸ ︷︷ ︸
sk

,

where t1 + · · · + tk + s1 + · · · + sk = n − 1. Let A be the adjacency matrix of G. Then

detA = 0 if t1 > 0 or if ti ≥ 2 for some i ∈ {2, . . . , k}. If t1 = 0 and ti = 1, i = 2, . . . , k,

then detA = (−1)s1+···+sk
∏k

i=1 si.

Proof: If t1 > 0 or if ti ≥ 2 for some i ∈ {2, . . . , k}, then by Theorem 3, A has a zero

eigenvalue and detA = 0. So we assume that t1 = 0 and ti = 1, i = 2, . . . , k. The result will

be proved by induction on n. Let the code

1 · · · 1︸ ︷︷ ︸
s1

0 1 · · · 1︸ ︷︷ ︸
s2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
sk

be denoted as α1 · · ·αn−1. By Theorem 1, detA equals the determinant of the matrix on the

right side of (1).

Let G1 and G12 denote the graphs obtained from G by deleting vertex 1 and vertices

1, 2 respectively and let A1 and A12 be the corresponding adjacency matrices. A simple

determinant expansion shows that

detA = −2α1 detA1 − α2
1 detA12. (2)
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We consider cases:

Case (i): α1 = 1, α2 = 0, α3 = 1.

By the induction assumption and (2), detA = −2(0)−(−1)s2+···+sk
∏k

i=2 si. Since s1 = 1,

detA = (−1)s1+···+sk
∏k

i=1 si.

Case (ii): α1 = 1, α2 = 1, α3 = 0.

By the induction assumption and (2), detA = −2(−1)1+s2+···+sk
∏k

i=2 si− 0. Since s1 =

2, detA = (−1)s1+···+sk
∏k

i=1 si.

Case (iii): α1 = 1, α2 = 1, α3 = 1.

By the induction assumption and (2),

detA = −2(−1)(s1−1)+s2+···+sk(s1 − 1)s2 · · · sk

− (−1)(s1−2)+s2+···+sk(s1 − 2)s2 · · · sk

= (−1)s1+···+sks2 · · · sk(2s1 − 2− s1 + 2)

= (−1)s1+···+sk

k∏
i=1

si

and the proof is complete.

The next result follows readily from Theorem 5.

Corollary 6 Let G be the connected antiregular graph on n = 2m vertices, and let A be the

adjacency matrix of G. Then detA = (−1)m.

We now turn to the inverse of the adjacency matrix of a threshold graph. Let s1, . . . , sk

be positive integers with s1 + · · · + sk + k = n, and consider the threshold graph G on n

vertices with the code

1 · · · 1︸ ︷︷ ︸
s1

0 1 · · · 1︸ ︷︷ ︸
s2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
sk

.

Let X1 be the (s1 + 2)× (s1 + 2) matrix given by

X1 =



1
s1
− 1 1

s1
· · · 1

s1
− 1

s1
1
s1

1
s1
− 1 · · · 1

s1
− 1

s1
...

. . .
...

1
s1

· · · 1
s1
− 1 − 1

s1

− 1
s1

· · · − 1
s1

1
s1


.

For r = 2, . . . , k − 1, define the (sr + 2)× (sr + 2) matrix
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Xr =



1
sr

1
sr

· · · 1
sr

− 1
sr

1
sr

1
sr
− 1 · · · 1

sr
− 1

sr
...

. . .
...

1
sr

· · · 1
sr
− 1 − 1

sr

− 1
sr

· · · − 1
sr

1
sr


.

Finally, define the (sk + 1)× (sk + 1) matrix

Xk =



1
sk

1
sk

· · · 1
sk

1
sk

1
sk

1
sk
− 1 · · · 1

sk
1
sk

...
. . .

...
1
sk

· · · 1
sk
− 1 1

sk

1
sk

· · · 1
sk

1
sk
− 1


.

For r = 0, 1, . . . , k− 2, let Cr be the n× n matrix whose principal submatrix indexed by

the rows and the columns s1+ · · ·+sr +r+1, . . . , s1+ · · ·+sr+1+r+2 equals Xr+1 and with

its remaining entries equal to zero. Let Ck−1 be the n×n matrix whose principal submatrix

indexed by the rows and the columns s1 + · · ·+ sk−1 + k, . . . , s1 + · · ·+ sk + k equals Xk and

with its remaining entries equal to zero. With this notation we have the following result.

Theorem 7 Let s1, . . . , sk be positive integers with s1 + · · ·+ sk + k = n, and let G be the

threshold graph on n vertices with the code

1 · · · 1︸ ︷︷ ︸
s1

0 1 · · · 1︸ ︷︷ ︸
s2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
sk

.

If A is the adjacency matrix of G, then A is nonsingular, and A−1 = C0 + · · ·+ Ck−1.

Proof: By Theorem 3, A does not have an eigenvalue equal to zero and hence A is nonsin-

gular. Let Jm denote the m ×m matrix of all ones, and let 1 be the column vector of all

ones of appropriate order. We let Jp×q denote the p× q matrix of all ones. The boldface 0

will denote the matrix of all zeros, whose size will be clear from the context. We have

X1 =

(
1
s1
Js1+1 − Is1+1 − 1

s1
1

− 1
s1
1′ 1

s1

)
.

For r = 2, . . . , k − 1, we may write

Xr =
1

sr


1 1′ 1

1 Jsr − srIsr −1
−1 −1′ 1

 .
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Finally,

Xk =
1

sk

(
1 1′

1 Jsk − skIsk

)
.

The result is proved by verifying that A(C0 + C1 + · · · + Ck−1) = In. For clarity, we

illustrate the argument for k = 3. The general case is similar. If k = 3, then we have

A =



Js1+1 − Is1+1 0 J(s1+1)×s2 0 J(s1+1)×s3

0 0 1′ 0 1′

Js2×(s1+1) 1 Js2 − Is2 0 Js2×s3

0 0 0 0 1′

Js3×(s1+1) 1 Js3×s2 1 Js3 − Is3


,

C0 =
1

s1



Js1+1 − s1Is1+1 −1 0 0 0

−1′ 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

C1 =
1

s2



0 0 0 0 0

0 1 1′ −1 0

0 1 Js2 − s2Is2 −1 0

0 −1 −1′ 1 0

0 0 0 0 0


,

C2 =
1

s3



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1′

0 0 0 1 Js3 − s3Is3


.

A routine calculation shows that

AC0 =



Is1+1 −1 0 0 0

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 −1 0 0 0


,

AC1 =



0 1 0 −1 0

0 1 0 −1 0

0 1 Is2 −1 0

0 0 0 0 0

0 1 0 −1 0


,

8



AC2 =



0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 Is3


.

It follows that AC0 +AC1 +AC2 = In and hence A−1 = C0 + C1 + C2. In the general case

we can similarly conclude that A−1 = C0 + C1 + · · ·+ Ck−1 and the proof is complete.

Inverse of the adjacency matrix of an antiregular graph

Define the matrices

U =


0 1 −1

1 0 −1

−1 −1 1

 , V =


1 1 −1

1 0 −1

−1 −1 1

 and W =

(
1 1

1 0

)
.

Let G be the connected antiregular graph on n = 2m vertices. Let H0 be the n×n matrix

whose principal submatrix indexed by the rows and the columns 1, 2, 3 equals U and with

its remaining entries equal to zero. For r = 1, . . . ,m− 2, let Hr be the n× n matrix whose

principal submatrix indexed by the rows and the columns 2r + 1, 2r + 2, 2r + 3 equals V

and with its remaining entries equal to zero. Let Hm−1 be the n×n matrix whose principal

submatrix indexed by the rows and the columns 2m−1, 2m equals V and with its remaining

entries equal to zero. With this notation we have the following result, which follows from

Theorem 7.

Theorem 8 Let G be the connected, antiregular graph on n = 2m vertices, and let A be the

adjacency matrix of G. Then A−1 = H0 + · · ·+Hm−1.

We conclude with an example. The adjacency matrix of the connected antiregular graph

on 8 vertices is given by

A =



0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1

0 0 0 1 0 1 0 1

1 1 1 0 0 1 0 1

0 0 0 0 0 1 0 1

1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0


.
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Then

A−1 =



0 1 −1 0 0 0 0 0

1 0 −1 0 0 0 0 0

−1 −1 2 1 −1 0 0 0

0 0 1 0 −1 0 0 0

0 0 −1 −1 2 1 −1 0

0 0 0 0 1 0 −1 0

0 0 0 0 −1 −1 2 1

0 0 0 0 0 0 1 0


,

thereby verifying the formula given in Theorem 8.
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