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First passage percolation on a graph

• Random perturbation of the graph distance.

• Assign i.i.d. positive lengths to the edges.

• First passage time Tu,v between two vertices u and v is the
distance between them in the perturbed metric: i.e., the length of
the shortest path between the two.
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Basic objects or interest

• Asymptotics of the first passage time between two vertices when
the graph distance becomes large.

• Asymptotics of the metric ball Bv(t) with centre v and large
radius t.

• Existence and geometry of finite/ semi-infinite or bi-infinite
geodesics.
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Cayley graph of finitely generated groups

• A natural choice for the background geometry-locally finite
translation invariant infinite graphs.

• Cayley graph of finitely generated groups.

Definition

Consider a group G with a finite symmetric generating set S. Then the
corresponding Cayley graph Γ has elements of G as its vertex set and
g1 and g2 are connected by an edge if g−1g2 ∈ S.

Examples

• Consider the group Zd with generators {±e1,±e2, . . . ,±ed}- the
Cayley graph is the standard Euclidean lattice.

• Finitely generated free groups with standard generators (and their
inverses): the Calyley graph is a regular tree.
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FPP on Zd

• Hammersley-Welsh (1965)- model for fluid flow through
inhomogeneous media, Eden (1961)- growth of bacterial colony.

• First order behaviour by subadditivity.

I Let Tm,n denote the passage time from me1 to ne1.

I T0,m+n ≤ T0,m + Tm.m+n.

I ET0,m+n ≤ ET0,m + ET0,n.

I n−1ETn → µ = µ(e1) ∈ (0,∞) under mild conditions on the passage time
variables.

• Same is true in all other directions.

• Can be upgraded to almost sure convergence by subadditive
ergodic theorem.
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FPP on Zd

• Hammersley-Welsh (1965)- model for fluid flow through
inhomogeneous media, Eden (1961)- growth of bacterial colony.

• First order behaviour by subadditivity.

Shape theorem

I One can patch the limits in each directions to get a limit shape.

I Under mild conditions
t−1B̃0(t)→ B

almost surely as t→∞.

I B̃ is the “filled” metric ball.

I Limit shape B is a compact convex subset of Rd.
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Predictions for FPP on Zd
Under mild conditions

Limit shape B is strictly convex with uniformly curved boundary.

Var(T0,n) ≈ n2χ for some χ < 1/2.

For d = 2, χ = 1/3– KPZ universality class.

Typical deviations of the geodesics from the straight line ≈ nξ
where χ = 2ξ − 1.
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Prediction for infinite geodesics (at least for d = 2)

Under mild conditions

Almost surely, every semi-infinite geodesic has a limiting direction.

For any given direction, almost surely there exists a unique infinite
geodesic starting from each vertex going in this direction.

For a given direction, and two distinct starting points, the
semi-infinite geodesics almost surely coalesce.

Almost surely, there does not exist any bi-infinite geodesic.
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Gromov hyperbolic groups

Definition

A geodesic metric space is called δ-hyperbolic if it satisfies the
“thin triangle condition”– the third side of each triangle is
contained in the δ-neighbourhood of the fiirst two sides.

A finitely generated group is called Gromov hyperbolic if the
Calyley graph with respect to some symmetric generating set is
δ-hyperbolic for some finite δ.

• Trees are 0-hyperbolic.

• SL2(Z), or other groups acting
properly discontinuously on a tree.
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Boundary and Patterson-Sullivan measure

• To parametrize directions, one can define a boundary ∂G of
hyperbolic groups.

• Points on the boundary can be thought of as equivalence classes of
word geodesic rays.

• Cantor set like object.

• One can define a natural measure ν on ∂G that is obtained as a
weak limit of appropriately defined measures on the boundaries of
n-balls– called Patterson-Sullivan measure.

• These are usually defined for given base points, we shall always
think of the identity element as the base point.
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Earlier works

• The interest in studying FPP on general background geometries is
rather recent.

• Initiated primarily by Itai Benjamini and co-authors.

• Certain questions turn out to be easier to answer for hyperbolic
groups, although answers might be different to what is expected in
the Euclidean case.

• Benjamini-Tessera showed bigoedesics exist for FPP on hyperbolic
groups.

• Variance is predicted to grow linearly.
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Our set-up and results

• Consider a finitely generated Gromov hyperbolic group G.

• Fix a symmetric generating set S and consider the corresponding
Cayley graph Γ.

• Let 1 denote the vertex corresponding to the identity element.

• Let ∂G denote the boundary and let ν denote the
Patterson-Sullivan measure on it.

• Consider FPP on Γ with i.i.d. positive passage times with a
non-degenerate continuous distribution and sufficiently light tails.

Riddhipratim Basu (ICTS) FPP on Hyperbolic groups 30/03/22 13 / 25



Results: metric growth

• Let us consider a word geodesic γ = {1 = x0, x1, . . . , xn, . . .}
converging to ξ ∈ ∂G.

Question

Does
ET1,xn
n converge?

• What about the previous sub-additivity argument?

• Works if there are points g, g2, g3, . . . on γ.

• That is, it works if ξ is a polar direction, i.e., ξ = g±∞ for some
g ∈ G.
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Results: metric growth

Theorem (B., Mj)

For ν-a.e. ξ ∈ ∂G, there exists v(ξ) such that

ET1,xn
n

→ v(ξ).

Further, v(ξ) is constant ν-a.e..

• Can be upgraded to convergence in probability.

• One can find directions along which the convergence does not hold.
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Results: Fluctuations

• What about the fluctuations of T1,xn?

Theorem (B., Mj)

For each ξ ∈ ∂G and each word geodesic ray
γ = {1 = x0, x1, . . . , xn, . . .} converging to ξ

C1 ≤
Var(T1,xn)

n
≤ C2.

• The upper bound comes from the standard Poincare inequality
argument, essentially same as Kesten’s proof in the Euclidean case.

• The lower bound is the one that requires the hyperbolic structure.
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Results: geodesics

Definition

For a given environment ω of passage times, consider a geodesic ray
σ = {x0, x1, . . .} (in the FPP metric). We say σ accumulates on ξ ∈ ∂G
if there is a subsequence xnk

converging to ξ; σ is said to have direction
ξ if it is the only accumulation point.

Theorem (B., Mj)

For almost every ω, each geodesic ray has a direction. Further, given
o ∈ G and ξ ∈ ∂G almost surely there exists a unique geodesic ray
starting at o in direction ξ.
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Results: geodesics

• What about coalescence of geodesics?

Theorem (B., Mj)

For ξ ∈ ∂G and o1, o2 ∈ G almost surely the geodesic rays from o1 and
o2 in the direction ξ coalesce.
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Some ideas from the proof
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Automatic structure

• Hyperbolic groups admit an automatic structure– Cannon (1984).

• There exists a finite state automaton parametrizing a geodesic
combing of the Calyley graph.

• Associated to the automaton there is a topological Markov chain.

• One can roughly think that the Patterson-Sullivan measure on ∂G
can be lifted to a Markov chain on the space of words and almost
every geodesic ray eventually enters one of the irreducible
components – Calegari-Fujiwara (2010).
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Existence of the time constant

• Using the standard theory of ergodic Markov chains, one can show
that for ν-a.e., the proportion of occurrence of finite words along
the ray converges.

• One can then approximate, for m,n� 1, T1,xmn by

T1,xn + Txn,x2n + · · ·+ Tx(m−1)n,xmn .

• The proof is then completed by translation invariance and SLLN.
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Exponential divergence of hyperplanes

Definition

For a word geodesic ray γ = {1, x1, x2, . . .} define the hyperplane Hi

through xi as the set of all points whose nearest neighbour projection
onto γ is xi.

• Coarsely well-defined.

• The hyperplanes diverge exponentially, i.e., if j − i is sufficiently
large any path from Hi to Hj that stays at least distance R from γ
has word length larger than (j − i)eαR.
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Proof of coalescence

• Each geodesic must cross all hyperplanes from some index
onwards.

• Exponential divergence of hyperplanes imply that it is extremely
likely for the geodesics to come close to γ while crossing between
two hyperplanes.

• This can be used to show that the geodesics meet between two
hyperplanes with uniformly positive probability.

• The proof is completed by Borel-Cantelli Lemma and uniqueness
of geodesics.
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Linearity of variance

• Consider the variance decomposition given by the Doob
martingale where the filtration successively exposes the region
between consecutive hyperplanes.

• A similar argument as above shows that the contribution to the
variance coming from each term is uniformly bounded below.

• This shows that the variance grows at least linearly.

• Similar arguments have previously been used for FPP/LPP across
thin cylinders.

Riddhipratim Basu (ICTS) FPP on Hyperbolic groups 30/03/22 24 / 25



Thank You

Questions?
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