First Passage Percolation on Hyperbolic groups

Riddhipratim Basu

International Centre for Theoretical Sciences Tata Institute of Fundamental Research

RLK conference 30 March, 2022

Riddhipratim Basu (ICTS)

FPP on Hyperbolic groups

30/03/22 1/25

3.1

Best Wishes to RLK

Riddhipratim Basu (ICTS)

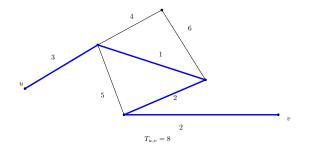
FPP on Hyperbolic groups

30/03/22 2/25

(日) (四) (코) (코) (코) (코)

First passage percolation on a graph

- Random perturbation of the graph distance.
- Assign i.i.d. positive lengths to the edges.
- First passage time $T_{u,v}$ between two vertices u and v is the distance between them in the perturbed metric: i.e., the length of the shortest path between the two.



Basic objects or interest

- Asymptotics of the first passage time between two vertices when the graph distance becomes large.
- Asymptotics of the metric ball $B_v(t)$ with centre v and large radius t.
- Existence and geometry of finite/ semi-infinite or bi-infinite geodesics.

Cayley graph of finitely generated groups

- A natural choice for the background geometry-locally finite translation invariant infinite graphs.
- Cayley graph of finitely generated groups.

Definition

Consider a group G with a finite symmetric generating set S. Then the corresponding Cayley graph Γ has elements of G as its vertex set and g_1 and g_2 are connected by an edge if $g^{-1}g_2 \in S$.

Examples

- Consider the group \mathbb{Z}^d with generators $\{\pm e_1, \pm e_2, \ldots, \pm e_d\}$ the Cayley graph is the standard Euclidean lattice.
- Finitely generated free groups with standard generators (and their inverses): the Calyley graph is a regular tree.

イロト イポト イヨト イヨト

FPP on \mathbb{Z}^d

- Hammersley-Welsh (1965)- model for fluid flow through inhomogeneous media, Eden (1961)- growth of bacterial colony.
- First order behaviour by subadditivity.
- Let $T_{m,n}$ denote the passage time from me_1 to ne_1 .
- $T_{0,m+n} \le T_{0,m} + T_{m.m+n}$.
- $\mathbb{E}T_{0,m+n} \leq \mathbb{E}T_{0,m} + \mathbb{E}T_{0,n}.$
- $n^{-1}\mathbb{E}T_n \to \mu = \mu(e_1) \in (0,\infty)$ under mild conditions on the passage time variables.
- Same is true in all other directions.
- Can be upgraded to almost sure convergence by subadditive ergodic theorem.

FPP on \mathbb{Z}^d

- Hammersley-Welsh (1965)- model for fluid flow through inhomogeneous media, Eden (1961)- growth of bacterial colony.
- First order behaviour by subadditivity.

Shape theorem

- One can patch the limits in each directions to get a limit shape.
- Under mild conditions

 $t^{-1}\tilde{B}_0(t) \to \mathcal{B}$

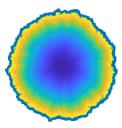
almost surely as $t \to \infty$.

- \tilde{B} is the "filled" metric ball.
- Limit shape \mathcal{B} is a compact convex subset of \mathbb{R}^d .

Predictions for FPP on \mathbb{Z}^d

Under mild conditions

- $\bullet\,$ Limit shape ${\cal B}$ is strictly convex with uniformly curved boundary.
- $\operatorname{Var}(T_{0,n}) \approx n^{2\chi}$ for some $\chi < 1/2$.
- For d = 2, $\chi = 1/3$ KPZ universality class.
- Typical deviations of the geodesics from the straight line $\approx n^{\xi}$ where $\chi = 2\xi - 1$.



Prediction for infinite geodesics (at least for d = 2)

Under mild conditions

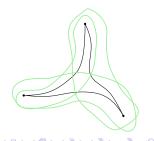
- Almost surely, every semi-infinite geodesic has a limiting direction.
- For any given direction, almost surely there exists a unique infinite geodesic starting from each vertex going in this direction.
- For a given direction, and two distinct starting points, the semi-infinite geodesics almost surely coalesce.
- Almost surely, there does not exist any bi-infinite geodesic.

Gromov hyperbolic groups

Definition

- A geodesic metric space is called δ-hyperbolic if it satisfies the "thin triangle condition" – the third side of each triangle is contained in the δ-neighbourhood of the first two sides.
- A finitely generated group is called Gromov hyperbolic if the Calyley graph with respect to some symmetric generating set is δ -hyperbolic for some finite δ .

- Trees are 0-hyperbolic.
- $SL_2(\mathbb{Z})$, or other groups acting properly discontinuously on a tree.



Boundary and Patterson-Sullivan measure

- To parametrize directions, one can define a boundary ∂G of hyperbolic groups.
- Points on the boundary can be thought of as equivalence classes of word geodesic rays.
- Cantor set like object.
- One can define a natural measure ν on ∂G that is obtained as a weak limit of appropriately defined measures on the boundaries of *n*-balls– called Patterson-Sullivan measure.
- These are usually defined for given base points, we shall always think of the identity element as the base point.

Earlier works

- The interest in studying FPP on general background geometries is rather recent.
- Initiated primarily by Itai Benjamini and co-authors.
- Certain questions turn out to be easier to answer for hyperbolic groups, although answers might be different to what is expected in the Euclidean case.
- Benjamini-Tessera showed bigoedesics exist for FPP on hyperbolic groups.
- Variance is predicted to grow linearly.

Our set-up and results

- Consider a finitely generated Gromov hyperbolic group G.
- Fix a symmetric generating set S and consider the corresponding Cayley graph Γ .
- Let 1 denote the vertex corresponding to the identity element.
- Let ∂G denote the boundary and let ν denote the Patterson-Sullivan measure on it.
- Consider FPP on Γ with i.i.d. positive passage times with a non-degenerate continuous distribution and sufficiently light tails.

Results: metric growth

• Let us consider a word geodesic $\gamma = \{1 = x_0, x_1, \dots, x_n, \dots\}$ converging to $\xi \in \partial G$.

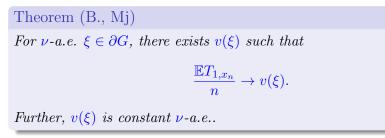
Question

Does
$$\frac{\mathbb{E}T_{1,x_n}}{n}$$
 converge?

- What about the previous sub-additivity argument?
- Works if there are points g, g^2, g^3, \ldots on γ .
- That is, it works if ξ is a *polar* direction, i.e., $\xi = g^{\pm \infty}$ for some $g \in G$.

- 4月 1 - 4 三 1 - 4 三 1

Results: metric growth

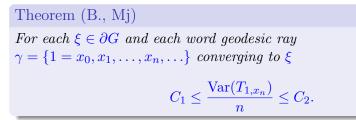


- Can be upgraded to convergence in probability.
- One can find directions along which the convergence does not hold.

・ 同 ト ・ ヨ ト ・ ヨ ト

Results: Fluctuations

• What about the fluctuations of T_{1,x_n} ?



- The upper bound comes from the standard Poincare inequality argument, essentially same as Kesten's proof in the Euclidean case.
- The lower bound is the one that requires the hyperbolic structure.

(4月) (1日) (日)

Results: geodesics

Definition

For a given environment ω of passage times, consider a geodesic ray $\sigma = \{x_0, x_1, \ldots\}$ (in the FPP metric). We say σ accumulates on $\xi \in \partial G$ if there is a subsequence x_{n_k} converging to ξ ; σ is said to have direction ξ if it is the only accumulation point.

Theorem (B., Mj)

For almost every ω , each geodesic ray has a direction. Further, given $o \in G$ and $\xi \in \partial G$ almost surely there exists a unique geodesic ray starting at o in direction ξ .

- 4 回 と 4 回 と 4 回 と

• What about coalescence of geodesics?

Theorem (B., Mj) For $\xi \in \partial G$ and $o_1, o_2 \in G$ almost surely the geodesic rays from o_1 and o_2 in the direction ξ coalesce.

Some ideas from the proof

A D > A D >

4 B b

-

Automatic structure

- Hyperbolic groups admit an automatic structure– Cannon (1984).
- There exists a finite state automaton parametrizing a geodesic combing of the Calyley graph.
- Associated to the automaton there is a topological Markov chain.
- One can roughly think that the Patterson-Sullivan measure on ∂G can be lifted to a Markov chain on the space of words and almost every geodesic ray eventually enters one of the irreducible components Calegari-Fujiwara (2010).

Existence of the time constant

- Using the standard theory of ergodic Markov chains, one can show that for ν -a.e., the proportion of occurrence of finite words along the ray converges.
- One can then approximate, for $m, n \gg 1, T_{1,x_{mn}}$ by

$$T_{1,x_n} + T_{x_n,x_{2n}} + \dots + T_{x_{(m-1)n},x_{mn}}.$$

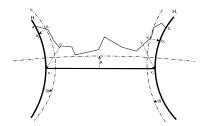
• The proof is then completed by translation invariance and SLLN.

Exponential divergence of hyperplanes

Definition

For a word geodesic ray $\gamma = \{1, x_1, x_2, \ldots\}$ define the hyperplane H_i through x_i as the set of all points whose nearest neighbour projection onto γ is x_i .

- Coarsely well-defined.
- The hyperplanes diverge exponentially, i.e., if j i is sufficiently large any path from H_i to H_j that stays at least distance R from γ has word length larger than $(j i)e^{\alpha R}$.



Proof of coalescence

- Each geodesic must cross all hyperplanes from some index onwards.
- Exponential divergence of hyperplanes imply that it is extremely likely for the geodesics to come close to γ while crossing between two hyperplanes.
- This can be used to show that the geodesics meet between two hyperplanes with uniformly positive probability.
- The proof is completed by Borel-Cantelli Lemma and uniqueness of geodesics.

(4) (2) (4) (3) (4)

Linearity of variance

- Consider the variance decomposition given by the Doob martingale where the filtration successively exposes the region between consecutive hyperplanes.
- A similar argument as above shows that the contribution to the variance coming from each term is uniformly bounded below.
- This shows that the variance grows at least linearly.
- Similar arguments have previously been used for FPP/LPP across thin cylinders.

Thank You

Questions?

Riddhipratim Basu (ICTS)

FPP on Hyperbolic groups

 ・< E >
 E
 つ へ C

 30/03/22
 25/25

イロト イボト イヨト イヨト