Convergence of Stochastic Approximation Algorithms via Martingale and Converse Lyapunov Methods

M. Vidyasagar FRS

SERB National Science Chair, IIT Hyderabad

RLK Conference, 29 March 2022

イロト イポト イヨト イヨ

Introductio

Brief Historical Overview A Framework for Convergence Proofs New Converse Theorem for GES Convergence of Stochastic Approximation Algorithms

- 2 Brief Historical Overview
- 3 A Framework for Convergence Proofs
- 4 New Converse Theorem for GES
- 5 Convergence of Stochastic Approximation Algorithms

イロト イヨト イヨト

ntroduction

Brief Historical Overview A Framework for Convergence Proofs New Converse Theorem for GES Convergence of Stochastic Approximation Algorithms

Problem Formulation – 1

Original problem formulation by Robbins and Monro (1951). Suppose $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^d$. The aim is to find a solution to $\mathbf{f}(\boldsymbol{\theta}) = \mathbf{0}$, when *only noisy measurements* of $\mathbf{f}(\cdot)$ are available.

Start with an initial guess $\boldsymbol{\theta}_0 \in \mathbb{R}^d$. At step $t \geq 0$, let

$$\mathbf{y}_{t+1} = \mathbf{f}(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1},$$

where $\boldsymbol{\xi}_{t+1}$ is the measurement error. Update via

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \mathbf{y}_{t+1} = \boldsymbol{\theta}_t + \alpha_t (\mathbf{f}(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}),$$

where $\{\alpha_t\}_{t\geq 1}$ is a predetermined sequence of step sizes. Question: When does $\theta_t \to \theta^*$, where $\mathbf{f}(\theta^*) = \mathbf{0}$?

< ロ > < 同 > < 回 > < 回 >

ntroductior

Brief Historical Overview A Framework for Convergence Proofs New Converse Theorem for GES Convergence of Stochastic Approximation Algorithms

Problem Formulation – 2

Modified problem formulation by Keifer-Wolfowitz (1952) and Blum (1954).

Suppose $J : \mathbb{R}^d \to \mathbb{R}$ is \mathcal{C}^1 (or \mathcal{C}^2). We wish to find a stationary point of J, i.e., a solution of $\nabla J(\boldsymbol{\theta}) = \mathbf{0}$.

If measurements are

$$\mathbf{y}_{t+1} = -\nabla J(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1},$$

then this is the same problem as earlier.

Instead, define

$$y_{t+1,i} = \frac{[J(\boldsymbol{\theta}_t - c_t \mathbf{e}_i) + \xi_{t+1,i}^-] - [J(\boldsymbol{\theta}_t + c_t \mathbf{e}_i) + \xi_{t+1,i}^+]}{2c_t}, i = 1, \cdots, d.$$

Introduction

Brief Historical Overview A Framework for Convergence Proofs New Converse Theorem for GES Convergence of Stochastic Approximation Algorithms

Problem Formulation – 2 (Cont'd)

Elaboration: At iteration t, perturb *each coordinate* of θ_t by a predetermined increment c_t , and measure $J(\cdot)$ at each of the 2d vectors (subject to measurement error).

Using these 2d measurements, approximate the gradient $\nabla J(\boldsymbol{\theta}_t)$ using a first-order approximation. Use this to update $\boldsymbol{\theta}_t$ to $\boldsymbol{\theta}_{t+1}$.

Interpretation: Rewrite as

$$y_{t+1,i} = \frac{J(\boldsymbol{\theta}_t - c_t \mathbf{e}_i) - J(\boldsymbol{\theta}_t + c_t \mathbf{e}_i)}{2c_t} + \frac{\xi_{t+1,i}^- - \xi_{t+1,i}^+}{2c_t},$$

Then as $c_t \to 0$ as $t \to \infty$, the first term approaches $-[\nabla J(\theta_t)]_i$. But the variance of the second (noise) term approaches infinity!

Introductior

Brief Historical Overview A Framework for Convergence Proofs New Converse Theorem for GES Convergence of Stochastic Approximation Algorithms

Standard Sufficient Conditions

Robbins-Monro Conditions:

$$\sum_{t=0}^{\infty} \alpha_t^2 < \infty, \sum_{t=0}^{\infty} \alpha_t = \infty.$$

Blum Conditions:

$$c_t \to 0 \text{ as } t \to \infty, \sum_{t=0}^\infty \left(\frac{\alpha_t}{c_t}\right)^2 < \infty, \sum_{t=0}^\infty \alpha_t c_t < \infty, \sum_{t=0}^\infty \alpha_t = \infty.$$

My Observation: The condition $c_t \to 0$ as $t \to \infty$ is (more or less) implied by the rest.

If $\alpha_t = (t+1)^{-p}$ and $c_t = (t+1)^{-r}$. then Robbins-Monro conditions are 0.5 . and Blum conditions are <math>p+r < 1 and p-r > 1/2.

- 2 Brief Historical Overview
- 3 A Framework for Convergence Proofs
- 4 New Converse Theorem for GES
- 5 Convergence of Stochastic Approximation Algorithms

イロト イヨト イヨト

Some Standard Assumptions

(F). θ^* is the unique solution of $\mathbf{f}(\theta) = \mathbf{0}$.

(N). Define $\theta_0^t = \{\theta_0, \cdots, \theta_t\}$, and let $\mathcal{F}_t = \sigma(\theta_0^t, \xi_1^t)$. Then (i) the measurements are unbiased, i.e.,

$$E(\boldsymbol{\xi}_{t+1}|\mathcal{F}_t) = \mathbf{0} \text{ a.s.},$$

and (ii) the conditional variance grows quadratically, i.e., $\exists d < \infty$ such that

$$E(\|\boldsymbol{\xi}_{t+1}\|_2^2 | \mathcal{F}_t) \le d(1 + \|\boldsymbol{\theta}_t\|_2^2).$$

(S). Robbins-Monro (RM) conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty, \sum_{t=0}^{\infty} \alpha_t^2 < \infty.$$

A Typical Theorem

Theorem

Suppose (F), (N), and (S) hold. If $\mathbf{f}(\cdot)$ satisfies some more conditions, and if the iterates $\{\boldsymbol{\theta}_t\}$ are bounded almost surely, then $\boldsymbol{\theta}_t \rightarrow \boldsymbol{\theta}^*$, a.s. as $t \rightarrow \infty$.

Almost sure boundedness of the iterates ("stability") is a part of the hypothesis, not a conclusion.

Thus stability plus other conditions imply convergence.

Question: Can the stability of the iterates be made a *conclusion, instead of being a part of the hypotheses?*

Borkar-Meyn Theorem (2000)

Assumptions:

- All the standard assumptions (F), (N), (S).
- $\mathbf{f}(\cdot)$ is globally Lipschitz continuous, i.e., $\exists L < \infty$ such that

$$\|\mathbf{f}(\boldsymbol{ heta}) - \mathbf{f}(\boldsymbol{\phi})\|_2 \leq L \|\boldsymbol{ heta} - \boldsymbol{\phi}\|_2, \ \forall \boldsymbol{ heta}, \boldsymbol{\phi} \in \mathbb{R}^d.$$

 $\bullet\,$ There is a "limit function" $\,{\bf f}_\infty$ such that

$$rac{{f f}(roldsymbol{ heta})}{r}
ightarrow{f f}_{\infty}(oldsymbol{ heta})$$
 as $r
ightarrow\infty,$

uniformly over compact subsets of \mathbb{R}^d .

• 0 is a globally exponentially stable equilibrium of

$$\dot{\boldsymbol{\theta}} = \mathbf{f}_{\infty}(\boldsymbol{\theta}).$$

Borkar-Meyn Theorem (2000) - Cont'd

Elaboration:

• Global Lipschitz continuity of $\mathbf{f}(\cdot)$ implies that there is a function $\mathbf{s}: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ such that $\mathbf{s}(\cdot, \boldsymbol{\theta})$ is the unique solution of

$$\frac{d\mathbf{s}(t,\boldsymbol{\theta})}{dt} = \mathbf{f}(\mathbf{s}(t,\boldsymbol{\theta})), \mathbf{s}(0,\boldsymbol{\theta}) = \boldsymbol{\theta}.$$

• The equilibrium θ^* is globally exponentially stable (GES) if there exist constants $\mu \ge 1, \gamma > 0$ such that

$$\|\mathbf{s}(t,\boldsymbol{\theta}) - \boldsymbol{\theta}^*\|_2 \le \mu \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2 \exp(-\gamma t), \ \forall t \ge 0, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d$$

Borkar-Meyn Theorem (2000) - Cont'd

Theorem

Under the stated assumptions,

- **1** $\{\boldsymbol{\theta}_t\}$ is bounded almost surely.
- 2 $\theta_t \rightarrow \theta^*$ as $t \rightarrow \infty$.

The a.s. boundedness of $\{\theta_t\}$ is a *conclusion*, not a hypothesis.

Proof is based on the ODE method, which states that the sample paths of the iterates "converge" to the *deterministic* solution trajectories of the ODE $\dot{\theta} = \mathbf{f}_{\infty}(\theta)$.

Method pioneered by Ljung (1974), Deveritskii and Fradkov (1974), Kushner-Clark (1978); see also Métivier-Priouret (1984).

Rather technical – worthwhile to find an easier proof.

Gladyshev's Theorem (1965)

Theorem

Assumptions (F), (N), but not (S). In addition

$$\inf_{\epsilon < \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2 < 1/\epsilon} \langle \boldsymbol{\theta} - \boldsymbol{\theta}^*, \mathbf{f}(\boldsymbol{\theta}) \rangle < 0, 0 < \epsilon < 1,$$

$$\|\mathbf{f}(\boldsymbol{\theta})\|_2 \leq K \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2, K < \infty.$$

Then

• If
$$\sum_{t=0}^{\infty} \alpha_t^2 < \infty$$
, then $\{\boldsymbol{\theta}_t\}$ is bounded almost surely.

If in addition $\sum_{t=0}^{\infty} \alpha_t = \infty$, then $\theta_t \to \theta^*$ almost surely as $t \to \infty$.

If $\mathbf{f}(\cdot)$ is continuous, the above is equivalent to

$$\langle oldsymbol{ heta} - oldsymbol{ heta}^*, \mathbf{f}(oldsymbol{ heta})
angle < 0, \; orall oldsymbol{ heta}
eq oldsymbol{ heta}^*_{\ \square}$$
 , and the set of the set o

Aspects of Gladyshev's Theorem

- Approach: Define $Z_t = a_t || \boldsymbol{\theta}_t ||_2^2 + b_t$, and choose a_t, b_t such that $\{Z_t\}$ is a nonnegative supermartingale.
- Far less "technical" than the ODE method.
- Clear "division of labor": Square-summability of step sizes gives stability, and divergence of step sizes gives convergence.

Restriction: Applies only to "passive" functions.

My Motivation: Can this approach be extended *more general* functions?

Yes, by using "converse" Lyapunov theory (topic of this lecture). But first, a general "framework" for proving the convergence of SA.

イロト イヨト イヨト

- 2 Brief Historical Overview
- 3 A Framework for Convergence Proofs
- 4 New Converse Theorem for GES
- 6 Convergence of Stochastic Approximation Algorithms

イロト イヨト イヨト

Lemma on Almost Sure Boundedness

Lemma

Suppose (Ω, Σ, P) is a probability space, $\{\mathcal{F}_t\}$ is a filtration, and $\{X_t\}$ is a nonnegative-valued stochastic process that is adapted to $\{\mathcal{F}_t\}$. Suppose $\{w_t\}$ is a summable sequence of positive numbers, and that

$$E(X_{t+1}|\mathcal{F}_t) \le (1+w_t)X_t + w_t \text{ a.s.}, \ \forall t \ge 0.$$

Then

- **1** $\{X_t\}$ is bounded almost surely, and
- Output: There is a random variable ζ such that X_t → ζ almost surely as t → ∞.

Lemma on Almost Sure Convergence

Lemma

Let (Ω, Σ, p) and $\{\mathcal{F}_t\}$ be as in Lemma 4. Suppose $\{w_t\}, \{u_t\}$ are sequences of positive numbers such that

$$\sum_{t=0}^{\infty} w_t < \infty, \sum_{t=0}^{\infty} u_t = \infty.$$

Suppose $\{X_t\}$ is a nonnegative stochastic process that is adapted to $\{\mathcal{F}_t\}$, and that satisfies

$$E(X_{t+1}|\mathcal{F}_t) \le (1+w_t-u_t)X_t+w_t, \ a.s., \ \forall t \ge 0.$$

Then $\{X_t\}$ is bounded almost surely, and converges almost surely to 0 as $t \to \infty$.

History of the "Framework" Lemmas

- Robbins and Siegmund (1971) proved the first lemma and a version of the second lemma. (They had sequences and not random variables.)
- They were unaware of Gladyshev's 1965 paper.
- I was motivated to extract the "essence" of Gladyshev's paper.
- I proved the two lemmas independently of Robbins-Siegmund.

- 2 Brief Historical Overview
- 3 A Framework for Convergence Proofs
- 4 New Converse Theorem for GES

5 Convergence of Stochastic Approximation Algorithms

イロト イボト イヨト イヨト

Rate of Change Function

Consider the ODE $\dot{\theta} = \mathbf{f}(\theta)$ and suppose $V : \mathbb{R}^d \to \mathbb{R}$ is \mathcal{C}^1 . Then the function $\dot{V} : \mathbb{R}^d \to \mathbb{R}$ is defined as

$$\dot{V}(\boldsymbol{\theta}) = \langle \nabla V(\boldsymbol{\theta}), \mathbf{f}(\boldsymbol{\theta}) \rangle.$$

Suppose $\mathbf{s}(t, \boldsymbol{\theta})$ satisfies

$$\frac{d\mathbf{s}(t,\boldsymbol{\theta})}{dt} = \mathbf{f}(\mathbf{s}(t,\boldsymbol{\theta})), \mathbf{s}(0,\boldsymbol{\theta}) = \boldsymbol{\theta}.$$

Then

$$\frac{dV(\mathbf{s}(t,\boldsymbol{\theta}))}{dt} = \dot{V}(\mathbf{s}(t,\boldsymbol{\theta}))$$

is the *rate of change* of V along the solution trajectories.

A (1) < A (2) < A (2)</p>

Forward vs. Converse Lyapunov Theory

Given the the ODE $\dot{\boldsymbol{\theta}} = \mathbf{f}(\boldsymbol{\theta})$:

"Forward" Lyapunov theory: If there exists a function V with certain properties, then θ^* has certain stability properties.

"Converse" Lyapunov theory: If the equilibrium θ^* has certain stability properties, then there exists a function V with certain properties.

Global Exponential Stability: Reprise

Suppose f is globally Lipschitz continuous, and define $\mathbf{s}: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ via: $\mathbf{s}(t, \boldsymbol{\theta})$ is the unique solution of

$$\frac{d\mathbf{s}(t,\boldsymbol{\theta})}{dt} = \mathbf{f}(\mathbf{s}(t,\boldsymbol{\theta})), \mathbf{s}(0,\boldsymbol{\theta}) = \boldsymbol{\theta}.$$

Suppose $f(\theta^*) = 0$. The equilibrium θ^* is globally exponentially stable (GES) if there exist $\mu < \infty, \gamma > 0$ such that

$$\|\mathbf{s}(t,\boldsymbol{\theta}) - \boldsymbol{\theta}^*\|_2 \le \mu \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2 \exp(-\gamma t), \ \forall t \ge 0, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

Standard Forward Lyapunov Theorem for GES

Theorem

Suppose **f** is globally Lipschitz continuous, and that $\mathbf{f}(\boldsymbol{\theta}^*) = \mathbf{0}$. Suppose there exists a \mathcal{C}^1 function $V : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies the following: There exist $c_1, c_2, c_3 > 0$ such that

$$c_1 \| \boldsymbol{\theta} - \boldsymbol{\theta}^* \|_2^2 \le V(\boldsymbol{\theta}) \le c_2 \| \boldsymbol{\theta} - \boldsymbol{\theta}^* \|_2^2,$$

$$\dot{V}(\boldsymbol{\theta}) \leq -c_3 \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2^2, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

Then θ^* is a GES equilibrium.

Standard Converse Lyapunov Theorem for GES

Theorem

Suppose **f** is globally Lipschitz continuous, that θ^* is a GES equilibrium. There exists a C^1 function $V : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies the following: There exist $c_1, c_2, c_3 > 0$ such that

$$c_1 \| \boldsymbol{\theta} - \boldsymbol{\theta}^* \|_2^2 \leq V(\boldsymbol{\theta}) \leq c_2 \| \boldsymbol{\theta} - \boldsymbol{\theta}^* \|_2^2,$$

$$\dot{V}(\boldsymbol{\theta}) \leq -c_3 \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2^2, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

Need for a New Converse Theorem

Common choice:

$$V(\boldsymbol{\theta}) := \int_0^\infty \|\mathbf{s}(t,\boldsymbol{\theta})\|_2^2 dt.$$

This is *not good enough* for current application. We require a V function with *globally bounded Hessian*.

Such a theorem has been proved, building on earlier work of Corless and Glielmo (1998).

New Converse Lyapunov Theorem for GES

Theorem

Suppose in addition that $\mathbf{f} \in \mathcal{C}^2$, and that^a

$$\sup_{\boldsymbol{\theta} \in \mathbb{R}^d} \|\nabla^2 f_i(\boldsymbol{\theta})\|_S \cdot \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2 < \infty, \; \forall i \in [d].$$

Choose

$$0 < \kappa < \gamma, \frac{\ln \mu}{\gamma - \kappa} \le T < \infty, V(\boldsymbol{\theta}) := \int_0^T e^{\kappa \tau} \|\mathbf{s}(\tau, \boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2^2 d\tau$$

Then V is C^2 , and also satisfies

$$\|\nabla^2 V(\boldsymbol{\theta})\|_S \le 2M, \; \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

^aHere $\|\cdot\|_S$ denotes the spectral norm, and $[d] = \{1, \ldots, d\}$.

- 2 Brief Historical Overview
- 3 A Framework for Convergence Proofs
- 4 New Converse Theorem for GES

5 Convergence of Stochastic Approximation Algorithms

Convergence Theorem for Robbins-Monro Formulation

Theorem

Suppose (i) θ^* is the only zero of $\mathbf{f}(\cdot)$, (ii) θ^* is a GES equilibrium of $\dot{\theta} = \mathbf{f}(\theta)$, (iii) $\mathbf{f}(\cdot)$ is globally Lipschitz continuous, and (iv)

$$\sup_{\boldsymbol{\theta} \in \mathbb{R}^d} \|\nabla^2 f_i(\boldsymbol{\theta})\|_S \cdot \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2 < \infty, \; \forall i \in [d].$$

Suppose further that $\{\boldsymbol{\xi}_t\}$ satisfies (N). Then

If $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$, then $\{\theta_t\}$ is bounded almost surely.

2 If in addition $\sum_{t=0}^{\infty} \alpha_t = \infty$, then $\theta_t \to \theta^*$ almost surely as $t \to \infty$.

イロト イヨト イヨト

Comparison with Borkar and Meyn (2000)

Nice "division of labor" as in Gladyshev (1965). Also we don't need the existence of

$$\mathbf{f}_{\infty} := \lim_{r \to \infty} \mathbf{f}(r\boldsymbol{\theta})/r.$$

But Borkar-Meyn (2000) don't need

$$\sup_{\boldsymbol{\theta}\in\mathbb{R}^d} \|\nabla^2 f_i(\boldsymbol{\theta})\|_S \cdot \|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|_2 < \infty, \ \forall i\in[d].$$

However, \mathbf{f}_∞ exists and has a globally bounded Hessian, then above condition holds.

So our theorem (more or less) contains Borkar-Meyn (2000) as a special case. (Hat tip: Sean Meyn).

Kiefer-Wolfowitz-Blum Formulation: Reprise

Objective: Find a stationary point of a C^2 function $J : \mathbb{R}^d \to \mathbb{R}$. **Measurements:**

$$y_{t+1,i} = \frac{[J(\boldsymbol{\theta}_t - c_t \mathbf{e}_i) + \xi_{t+1,i}^-] - [J(\boldsymbol{\theta}_t + c_t \mathbf{e}_i) + \xi_{t+1,i}^+]}{2c_t}, i = 1, \cdots, d.$$

Updates:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \mathbf{y}_{t+1}.$$

KW-B Formulation: Assumptions on Objectve Function

- J(·) is in C², and has a unique global minimizer θ*, which can be taken as 0 by translating coordinates.
- There is a constant h > 0 such that

$$\langle \boldsymbol{\theta}, \nabla J(\boldsymbol{\theta}) \rangle \geq h \| \boldsymbol{\theta} \|_2^2, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

• $J(\cdot)$ is Lipschitz continuous at 0 with constant L. Hence

$$\|\nabla J(\boldsymbol{\theta})\|_2 \leq L \|\boldsymbol{\theta}\|_2, \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

• The Hessian $\nabla^2 J(\cdot)$ is globally bounded.

・ロト ・ 同ト ・ ヨト ・ ヨト

KW-B Formulation: Assumptions on Noise

Let \mathcal{F}_t denote the σ -algebra generated by $\boldsymbol{\theta}_0^t$, $\boldsymbol{\xi}_{+,1}^{+,t}$ and $\boldsymbol{\xi}_{-,1}^{-,t}$. Then

• We have that

$$E(\xi_{t+1,i}^+ | \mathcal{F}_t) = 0, E(\xi_{t+1,i}^- | \mathcal{F}_t) = 0, \text{ a.s.}, \ \forall i \in [d], \ \forall t \ge 0.$$

Suppose that ξ⁺_t and ξ⁻_t are independent for each t, and define ξ_t = ξ⁺_t + ξ⁻_t. There there is a finite constant d such that

$$E(\|\boldsymbol{\xi}_{t+1}\|_2^2 | \mathcal{F}_t) \le d(1 + \|\boldsymbol{\theta}_t\|_2^2), \ \forall t.$$

イロト イボト イヨト イヨト

Convergence Theorem for KW-B Formulation

Theorem

Suppose $J : \mathbb{R}^d \to \mathbb{R}$ and the noise sequences satisfy the above assumptions. Under these conditions:

• If the sequences $\{\alpha_t\}, \{c_t\}$ together satisfy

$$\sum_{t=0}^{\infty} \left(\frac{\alpha_t}{c_t}\right)^2 < \infty, \sum_{t=0}^{\infty} \alpha_t c_t < \infty,$$

then $\{\boldsymbol{\theta}_t\}$ is bounded almost surely.

If, in addition, $\sum_{t=0}^{\infty} \alpha_t = \infty$, then $\theta_t \to 0$ almost surely as $t \to \infty$.

イロト イヨト イヨト

IT Hyderal

Future Direction - 1

We still haven't replicated the original Gladyshev theorem!

Consider for example a function $f:\mathbb{R}\to\mathbb{R}$ defined by

$$f(\theta) = \begin{cases} -\theta, & -1 \le \theta \le 0, \\ -1, & \theta \le -1, \end{cases}$$

with $f(\theta) = -f(\theta)$ when $\theta \ge 0$. Then $f(\cdot)$ satisfies $\theta f(\theta) < 0$ and $|f(\theta)| \le |\theta|$ for all $\theta \ne 0$, and convergence of SA follows from Gladyshev's theorem.

However, the equilibrium $\theta = 0$ is only globally *asymptotically* stable but not globally *exponentially* stable. So current theory doesn't apply.

Work is under way to extend the Lyapunov approach to cover this situation.

Future Direction – 2

In many applications in control theory, the assumption

 $E(\boldsymbol{\xi}_{t+1}|\mathcal{F}_t) = 0$

does not hold. Thus the measurement

$$\mathbf{y}_{t+1} = \mathbf{f}(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}$$

could be *biased!*

Ljung (1978) has addressed this when $f(\theta) = -\nabla J(\theta)$, i.e., a gradient vector field. But no general approach as yet.

イロト イヨト イヨト

Joint Work with RLK on Reinforcement Learning

- BASA (Batch Asynchronous Stochastic Approximation)
 - At each time t update some but not all components of θ_t .
 - The choice of components to be updated can be driven by another process.
 - Includes well-known "temporal difference" algorithm.
- Stochastic approximation with random step sizes.
 - Easy to analyze if step size α_t is independent of the measurement noise.
 - This is not the case in Reinforcement Learning.
- Paper is ready.

イロト イポト イヨト イヨト

Hearty Congratulations!

Remember: Life Begins at 65

Convergence of stochastic approximation algorithms

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

< ロ > < 部 > < き > < き > ...