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Brief History

Fisher, R. A. (1936), ‘The use of multiple
measurements in taxonomic problems’,
Ann. Eugenics, 7, 179–188.

Fisher was interested in the taxonomic
classification of different species of Iris.
He had measurements on the lengths and
the widths of the sepals and the petals of
the flowers of three different species,
namely, Iris setosa, Iris virginica and Iris
versicolor.



Brief History (Contd.)

Mahalanobis, P. C. (1936), ‘On the
generalized distance in statistics’, Proc.
Nat. Acad. Sci., India, 12, 49–55.

Mahalanobis met Nelson Annandale at
the 1920 Nagpur session of the Indian
Science Congress. Annandale asked
Mahalanobis to analyze anthropometric
measurements of Anglo-Indians in
Calcutta. This eventually led to the
development of Mahalanobis’ distance.



Brief History (Contd.)

Mahalanobis’ distance of an observation x
from a population with mean µ and
dispersion Σ :

D2(x,µ,Σ) = (x − µ)′Σ−1(x − µ).

Fisher’s linear discriminant function for
two populations with means µ1 and µ2

and a common dispersion Σ :

(x − (µ1 + µ2)/2)′Σ−1(µ1 − µ2).



Brief History (Contd.)

Fisher’s linear discriminant function corresponds to the
separating hyperplane that separates the points, which
are closer in Mahalanobis’ distance to one population
from the points, which are closer to the other
population.

Fisher’s choice of his linear discriminant function was
motivated by the fact that this linear function maximizes
Fisher’s two-sample t-statistic computed from linear
functions of the data.



Brief History (Contd.)



Brief History (Contd.)

Rao, C. R. (1948), ‘The utilization of
multiple measurements in problems of
biological classification’, JRSS–B, 10,
159–203.

Rao considered the problem of classifying
human skulls recovered in archaeological
excavation into Iron Age or Bronze Age



The linear discriminant function has
Bayes risk optimality for Gaussian class
distributions, which differ in their locations
but have the same dispersion.

In fact, the Bayes risk optimality holds for
elliptically symmetric and unimodal class
distributions, which differ only in their
locations.



Examples

Example (a) : Class 1 : Mixture of Nd(0,Σ) and
Nd(0,10Σ); and Class 2 : Nd(0,5Σ).
Σ = [0.51′1 + 0.5Id], Nd is the d -variate normal
distribution.

Example (b) : Class 1 : Mixture of Ud(0,Σ,0,1) and
Ud(0,Σ,2,3); and Class 2 : Ud(0,Σ,1,2) and
Ud(0,Σ,3,4). Ud(µ,Σ, r1, r2) denotes the uniform
distribution over the region
{x ∈ R

d : r1 < ‖Σ−1/2(x − µ)‖ < r2}.

Classes have same location 0 but different scatters and
shapes.



Bayes Class Boundaries
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Figure: Bayes class boundaries in R
2.



Bayes class boundaries (Contd.)

Class distributions involve elliptically
symmetric distributions.

They have same location (i.e., 0), and they
differ in their scatters as well as shapes.

No linear or quadratic classifier will work
here as they will fail to capture the Bayes
class boundaries!!



Performance of some standard classifiers
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Figure: Misclassification rates of LDA, QDA, two nonparametric
classifiers and the Bayes classifier for d = 2, 5, 10, 20, 50 and 100.



Elliptic Distributions

Suppose that the class densities are elliptically
symmetric

fi(x) = |Σi |
−1/2gi(‖Σ

−1/2
i (x − µi)‖)

= ψi(MD(x,µi ,Σi)) for all i = 1,2.

The class posterior probabilities are

p(1|x) = π1f1(x)/(π1f1(x) + π2f2(x))

and
p(2|x) = 1 − p(1|x).

It is easy to see that

log{p(1|x)/p(2|x)} = log(π1f1(x)/π2f2(x)) =

log(π1/π2)+logψ1(MD(x,µ1,Σ1))−logψ2(MD(x,µ2,Σ2)).



Elliptic Distributions (Contd.)

The posteriors turn out to be of the form

p(1|x) = p(1|z(x))

=
exp(logψ1(z1(x))− logψ2(z2(x))

[1 + exp(logψ1(z1(x))− logψ2(z2(x))]
,

p(2|x) = p(2|z(x))

=
1

[1 + exp(logψ1(z1(x))− logψ2(z2(x))]
,

where z(x) = (z1(x), z2(x)) = (MD(x,µ1,Σ1),
MD(x,µ2,Σ2)).

The posterior probabilities satisfy a generalized additive
model (Hastie and Tibshirani, 1990).



Gaussian Distributions

If we have two normal populations Nd(µ1,Σ) and
Nd(µ2,Σ), we get linear logistic regression model for
the posterior probabilities. This is related to Fisher’s
linear discriminant analysis.

If we have two normal populations Nd(µ1,Σ1) and
Nd(µ2,Σ2), we get quadratic logistic regression model
for the posterior probabilities. This is related to
quadratic discriminant analysis.



Nonparametric Multinomial Additive Logistic
Regression Model

For any 1 ≤ i ≤ (J − 1), it is easy to see that

log{p(i |x)/p(J|x)} =

log(πi/πJ)+logψi(MD(x,µi ,Σi))−logψJ(MD(x,µJ ,ΣJ)),

where p(i |x) is the posterior probability of the i-th class.

For any 1 ≤ i ≤ (J − 1), the posteriors are of the form

p(i |x) = p(i |z(x)) =
exp(Φi(z(x)))

[1 +
∑(J−1)

k=1 exp(Φk (z(x)))]
,

p(J|x) = p(J|z(x)) =
1

[1 +
∑(J−1)

k=1 exp(Φk (z(x)))]
,

where z(x) = (MD(x,µ1,Σ1), · · · ,MD(x,µJ ,ΣJ)).



Nonparametric Multinomial Additive Logistic
Regression Model (Contd.)

We replace the original feature variables
by the Mahalanobis’ distances from
different classes.

x → z(x) = (MD(x,µ1,Σ1), · · · ,MD(x,µJ ,ΣJ)).

One can use the backfitting algorithm
(Hastie and Tibshirani, 1990) to estimate
the posterior probabilities from the training
data.



More general Class Distributions

Non-elliptic class distributions.

Multi-modal class distributions.

Mixture models for class distributions.



Finite Mixture of Elliptically Symmetric
Densities

Assume

fi(x) =
Ri∑

k=1

θik |Σik |
−1/2gik(‖Σ

−1/2
ik (x − µik)‖),

where θiks are positive satisfying
∑Ri

k=1 θik = 1 for all
1 ≤ i ≤ J.
The posterior probability for the i-th class is

p(i |x) =
Ri∑

r=1

p(cir |x) for all 1 ≤ i ≤ J,

where cir denotes the r -th sub-class in the i-th class.
The posterior probability p(cir |x) satisfies a multinomial
additive logistic regression model because the
distribution of the sub-population cir is elliptically
symmetric.



The Missing Data Problem

In the training data, we have the class labels, but the
sub-class labels are not available.

If we had known the sub-class labels, we could once
again use the backfitting algorithm to estimate the
sub-class posteriors.

Sub-class labels can be treated as missing
observations. We can use an EM-type algorithm.



The Algorithm

Initial E-step : Sub-class labels are estimated by
appropriate cluster analysis of the training data in each
class.

Initial and later M-steps : Once the sub-class labels are
obtained, sub-class posteriors can be estimated by
fitting a nonparametric multinomial additive logistic
regression model using the backfitting algorithm.

Later E-steps : The sub-class labels are estimated by
sub-class posterior probabilities.

Iterations are carried out until posterior estimates
stabilize.

An observation is classified into the class having the
largest posterior probability.



Data Depth



Data Depth (Contd.)

Data depth of a point measures the relative position of
that point in a given data cloud.

It gives a center-outward ordering of the points relative
to the data cloud.

How do we measure the depth of a point?

One approach is to consider lines through the point
(hyper-planes for d ≥ 3) and look at the proportion of
data points lying on the two sides (half-spaces) of the
line.



Half-Space Depth

We can take the minimum of the proportion of data
points in any half-space of the line through a point after
considering all the possible lines through it. This is
called the half-space or Tukey depth. (Tukey, 1975).

All the data points lie on one half-space of one line
through the red point, while any line through the blue
point has almost equal proportion of data points in both
the half-spaces.



Spatial Depth

If a point is “central” then the resultant of all the unit
vectors from the sample points towards it will have
norm close to zero. On the other hand, if a point is “very
outlying”, this resultant will have a norm close to 1.



Data Depth and Classification



Data Depth and Classification (Contd.)

For an elliptically symmetric and strongly
unimodal distribution, the depth of a point
relative to that distribution is a decreasing
function of the Mahalanobis distance of
that point from the centre of that
distribution.



Classification in Infinite Dimensional Space

Rao, C. R. and Varadarajan, V. S. (1963),
‘Discrimination of Gaussian Processes’,
Sankhyā, 25, 159–203.

Rao and Varadarajan considered the
discrimination problem of Gaussian measures
in Hilbert spaces. They considered Hellinger
distance between two probability distributions



Classification in Infinite Dimensional Space
(Contd.)

Two Gaussian probabilities with positive definite
covariances in finite dimensional spaces are mutually
absolutely continuous.

In infinite dimensional spaces, two Gaussian
probabilities with positive definite covariance operators
are either orthogonal or mutually absolutely continuous.

Orthogonality implies perfect separation between
populations. In a sense, the classification problem
becomes “degenerate” and “trivial”.



Classification in Infinite Dimensional Space
(Contd.)

Two Gaussian probabilities with a common positive
definite covariance Σ opertator are mutually absolutely
continuous if and only if the difference between their
means (µ1 − µ2) lies in the range space of the
square-root Σ1/2 of their covariance operator.

Then Mahalanobis distance between the two
distributions
D2 = (µ1 − µ2)

′
Σ

−1(µ1 − µ2) = ‖Σ−1/2(µ1 − µ2)‖
2 is

a well defined monotonic function of the Hellinger
distance.

The classification problem is “non-degenerate” and
“non-trivial”. The likelihood ratio is “well-behaved” and
yields the Bayes classifier.


