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Problem Formulation – 1

Original problem formulation by Robbins and Monro (1951).

Suppose f : Rd → Rd. The aim is to find a solution to f(θ) = 0,
when only noisy measurements of f(·) are available.

Start with an initial guess θ0 ∈ Rd. At step t ≥ 0, let

yt+1 = f(θt) + ξt+1,

where ξt+1 is the measurement error. Update via

θt+1 = θt + αtyt+1 = θt + αt(f(θt) + ξt+1),

where {αt}t≥1 is a predetermined sequence of step sizes.

Question: When does θt → θ∗, where f(θ∗) = 0?
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Problem Formulation – 2

Modified problem formulation by Keifer-Wolfowitz (1952) and
Blum (1954).

Suppose J : Rd → R is C1 (or C2). We wish to find a stationary
point of J , i.e., a solution of ∇J(θ) = 0.

If measurements are

yt+1 = −∇J(θt) + ξt+1,

then this is the same problem as earlier.

Instead, define

yt+1,i =
[J(θt − ctei) + ξ−t+1,i]− [J(θt + ctei) + ξ+t+1,i]

2ct
, i = 1, · · · , d.
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Problem Formulation – 2 (Cont’d)

Elaboration: At iteration t, perturb each coordinate of θt by a
predetermined increment ct, and measure J(·) at each of the 2d
vectors (subject to measurement error).

Using these 2d measurements, approximate the gradient ∇J(θt)
using a first-order approximation. Use this to update θt to θt+1.

Interpretation: Rewrite as

yt+1,i =
J(θt − ctei)− J(θt + ctei)

2ct
+
ξ−t+1,i − ξ

+
t+1,i

2ct
,

Then as ct → 0 as t→∞, the first term approaches −[∇J(θt)]i.
But the variance of the second (noise) term approaches infinity!
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Standard Sufficient Conditions

Robbins-Monro Conditions:

∞∑
t=0

α2
t <∞,

∞∑
t=0

αt =∞.

Blum Conditions:

ct → 0 as t→∞,
∞∑
t=0

(
αt
ct

)2

<∞,
∞∑
t=0

αtct <∞,
∞∑
t=0

αt =∞.

My Observation: The condition ct → 0 as t→∞ is (more or
less) implied by the rest.

If αt = (t+ 1)−p and ct = (t+ 1)−r. then Robbins-Monro
conditions are 0.5 < p ≤ 1. and Blum conditions are p+ r < 1 and
p− r > 1/2.
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Some Standard Assumptions

(F). θ∗ is the unique solution of f(θ) = 0.

(N). Define θt0 = {θ0, · · · ,θt}, and let Ft = σ(θt0, ξ
t
1). Then (i)

the measurements are unbiased, i.e.,

E(ξt+1|Ft) = 0 a.s.,

and (ii) the conditional variance grows quadratically, i.e.,
∃d <∞ such that

E(‖ξt+1‖22|Ft) ≤ d(1 + ‖θt‖22).

(S). Robbins-Monro (RM) conditions:

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞.
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A Typical Theorem

Theorem

Suppose (F), (N), and (S) hold. If f(·) satisfies some more
conditions, and if the iterates {θt} are bounded almost surely, then
θt → θ∗, a.s. as t→∞.

Almost sure boundedness of the iterates (“stability”) is a part of
the hypothesis, not a conclusion.

Thus stability plus other conditions imply convergence.

Question: Can the stability of the iterates be made a conclusion,
instead of being a part of the hypotheses?
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Borkar-Meyn Theorem (2000)

Assumptions:

All the standard assumptions (F), (N), (S).

f(·) is globally Lipschitz continuous, i.e., ∃L <∞ such that

‖f(θ)− f(φ)‖2 ≤ L‖θ − φ‖2, ∀θ,φ ∈ Rd.

There is a “limit function” f∞ such that

f(rθ)

r
→ f∞(θ) as r →∞,

uniformly over compact subsets of Rd.

0 is a globally exponentially stable equilibrium of

θ̇ = f∞(θ).
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Borkar-Meyn Theorem (2000) – Cont’d

Elaboration:

Global Lipschitz continuity of f(·) implies that there is a
function s : R+ × Rd → Rd such that s(·,θ) is the unique
solution of

ds(t,θ)

dt
= f(s(t,θ)), s(0,θ) = θ.

The equilibrium θ∗ is globally exponentially stable (GES) if
there exist constants µ ≥ 1, γ > 0 such that

‖s(t,θ)− θ∗‖2 ≤ µ‖θ − θ∗‖2 exp(−γt), ∀t ≥ 0, ∀θ ∈ Rd.
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Borkar-Meyn Theorem (2000) – Cont’d

Theorem

Under the stated assumptions,

1 {θt} is bounded almost surely.

2 θt → θ∗ as t→∞.

The a.s. boundedness of {θt} is a conclusion, not a hypothesis.

Proof is based on the ODE method, which states that the sample
paths of the iterates “converge” to the deterministic solution
trajectories of the ODE θ̇ = f∞(θ).

Method pioneered by Ljung (1974), Deveritskii and Fradkov
(1974), Kushner-Clark (1978); see also Métivier-Priouret (1984).

Rather technical – worthwhile to find an easier proof.
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Gladyshev’s Theorem (1965)

Theorem

Assumptions (F), (N), but not (S). In addition

inf
ε<‖θ−θ∗‖2<1/ε

〈θ − θ∗, f(θ)〉 < 0, 0 < ε < 1,

‖f(θ)‖2 ≤ K‖θ − θ∗‖2,K <∞.

Then

1 If
∑∞

t=0 α
2
t <∞, then {θt} is bounded almost surely.

2 If in addition
∑∞

t=0 αt =∞, then θt → θ∗ almost surely as
t→∞.

If f(·) is continuous, the above is equivalent to

〈θ − θ∗, f(θ)〉 < 0, ∀θ 6= θ∗.
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Aspects of Gladyshev’s Theorem

Approach: Define Zt = at‖θt‖22 + bt, and choose at, bt such
that {Zt} is a nonnegative supermartingale.

Far less “technical” than the ODE method.

Clear “division of labor”: Square-summability of step sizes
gives stability, and divergence of step sizes gives convergence.

Restriction: Applies only to “passive” functions.

My Motivation: Can this approach be extended more general
functions?

Yes, by using “converse” Lyapunov theory (topic of this lecture).

But first, a general “framework” for proving the convergence of SA.
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Lemma on Almost Sure Boundedness

Lemma

Suppose (Ω,Σ, P ) is a probability space, {Ft} is a filtration, and
{Xt} is a nonnegative-valued stochastic process that is adapted to
{Ft}. Suppose {wt} is a summable sequence of positive numbers,
and that

E(Xt+1|Ft) ≤ (1 + wt)Xt + wt a.s., ∀t ≥ 0.

Then

1 {Xt} is bounded almost surely, and

2 There is a random variable ζ such that Xt → ζ almost surely
as t→∞.
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Lemma on Almost Sure Convergence

Lemma

Let (Ω,Σ, p) and {Ft} be as in Lemma 4. Suppose {wt}, {ut} are
sequences of positive numbers such that

∞∑
t=0

wt <∞,
∞∑
t=0

ut =∞.

Suppose {Xt} is a nonnegative stochastic process that is adapted
to {Ft}, and that satisfies

E(Xt+1|Ft) ≤ (1 + wt − ut)Xt + wt, a.s., ∀t ≥ 0.

Then {Xt} is bounded almost surely, and converges almost surely
to 0 as t→∞.
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History of the “Framework” Lemmas

Robbins and Siegmund (1971) proved the first lemma and a
version of the second lemma. (They had sequences and not
random variables.)

They were unaware of Gladyshev’s 1965 paper.

I was motivated to extract the “essence” of Gladyshev’s paper.

I proved the two lemmas independently of Robbins-Siegmund.
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Rate of Change Function

Consider the ODE θ̇ = f(θ) and suppose V : Rd → R is C1. Then
the function V̇ : Rd → R is defined as

V̇ (θ) = 〈∇V (θ), f(θ)〉.

Suppose s(t,θ) satisfies

ds(t,θ)

dt
= f(s(t,θ)), s(0,θ) = θ.

Then
dV (s(t,θ))

dt
= V̇ (s(t,θ))

is the rate of change of V along the solution trajectories.
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Forward vs. Converse Lyapunov Theory

Given the the ODE θ̇ = f(θ):

“Forward” Lyapunov theory: If there exists a function V with
certain properties, then θ∗ has certain stability properties.

“Converse” Lyapunov theory: If the equilibrium θ∗ has certain
stability properties, then there exists a function V with certain
properties.
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Global Exponential Stability: Reprise

Suppose f is globally Lipschitz continuous, and define
s : R+ × Rd → Rd via: s(t,θ) is the unique solution of

ds(t,θ)

dt
= f(s(t,θ)), s(0,θ) = θ.

Suppose f(θ∗) = 0. The equilibrium θ∗ is globally exponentially
stable (GES) if there exist µ <∞, γ > 0 such that

‖s(t,θ)− θ∗‖2 ≤ µ‖θ − θ∗‖2 exp(−γt), ∀t ≥ 0, ∀θ ∈ Rd.
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Standard Forward Lyapunov Theorem for GES

Theorem

Suppose f is globally Lipschitz continuous, and that f(θ∗) = 0.
Suppose there exists a C1 function V : Rd → R+ that satisfies the
following: There exist c1, c2, c3 > 0 such that

c1‖θ − θ∗‖22 ≤ V (θ) ≤ c2‖θ − θ∗‖22,

V̇ (θ) ≤ −c3‖θ − θ∗‖22, ∀θ ∈ Rd.

Then θ∗ is a GES equilibrium.
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Standard Converse Lyapunov Theorem for GES

Theorem

Suppose f is globally Lipschitz continuous, that θ∗ is a GES
equilibrium. There exists a C1 function V : Rd → R+ that satisfies
the following: There exist c1, c2, c3 > 0 such that

c1‖θ − θ∗‖22 ≤ V (θ) ≤ c2‖θ − θ∗‖22,

V̇ (θ) ≤ −c3‖θ − θ∗‖22, ∀θ ∈ Rd.
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Need for a New Converse Theorem

Common choice:

V (θ) :=

∫ ∞
0
‖s(t,θ)‖22dt.

This is not good enough for current application. We require a V
function with globally bounded Hessian.

Such a theorem has been proved, building on earlier work of
Corless and Glielmo (1998).
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New Converse Lyapunov Theorem for GES

Theorem

Suppose in addition that f ∈ C2, and thata

sup
θ∈Rd

‖∇2fi(θ)‖S · ‖θ − θ∗‖2 <∞, ∀i ∈ [d].

Choose

0 < κ < γ,
lnµ

γ − κ
≤ T <∞, V (θ) :=

∫ T

0
eκτ‖s(τ,θ − θ∗‖22 dτ

Then V is C2, and also satisfies

‖∇2V (θ)‖S ≤ 2M, ∀θ ∈ Rd.
aHere ‖ · ‖S denotes the spectral norm, and [d] = {1, . . . , d}.
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Convergence Theorem for Robbins-Monro Formulation

Theorem

Suppose (i) θ∗ is the only zero of f(·), (ii) θ∗ is a GES equilibrium
of θ̇ = f(θ), (iii) f(·) is globally Lipschitz continuous, and (iv)

sup
θ∈Rd

‖∇2fi(θ)‖S · ‖θ − θ∗‖2 <∞, ∀i ∈ [d].

Suppose further that {ξt} satisfies (N). Then

1 If
∑∞

t=0 α
2
t <∞, then {θt} is bounded almost surely.

2 If in addition
∑∞

t=0 αt =∞, then θt → θ∗ almost surely as
t→∞.
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Comparison with Borkar and Meyn (2000)

Nice “division of labor” as in Gladyshev (1965). Also we don’t
need the existence of

f∞ := lim
r→∞

f(rθ)/r.

But Borkar-Meyn (2000) don’t need

sup
θ∈Rd

‖∇2fi(θ)‖S · ‖θ − θ∗‖2 <∞, ∀i ∈ [d].

However, f∞ exists and has a globally bounded Hessian, then
above condition holds.

So our theorem (more or less) contains Borkar-Meyn (2000) as a
special case. (Hat tip: Sean Meyn).
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Kiefer-Wolfowitz-Blum Formulation: Reprise

Objective: Find a stationary point of a C2 function J : Rd → R.

Measurements:

yt+1,i =
[J(θt − ctei) + ξ−t+1,i]− [J(θt + ctei) + ξ+t+1,i]

2ct
, i = 1, · · · , d.

Updates:
θt+1 = θt + αtyt+1.
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KW-B Formulation: Assumptions on Objectve Function

J(·) is in C2, and has a unique global minimizer θ∗, which can
be taken as 0 by translating coordinates.

There is a constant h > 0 such that

〈θ,∇J(θ)〉 ≥ h‖θ‖22, ∀θ ∈ Rd.

J(·) is Lipschitz continuous at 0 with constant L. Hence

‖∇J(θ)‖2 ≤ L‖θ‖2, ∀θ ∈ Rd.

The Hessian ∇2J(·) is globally bounded.
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KW-B Formulation: Assumptions on Noise

Let Ft denote the σ-algebra generated by θt0, ξ+,t+,1 and ξ−,t−,1. Then

We have that

E(ξ+t+1,i|Ft) = 0, E(ξ−t+1,i|Ft) = 0, a.s., ∀i ∈ [d], ∀t ≥ 0.

Suppose that ξ+t and ξ−t are independent for each t, and
define ξt = ξ+t + ξ−t . There there is a finite constant d such
that

E(‖ξt+1‖22|Ft) ≤ d(1 + ‖θt‖22), ∀t.
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Convergence Theorem for KW-B Formulation

Theorem

Suppose J : Rd → R and the noise sequences satisfy the above
assumptions. Under these conditions:

1 If the sequences {αt}, {ct} together satisfy

∞∑
t=0

(
αt
ct

)2

<∞,
∞∑
t=0

αtct <∞,

then {θt} is bounded almost surely.

2 If, in addition,
∑∞

t=0 αt =∞, then θt → 0 almost surely as
t→∞.
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Future Direction – 1

We still haven’t replicated the original Gladyshev theorem!

Consider for example a function f : R→ R defined by

f(θ) =

{
−θ, −1 ≤ θ ≤ 0,
−1, θ ≤ −1,

with f(θ) = −f(θ) when θ ≥ 0. Then f(·) satisfies θf(θ) < 0 and
|f(θ)| ≤ |θ| for all θ 6= 0, and convergence of SA follows from
Gladyshev’s theorem.

However, the equilibrium θ = 0 is only globally asymptotically
stable but not globally exponentially stable. So current theory
doesn’t apply.

Work is under way to extend the Lyapunov approach to cover this
situation.
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Future Direction – 2

In many applications in control theory, the assumption

E(ξt+1|Ft) = 0

does not hold. Thus the measurement

yt+1 = f(θt) + ξt+1

could be biased!

Ljung (1978) has addressed this when f(θ) = −∇J(θ), i.e., a
gradient vector field. But no general approach as yet.
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Joint Work with RLK on Reinforcement Learning

BASA (Batch Asynchronous Stochastic Approximation)

At eath time t update some but not all components of θt.
The choice of components to be updated can be driven by
another process.
Includes well-known “temporal difference” algorithm.

Stochastic approximation with random step sizes.

Easy to analyze if step size αt is independent of the
measurement noise.
This is not the case in Reinforcement Learning.

Paper is ready.
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Hearty Congratulations!

Remember: Life Begins at 65
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Thank You!
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