
Large Dimensional Random Matrices
and

High Dimensional Statistics

CONFERENCE ON STATISTICS AND STOCHASTIC PROCESSES

IN HONOUR OF

RAJEEVA L. KARANDIKAR

MARCH 29-31, 2022

ARUP BOSE

Indian Statistical Institute, Kolkata

March 29, 2022



Examples: fixed and high dimension

Contingency table.

Random design matrix.

Sample covariance matrix/Wishart matrix (1928).

Wigner matrix (Anderson, Guionnet and Zeitouni book, CUP
(2009)).

Random Toeplitz and Hankel matrices (Bose book CRC
(2018)).

IID matrix (Bordanave and Chafai survey article, Prob. Surveys
(2012)).

β matrices (Forrester book, LMS (2010)).

Autocovariance matrices (Bose and Bhattacharjee book CRC
(2018)).

Some others will be introduced later.



Sample Covariance Matrix

Data matrix: X = ((Xij))1≤i≤p,1≤j≤n. [p is the dimension of each
observation and n is the number of observations.]

The (unadjusted) p × p Sample Covariance matrix S is a key
matrix in multivariate analysis.

S = n−1XX ∗.

When the entries are Gaussian (normal), S is called a Wishart
matrix. The joint density of the eigenvalues can then be
calculated and used for statistical inference. [Recall principal
component analysis].

When p is fixed and n is large, CLT arguments show that joint
asymptotic normality of the eigenvalues of S holds.

If p is also large, the behavior of the eigenvalues is very
different, and standard statistical tests break down.



Autocovariance Matrix: real-valued case

Suppose X1,X2, . . . ,Xn is a real-valued mean zero stationary
stochastic process. Then the autocovariance sequence is
defined as

γ(i) = E(XtXt+i), i = 0, 1, . . . .

One can consider the dispersion matrix of (X1, . . .Xn):

Σn =























γ0 γ1 γ2 . . . . . . . . . γn−2 γn−1

γ1 γ0 γ1 . . . . . . . . . γn−3 γn−2

γ2 γ1 γ0 . . . . . . . . . γn−4 γn−3
...

...
...

...
...

...
...

...
γn−3 γn−4 γn−5 . . . . . . . . . γ1 γ2

γn−2 γn−3 γn−4 . . . . . . γ0 γ1

γn−1 γn−2 γn−3 . . . γ1 γ0























n×n



Sample Autocovariance Matrix: real-valued case

Replace the unknown γi by their estimates, say

γ̂(i) = n−1
n−i
∑

t=1

XtXt+i .

It is well known that {γ̂(i)} are fundamental in any kind of
statistical analysis of a real-valued stationary time series.

The sample auto-covariance matrix is given by,

Γn(X ) = ((γ̂|i−j|))n×n

It is a symmetric Toeplitz random matrix.



Large dimensional random matrices (LDRM)

• Large dimensional matrices come up naturally in high
dimensional models.

{Xt} are p-dimensional observations, 1 ≤ t ≤ n. Both p and n
are assumed to be large. Then the S matrix is large
dimensional.

• Usual procedures do not perform well in high dimensions.

• So, understanding the properties of LDRMs is important

–to understand the reasons for failure of the standard
procedures, and

–to devise new methods for statistical analysis.



Autocovariance matrix sequence

For a real-valued series, we had a sequence {γI = E(XtXt−I)}
of autocovariances. If Xt ,p is a p-dimensional time series, then
for every i , we get a p × p matrix

Γi = E(Xt ,pX ′
t−i,p).

The sample autocovariance matrix of order i is the p × p matrix

Γ̂i,p :=
1
n

n
∑

t=i+1

Xt ,pX ′
(t−i),p, i = 0, 2, 3, . . . , (n − 1).

Except for i = 0, all the matrices are non-symmetric. It is
notoriously hard to analyse non-symmetric random
matrices. Usually one resorts to symmetrisation such as:

Γ̂i,p + Γ̂∗i,p or Γ̂i,pΓ̂
∗
i,p.



What does one study?

A matrix is a linear transformation. Its features are captured by
its eigenvalues.

• Bulk behaviour of eigenvalues (limit spectral distributions
such as the semi-circle and the Marchenko-Pastur laws).

• Extreme eigenvalues (Tracy-Widom and Gumbel laws).

• Gaps between eigenvalues (determinantal point processes).

• Joint behaviour of random matrices (free independence).

–Use the knowledge of these aspects to develop statistical
procedures to analyse high-dimensional data (need more
tools and techniques).



Bulk: Empirical Spectral Distribution (ESD)

Rp: a p × p random matrix with eigenvalues λ1, λ2, . . . , λp.

Empirical Spectral Distribution (ESD) of Rp is the random
probability distribution that puts probability 1/p at each
eigenvalue:

P(X = λi) = 1/p, i = 1, . . . , p.

Its cumulative form (when all eigenvalues are real) is given by

ECDF (x) =
Number of eigenvalues ≤ x

p
.

We can also consider the histogram of these eigenvalues.



Bulk: Limiting Spectral Distribution (LSD)

Limiting spectral distribution (LSD): If as p → ∞, this ESD
converges weakly (almost surely or in probability) to a
probability distribution, then the limit is called the LSD. Often
the limit is random. If the expectation of the ESD converges,
that is called the convergence of the EESD and this limit is also
called the LSD.

Loosely speaking, if the histogram stablizes as p → ∞, then the
limit curve defines the LSD.

This is convergence in the bulk since any finite number of
individual eigenvalues do not matter for the limit.



Some LSD results

Wigner (1955) [semi-circle law],

Sample covariance (1967) when p/n → y , 0 < y < ∞.
[Marchenko-Pastur law with parameter y ], MPy .

Patterned matrices [Toeplitz, Hankel, circulant..] (2005...)

IID (2010) [uniform law on the unit disc],

Sample autocovariance matrix for real-valued time series
(2014) [LSD is a function (but not 1-1) of the spectral density]

Symmetric polynomials of sample autocovariance matrices
(2016) [LSD as functions of free semi-circle and other variables]

LSD results are easier to establish for hermitian matrices.

Results on the LSD of non-hermitian matrices are much less in
number and there are many such interesting matrices for which
LSD results are not available.



Spectral statistics

If {λk} are the eigenvalues of a matrix M, then
∑

f (λk ) where f
is a suitable function, are called linear spectral statistics (LSS).
These serve as summaries for the eigenvalues.

A special case is f (x) = xk and then the spectral statistics is
nothing but the trace of Mk . Often the trace is asymptotic
normal. These traces have been traditionally used in
dependent models for testing of hypothesis.

(Functional) convergence of spectral statistics have been
proved only under restrictive assumptions on the function f .



Extreme eigenvalue

The maximum eigenvalue of real symmetric matrices,
especially the sample covariance matrix has been quite useful
in statistical tests to test for the so-called “spiked models”.

The limit distribution of the maximum for the S matrix as well as
the Wigner matrix are (two of) the Tracy-Widom laws.

Very limited results are known for the maximum (and other
order statistics) in other random matrix models.



Recent extensions of the S matrix in high dimensional
statistics

The S matrix uses the product-moment as a measure of
dependence. Other measures of dependence have recently
been used leading to other random matrices. These include:

Spearman’s rank correlation matrix.

Kendall’s τ matrix.

The Separable Covariance Matrix and its generalisations also
extend the S matrix.



Spearman’s rank correlation matrix

Recall the data matrix X = (( Xij ))1≤i≤p,1≤j≤n. Spearman’s
rank correlation matrix: R = (( rkl ))1≤k ,l≤p where

rkl =

∑n
j=1(Qkj − Q̄k )(Qlj − Q̄l)

(

∑n
j=1(Qkj − Q̄k )2

)1/2 (
∑n

j=1(Qkj − Q̄k )2
)1/2

where Qkj is the rank of Xkj among {Xki : 1 ≤ i ≤ n} and
Q̄k = (n − 1)/2.

This is a non-parametric correlation matrix and is used in
testing of independence when the observations are heavy
tailed random vectors.



Results for R, p/n → y

• ESD of R converges weakly to MPy almost surely.

Suppose {Xij} are identically distributed.

• {Trace(Rk )− E Trace(Rk )}k≥2 converges weakly to a mean
zero Gaussian process with covariance function characterized
by y .

• Appropriately centered and scaled largest eigenvalue of R
converges weakly to the Tracy-Widom law of type 1.



Kendall’s τ matrix

T = ((τkl))1≤k ,l≤p, where

τk ,l =
1
(n

2

)

∑

1≤i<j≤n

Sign(Xki − Xkj)Sign(Xli − Xlj)

where {Xij} are identically distributed.

• ESD of T converges weakly to the law of 2
3Y + 1

3 in
probability as p/n → y > 0 where Y is an MPyvariable.

• Analytic linear spectral statistic (LSS) converges weakly to a
mean zero Gaussian process with a covariance function that
depends on y .

• Largest eigenvalue of T converges weakly to the
Tracy-Widom law of type 1.



Separable covariance matrices, p/n → y 6= 0

Data: X = (( Xij ))1≤i≤p,1≤j≤n. Consider the matrix:

Bn =
1
n

T 1/2
2n XnT1nX ′

nT 1/2
2n ,

where T1n ∈ R
n×n and T2n ∈ R

p×p are positive definite.

These are known as Separable Sample Covariance Matrices.
Pre/post multiplication helps to model dependence between
columns/rows, starting usually with independent entries in X .

Under suitable assumptions (for example the LSD of T1n and
T2n exist) the LSD of Bn exists. The limit can be expressed in
terms of free variables and its Stieltjes transform can be written
down in terms of some functional equations.

The LSS of Bn are known to be asymptotically normal.



Matrix polynomial generalisations, p/n → y ≥ 0

We can have several independent X matrices and T matrices
(of orders n × n and p × p) and form a polynomial in these
matrices, always making sure that each X occurs in pairs. For
example X1AX ′

1BB′X2X ′
2X1A′X ′

1.

• Under suitable assumptions, the LSD is known to exist for any
symmetric matrix polynomial. Further any trace is
asymptotically normal.

• Extensions to the case where p, n = n(p) → ∞, p/n → 0 are
available.

• These results can be used to study the LSD of symmetric
autocovariance matrix polynomials in high dimensional linear
time series models.



LSS and their functions: testing correlations

Write X =

(

X1

X2

)

where X1 ∈ R
p1×n and X2 ∈ R

(p−p1)×n.

Ax1x1 =
1
n
X1X

′
1, Ax2x2 =

1
n
X2X

′
2, Ax1x2 = A′

x2x1
=

1
n
X1X

′
2. (1)

Suppose p/n → y > 0, p1/p → c ∈ (0, 1)
Consider the linear spectral statistics

A = A−1/2
x1x1

Ax1x2A−1
x2x2

A′
x2x1

A−1/2
x1x1

This statistic is asymptotically normal and can be used for
testing the independence of X1 and X2.



LSS and their functions, p/n → y 6= 0

Wilk’s Λ statistic: − log
(

Det(T )
Det(T+W )

)

.

Lawley-Hotelling trace statistic: Trace(WT−1).

Bartlett-Nanda-Pillai trace statistic:
Trace(WT−1(1 + WT−1)−1).

Here

W = Ax2x1A−1
x1x1

Ax1x2 and T = (Ax2x2 − W )−1.

They are all asymptotic normal.



Spiked covariance models, p/n → y 6= 0

Data matrix: X = (( Xij ))1≤i≤p,1≤j≤n.

Spiked separable covariance matrix.

Bn =
1
n

T 1/2
2n XnT1nX ′

nT 1/2
2n .

T1n and T2n are positive definite matrices and their first few
leading eigenvalues are far away from the bulk spectrum.

• Suppose T1n is the identity matrix. Then the spiked
eigenvalues are asymptotically normal. Moreover, they are
asymptotically independent of the LSS of the bulk (remainder)
of the spectrum.

• Tracy-Wisdom law for the largest non-spiked eigenvalue of Bn

is known.
• Application: high-dimensional PCA
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