SQUARES IN PRODUCTS IN ARITHMETIC PROGRESSION WITH AT MOST TWO TERMS OMITTED AND COMMON DIFFERENCE A PRIME POWER

SHANTA LAISHRAM AND T. N. SHOREY

Abstract. It is shown that a product of $k - 2$ terms out of $k \geq 15$ terms in arithmetic progression with common difference a prime power > 1 is not a square. In fact it is not of the form by^2 where the greatest prime factor of b is less than k.

1. Introduction

For an integer $x > 1$, we denote by $P(x)$ and $\omega(x)$ the greatest prime factor of x and the number of distinct prime divisors of x, respectively. Further we put $P(1) = 1$ and $\omega(1) = 0$. Let p_i be the i-th prime number. Let $k \geq 4$, $t \geq k - 2$ and $\gamma_1 < \gamma_2 < \cdots < \gamma_t$ be integers with $0 \leq \gamma_i < k$ for $1 \leq i \leq t$. Thus $t \in \{k, k - 1, k - 2\}$, $\gamma_t \geq k - 3$ and $\gamma_i = i - 1$ for $1 \leq i \leq t$ if $t = k$. We put $\psi = k - t$. Let b be a positive squarefree integer and we shall always assume, unless otherwise specified, that $P(b) \leq k$. We consider the equation

\begin{equation}
\Delta = \Delta(n, d, k) = (n + \gamma_1d) \cdots (n + \gamma_t d) = by^2
\end{equation}

in positive integers n, d, k, b, y, t. We prove

Theorem 1. Let $\psi = 2, k \geq 15$ and $d \nmid n$. Assume that $P(b) < k$ if $k = 17, 19$. Then (1.1) with $\omega(d) = 1$ does not hold.

From Theorem 1, we obtain the following results immediately.

Corollary 1. Let $\psi = 1, k \geq 15$ and $d \nmid n$. Then (1.1) with $\omega(d) = 1$ does not hold.

Corollary 2. Let $\psi = 0, k \geq 15$ and $d \nmid n$. Assume that $P(b) \leq p_{\pi(k)+1}$ if $k = 17, 19$ and $P(b) \leq p_{\pi(k)+2}$ otherwise. Then (1.1) with $\omega(d) = 1$ does not hold.

For the proof of Corollary 1, we may suppose $P(b) = k$ otherwise it follows from (2.1) and Theorem 1. Then we delete the term divisible by k on the left hand side of (1.1) and the assertion follows from Theorem 1. Further Corollary 2 also follow similarly from Theorem 1.

Let $\psi = 0$. If $d = 1$, then (1.1) has been completely solved for $P(b) < k$ by Erdős and Selfridge [ErSe75] and for $P(b) = k$ by Saradha [Sar97]. Let $d > 1$. We observe that (1.1) has infinitely many solutions if $k = 2, 3$ and $b = 1$. Also (1.1) with $k = 4$ and $b = 6$ has infinitely many solutions. It has been conjectured that (1.1) with $\gcd(n, d) = 1$ and $k \geq 5$ does not hold. Let $\omega(d) = 1$. It has been shown in [SaSh03a] for $k > 29$ and [MuSh03] for $4 \leq k \leq 29$ that (1.1) with $\gcd(n, d) = 1$ implies that either $k = 4, (n, d, b, y) = (75, 23, 6, 140)$ or

AMS Classification: Primary 11D61; Keywords: Diophantine equations, Arithmetic Progressions, Legendre symbol.
k = 5, \(P(b) = k \). In fact we shall derive the preceding result with \(k \geq 10 \) and \(P(b) < k \) from Theorem 1, see Corollary 3.11. We refer to [LaSh06a] for results on (1.1) with \(1 < \omega(d) \leq 4 \).

Let \(\psi = 1 \). We may assume that \(\gamma_1 = 0 \) and \(\gamma_t = k - 1 \). It has been shown in [SaSh03b] that

\[
\frac{6!}{5} = (12)^2, \quad \frac{10!}{7} = (720)^2
\]

are the only squares that are products of \(k - 1 \) distinct integers out of \(k \) consecutive integers confirming a conjecture of Erdős and Selfridge [ErSe75]. This corresponds to the case \(b = 1 \) and \(d = 1 \) in (1.1). In general, it has been proved in [SaSh03b] that (1.1) with \(d = 1 \) and \(k \geq 4 \) implies that \((b, k, n) = (2, 4, 24)\) under the necessary assumption that the left hand side of (1.1) is divisible by a prime \(> k \). Further it has been shown in [SaSh03a, Theorem 4] and [MuSh04a] that (1.1) with \(d > 1 \), \(\gcd(n, d) = 1 \), \(\omega(d) = 1 \) and \(P(b) < k \) implies that \(k \leq 8 \). Thus we derive the preceding result with \(k \geq 15 \) from Corollary 1. Further the assumption \(P(b) < k \) has been relaxed to \(P(b) \leq k \) and the assumption \(\gcd(n, d) = 1 \) has been replaced by \(d \nmid n \).

Let \(\psi = 2 \). Let \(d = 1 \). Then it has been shown in [MuSh04b, Corollary 3] that a product of \(k - 2 \) distinct terms out of \(k \) consecutive positive integers is a square only if it is given by

\[
\frac{6!}{1.5} = \frac{7!}{5.7} = 12^2, \quad \frac{10!}{1.7} = \frac{11!}{7.11} = 720^2
\]

and

\[
\begin{align*}
\frac{4!}{2.3} &= 2^2, \quad \frac{6!}{4.5} = 6^2, \quad \frac{8!}{2.5.7} = 24^2, \quad \frac{10!}{2.3.4.6.7} = 60^2, \quad \frac{9!}{2.5.7} = 72^2, \\
\frac{10!}{2.3.6.7} &= 120^2, \quad \frac{10!}{7.8} = 180^2, \quad \frac{10!}{7.9} = 240^2, \quad \frac{10!}{47} = 360^2, \\
\frac{21!}{13.17.19} &= 5040^2, \quad \frac{14!}{2.3.4.11.13} = 5040^2, \quad \frac{14!}{2.3.11.13} = 10080^2.
\end{align*}
\]

The above result corresponds to (1.1) with \(b = 1 \). For the general case, we have

Theorem 2. Let \(\psi = 2 \), \(d = 1 \) and \(k \geq 6 \). Assume that the left hand side of (1.1) is divisible by a prime \(> k \). Then (1.1) is not valid unless \(k = 6 \) and \(n = 45, 240 \).

We observe that \(n > k^2 \) since the left hand side of (1.1) is divisible by a prime \(> k \). Then the assertion follows immediately from [MuSh04b, Theorem 2]. Therefore we take \(d > 1 \) from now onwards in this paper. For the proof of Theorem 1, we show without loss of generality that \(\gcd(n, d) = 1 \). Let \(\gcd(n, d) > 1 \). Let \(p^\beta = \gcd(n, d) \), \(n' = \frac{n}{p^\beta} \) and \(d' = \frac{d}{p^\beta} \). Then \(d' > 1 \) since \(d \nmid n \). Now, by dividing \((p^\beta)^\epsilon\) on both sides of (1.1), we have

\[
(n' + \gamma_1 d') \cdots (n' + \gamma_t d') = p^\epsilon b'y^2
\]

where \(y' > 0 \) is an integer, \(b' \) squarefree, \(P(b') < k \) when \(k = 17 \) and \(\epsilon \in \{0, 1\} \). Since \(p \nmid d' \) and \(\gcd(n', d') = 1 \), we see that \(p \nmid (n' + \gamma_1 d') \cdots (n' + \gamma_t d') \) giving \(\epsilon = 0 \) and assertion follows.

2. Notations and Preliminaries

We assume (1.1) with \(\gcd(n, d) = 1 \) in this section. Then we have

\[
n + \gamma_i d = a_n x_n^2 \quad \text{for } 1 \leq i \leq t
\]
with \(a_{\gamma_i}\) squarefree such that \(P(a_{\gamma_i}) \leq \max(k-1, P(b))\). Thus (1.1) with \(b\) as the squarefree part of \(a_{\gamma_1} \cdots a_{\gamma_t}\) is determined by the \(t\)-tuple \((a_{\gamma_1}, \ldots, a_{\gamma_t})\). Also

\[
(2.2) \quad n + \gamma_id = A_{\gamma_i}X_{\gamma_i}^2 \quad \text{for } 1 \leq i \leq t
\]

with \(P(A_{\gamma_i}) \leq k\) and \(\gcd(X_{\gamma_i}, \prod_{p \leq k} p) = 1\). Further we write

\[
b_i = a_{\gamma_i}, \quad B_i = A_{\gamma_i}, \quad y_i = x_{\gamma_i}, \quad Y_i = X_{\gamma_i}.
\]

Since \(\gcd(n, d) = 1\), we see from (2.1) and (2.2) that

\[
(2.3) \quad (b_1, d) = (B_1, d) = (y_1, d) = (Y_1, d) = 1 \quad \text{for } 1 \leq i \leq t.
\]

Let

\[
R = \{b_i : 1 \leq i \leq t\}.
\]

For \(b_{i_0} \in R\), let \(\nu(b_{i_0}) = |\{j : 1 \leq j \leq t, b_j = b_{i_0}\}|.\) Let

\[
T = \{1 \leq i \leq t : Y_i = 1\}, \quad T_1 = \{1 \leq i \leq t : Y_i > 1\}, \quad S_1 = \{B_i : i \in T_1\}.
\]

Note that \(Y_i > k\) for \(i \in T_1\). For \(i_0 \in T_1\), we denote by \(\nu(B_{i_0}) = |\{j \in T_1 : B_j = B_{i_0}\}|.\)

Let

\[
(2.4) \quad \delta = \min(3, \ord_2(d)), \quad \delta' = \min(1, \ord_2(d)),
\]

\[
(2.5) \quad \eta = \begin{cases} 1 & \text{if } \ord_2(d) \leq 1, \\ 2 & \text{if } \ord_2(d) \geq 2, \end{cases}
\]

\[
(2.6) \quad \rho = \begin{cases} 3 & \text{if } 3 \mid d, \\ 1 & \text{if } 3 \nmid d. \end{cases}
\]

and

\[
(2.7) \quad \theta = \begin{cases} 1 & \text{if } d = 2, 4 \\ 0 & \text{otherwise.} \end{cases}
\]

Let \(d = p^\alpha\). Then we say \((d_1, d_2)\) is a partition of \(d\) if \(d = d_1d_2\) and \(\gcd(d_1, d_2) = \eta\) and we take \((1, 2)\) as the partition of \(d = 2\). Further (2.2) is the only partition if \(d = 4\). For \(d \neq 2, 4\), we see that \((\eta, \frac{d}{\eta})\) and \((\frac{d}{\eta}, \eta)\) are the only distinct partitions of \(d\). Let \(b_i = b_j, i > j\).

Then from (2.1) and (2.3), we have

\[
(2.8) \quad \frac{(\gamma_i - \gamma_j)}{b_i} = \frac{y_i^2 - y_j^2}{d} = \frac{(y_i - y_j)(y_i + y_j)}{d}
\]

such that \(\gcd(d, y_i - y_j, y_i + y_j) = 2^{\delta'}\). Thus a pair \((i, j)\) with \(i > j\) and \(b_i = b_j\) corresponds to a partition \((d_1, d_2)\) of \(d\) such that \(d_1|(y_i - y_j)\) and \(d_2|(y_i + y_j)\) and this partition is unique. Similarly, we have unique partition of \(d\) corresponding to every pair \((i, j)\) with \(i > j, i, j \in T_1\) and \(B_i = B_j\).
Let \(q \) be a prime \(\leq k \) and coprime to \(d \). Then the number of \(i \)'s for which \(b_i \) are divisible by \(q \) is at most \(\sigma_q = \left\lceil \frac{k}{q} \right\rceil \). Let \(\sigma_q' = |\{b_i : q|b_i\}| \). Then \(\sigma_q' \leq \sigma_q \). Let \(r \geq 3 \) be any positive integer. Define \(F(k, r) \) and \(F'(k, r) \) as

\[
F(k, r) = |\{\gamma_i : P(b_i) > p_r\}| \quad \text{and} \quad F'(k, r) = \sum_{i=r+1}^{\pi(k)} \sigma_{p_i}.
\]

Then \(|\{b_i : P(b_i) > p_r\}| \leq F(k, r) \leq F'(k, r) - \sum_{p|d,p>p_r} \sigma_p \). Let

\[
B_r = \{b_i : P(b_i) \leq p_r\}, \quad I_r = \{\gamma_i : b_i \in B_r\} \quad \text{and} \quad \xi_r = |I_r|.
\]

We have
\[
(2.9) \quad \xi_r \geq t - F(k, r) \geq t - F'(k, r) + \sum_{p|d,p>p_r} \sigma_p
\]
and
\[
(2.10) \quad t - |R| \geq t - |\{b_i : P(b_i) > p_r\}| - |\{b_i : P(b_i) \leq p_r\}|
\]
\[
(2.11) \quad \geq t - F(k, r) - |\{b_i : P(b_i) \leq p_r\}|
\]
\[
(2.12) \quad \geq t - F'(k, r) + \sum_{p|d,p>p_r} \sigma_p - |\{b_i : P(b_i) \leq p_r\}|
\]
\[
(2.13) \quad \geq t - F'(k, r) + \sum_{p|d,p>p_r} \sigma_p - 2^r.
\]

We write \(S := S(r) \) for the set of positive squarefree integers composed of primes \(\leq p_r \). Let \(p = 2^\delta \) if \(d \) is even and \(p = P(d) \) if \(d \) is odd. Let \(p = 2^\delta \). Then \(b_i \equiv n(\mod 2^\delta) \). Considering modulo \(2^\delta \) for elements of \(S(r) \), we see by induction on \(r \) that

\[
(2.14) \quad |\{b_i : P(b_i) \leq p_r\}| \leq 2^{r-\delta} =: g_{2^\delta}.
\]

Let \(p = P(d) \). Then all \(b_i \)'s are either quadratic residues \(\mod p \) or non-quadratic residues \(\mod p \). We consider two sets

\[
S_1(p, r) = \{s \in S : \left(\frac{s}{p} \right) = 1\},
\]
\[
S_2(p, r) = \{s \in S : \left(\frac{s}{p} \right) = -1\}
\]
and define

\[
(2.15) \quad g_p(r) = \max(|S_1(p, r)|, |S_2(p, r)|).
\]

Then

\[
(2.16) \quad |\{b_i : P(b_i) \leq p_r\}| \leq g_p.
\]

In view of (2.14) and (2.17), the inequality (2.12) is improved as

\[
(2.17) \quad t - |R| \geq k - \psi - F'(k, r) + \sum_{p|d,p>p_r} \sigma_p - g_p.
\]

(2.18)
Let $r = 3, 4, 2 < p \leq 220$. Then we calculate

\[
g_p(r) = \begin{cases}
2^{r-2} & \text{if } p \leq p_r \\
2^{r-1} & \text{if } p > p_r
\end{cases}
\]

except when $r = 3, p \in \{71, 191\}$ where $g_p = 2^r$. We close this section with the following Lemmas which are independent of (1.1). The first Lemma is an estimate on $\pi(x)$ due to Dusart [Dus99].

Lemma 2.1. We have

\[
\pi(x) \leq \frac{x}{\log x} \left(1 + \frac{1.2762}{\log x}\right) \text{ for } x > 1.
\]

The following lemma is contained in [LaSh04, Theorem 1].

Lemma 2.2. Let $k \geq 9$, $\gcd(n, d) = 1$ if $d = 2$ and $(n, d, k) \notin V$ where V is given by

\[
\begin{cases}
n = 1, d = 3, k = 9, 10, 11, 12, 19, 22, 24, 31; \\
n = 2, d = 3, k = 12; n = 4, d = 3, k = 9, 10; \\
n = 2, d = 5, k = 9, 10; \\
n = 1, d = 7, k = 10.
\end{cases}
\]

Then

\[
W(n(n + d) \cdots (n + (k - 1)d)) := |\{i : 0 \leq i < k, P(n + id) > k\}| \geq \pi(2k) - \pi_d(k).
\]

Let $d = 2$ and $n \leq k$. Then

\[
W(n(n + d) \cdots (n + (k - 1)d)) \geq \pi(2k) - \pi_d(k) - 1.
\]

The following lemma is contained in [Lai06, Lemma 8].

Lemma 2.3. Let s_i denote the i-th squarefree positive integer. Then

\[
\prod_{i=1}^{l} s_i \geq (1.6)^l l! \text{ for } l \geq 286.
\]

3. **Lemmas for the equation (1.1)**

All the lemmas in this section are under the assumption that (1.1) with $\omega(d) = 1$ is valid and we shall suppose it without reference.

Lemma 3.1. Let ψ be fixed. Suppose that (1.1) with $P(b) \leq k$ has no solution at $k = k_1$ with k_1 prime. Then (1.1) with $P(b) \leq k$ and $k_1 \leq k < k_2$ has no solution where k_1, k_2 are consecutive primes.

Proof. Let k_1, k_2 be consecutive primes such that $k_1 \leq k < k_2$. Suppose (n, d, b, y) is a solution of

\[
(n + \gamma_1 d) \cdots (n + \gamma_l d) = by^2
\]

with $P(b) \leq k$. Then $P(b) \leq k_1$. We observe that $\gamma_{k_1 - \psi} < k_1$ and by (2.1),

\[
(n + \gamma_1 d) \cdots (n + \gamma_{k_1 - \psi} d) = b'y^2
\]

holds for some b' with $P(b') \leq k_1$ giving a solution of (1.1) at $k = k_1$. This is a contradiction. \qed
In view of Lemma 3.1, there is no loss of generality in assuming that \(k \) is prime whenever \(k \geq 23 \) in the proof of Theorem 1. Therefore we suppose from now onward without reference that \(k \) is prime if \(k \geq 23 \). The following Lemma gives a lower bound for \(|T_1| \), see [LaSh06a, Lemma 4.1].

Lemma 3.2. Let \(k \geq 4 \). Then
\[
|T_1| > t - \frac{(k - 1) \log (k - 1) - \sum_{p|d, p < k} \max \left(0, \frac{(k-1-p)\log p}{p-1} - \log (k-2) \right)}{\log (n + (k-1)d)} - \pi_d(k) - 1.
\]

We apply Lemmas 2.2 and 3.2 to derive the following result.

Corollary 3.3. Let \(k \geq 9 \). Then we have
\[
|T_1| > 0.1754k \quad \text{for} \quad k \geq 81.
\]
and
\[
n + \gamma d > \eta^2 k^2.
\]

Proof. We observe that \(\pi(2k) - \pi(k) > 2 \) since \(k \geq 9 \). Therefore \(P(\Delta) > k \) by Lemma 2.2. Now we see from (1.1) that
\[
n + \gamma d > k^2.
\]
By (3.1), \(t \geq k - 2, \pi_d(k) \leq \pi(k) \) and Lemma 2.1, we get
\[
|T_1| > k - 3 - \frac{(k - 1) \log k}{2 \log k} - \frac{k}{\log k} \left(1 + \frac{1.2762}{\log k} \right).
\]
Since the right hand side of the above inequality exceeds 0.1754k for \(k \geq 81 \), the assertion (3.2) follows.

Now we turn to the proof of (3.3). By (3.4), it suffices to consider \(d = 2^\alpha \) with \(\alpha > 1 \). From Lemma 2.2 and (1.1), we have \(n + (k-1)d > p_{\pi(2k)}^2 \). Now we see from (3.1) that
\[
|T_1| + \pi_d(k) - \pi(2k) > k - 3 - \frac{(k - 1) \log (k-1) - (k-3) \log 2 + \log (k-2)}{2 \log p_{\pi(2k)}^2} - \pi(2k)
\]
and
\[
|T_1| + \pi_d(k) - \pi(2k) > k - 3 - \frac{(k - 1) \log k - (k-3) \log 2 + \log k}{2 \log k} - \frac{2k}{\log 2k} \left(1 + \frac{1.2762}{\log 2k} \right)
\]
by Lemma 2.1. When \(k \geq 60 \), we observe that the right hand side of the preceding inequality is positive. Therefore \(|T_1| + \pi_d(k) > \pi(2k) \) implying \(n + \gamma d > 4k^2 \) for \(k \geq 60 \). Thus we may assume \(k < 60 \). Now we check that the right hand side of (3.5) is positive for \(k \geq 33 \). Therefore we may suppose that \(k < 33 \) and \(n + (k-3)d \leq n + \gamma d \leq 4k^2 \). Hence \(d = 2^\alpha < \frac{4k^2}{k-3} \).

For \(n, d, k \) satisfying \(k < 33, d < \frac{4k^2}{k-3}, n + (k-3)d \leq 4k^2 \) and \(n + (k-1)d \geq p_{\pi(2k)}^2 \), we check that there are at least three \(i \) with \(0 \leq i < k \) such that \(n + id \) is divisible by a prime \(> k \) to the first power. This is not possible. \(\square \)

The next Lemma follows from (3.3) and [LaSh06a, Corollaries 3.5, 3.7].
Lemma 3.4. For any pair \((i, j)\) with \(b_i = b_j\), the partition \((\eta^{-1}, \eta)\) of \(d\) is not possible. Further \(\nu(b_{i0}) \leq 2^{1-\theta}\) and \(\nu(B_{i0}) \leq 2^{1-\theta}\).

The following Lemma follows from (3.3), Lemma 3.4 and [LaSh06a, Corollary 3.9].

Lemma 3.5. Let \(z_0 \in \{2, 3, 5\}\). Assume that either \(d\) is odd or \(8|d\) and \(z_0 = 5\) if \(8|d\). Further let \(d = \theta_1(k-1)^2, n = \theta_2(k-1)^3\) with \(\theta_1 > 0\) and \(\theta_2 > 0\). Suppose that \(t - |R| \geq z_0\). Then we have the partition \((\eta, \eta^{-1})\) of \(d\) such that

\[
d\eta^{-1} < \frac{4(k-1)}{q_2}
\]

and

\[
\frac{1}{2} \left\{ \frac{1}{q_1q_2} - \frac{1}{\sqrt{(q_1q_2)^2 + \frac{\theta_1}{q_1q_2}}} \right\} \leq \frac{1}{2} \theta_2 < \frac{1}{2} \left\{ \frac{1}{q_1q_2} - \frac{1}{\sqrt{(q_1q_2)^2 + \frac{\theta_1}{q_1q_2}}} \right\}
\]

hold with \(q_1 \geq Q_1, q_2 \geq Q_2\) where \((Q_1, Q_2)\) is given by \((1, 1), (2, 2), (4, 4)\) according as \(z_0 = 2, 3, 5\), respectively when \(d\) is odd and \((Q_1, Q_2) = (2, 8)\) when \(z_0 = 5, 8|d\).

Lemma 3.6. Let \(z_1 > 1\) be a real number, \(h_0 > i_0 \geq 0\) to be integers such that \(\prod_{b_i \in R} b_i \geq z_1^{\varepsilon_{i_0}} |R|^{-i_0}\) for \(|R| \geq h_0\). Suppose that \(t - |R| < g\) and let \(g_1 = k - t + g - 1 + i_0\). For \(k \geq h_0 + g_1\) and for any real number \(m > 1\), we have

\[
g_1 > \frac{k \log \left(\frac{z_1^{h_0}}{2.71838} \prod_{p \leq m} p^{\frac{|R|}{p+d}} \right) + (k + \frac{1}{2}) \log(1 - \frac{q_1}{k})}{\log(k - g_1) - 1 + \log z_1} - (1.5|\text{im}| - .5 \ell - 1) \log k + \log \left(\frac{n_1^{-1} n_2 \prod_{p \leq m} p^{5+\frac{2}{p+d}}}{\log(k - g_1) - 1 + \log z_1} \right)
\]

where

\[
\ell = \left| \{p \leq m : p|d\} \right|, \quad n_0 = \prod_{p|d, p \leq m} p^{\frac{1}{p+d}}, \quad n_1 = \prod_{p|d, p \leq m} p^{\frac{2}{p+d}} \quad \text{and} \quad n_2 = \begin{cases} 2^{\frac{1}{2}} & \text{if } 2 \nmid d \\ 1 & \text{otherwise.} \end{cases}
\]

For a proof, see [LaSh06a, Lemma 5.3]. The assumption \(\omega(d) = 1\) is not necessary for Lemmas 3.1, 3.2, 3.6 and Corollary 3.3.

Lemma 3.7. We have

\[
t - |R| \geq \begin{cases} 5 \text{ for } k \geq 81 \\ 5 - \psi \text{ for } k \geq 55 \\ 4 - \psi \text{ for } k \geq 28, k \neq 31 \\ 3 - \psi \text{ for } k = 31. \end{cases}
\]

Proof. Suppose \(t - |R| < 5\) and \(k \geq 292\). Then \(|R| \geq 286\) since \(t \geq k - 2\) and \(\prod_{b_i \in R} b_i \geq (1.6)^{|R|} |R|!\) by (2.23). We observe that (3.8) hold for \(k \geq 292\) with \(i_0 = 0, h_0 = 286, z_1 = 1.6, g_1 = 6, m = 17, \ell = 0, n_0 = 1, n_1 = 1\) and \(n_2 = 2^{\frac{1}{2}}\). We check that the right hand side of (3.8) is an increasing function of \(k\) and it exceeds \(g_1\) at \(k = 292\) which is a contradiction.
Comparing the upper and lower bounds of (2.21), we have

\[t - |R| \geq k - \psi - F'(k, r) - 2^r \geq 7 - \psi, \quad 5 - \psi, \quad 4 - \psi \] for \(k \geq 81, 55, 28 \), respectively except at \(k = 29, 31, 43, 47 \) where \(t - |R| \geq k - \psi - F(k, r) - 2^r \geq k - \psi - F'(k, r) - 2^r = 3 - \psi \). We may suppose that \(k = 29, 43, 47 \), \(t - |R| = 3 - \psi \) and \(F(k, r) = F'(k, r) \). Further we may assume that for each prime \(7 \leq p \leq k \), there are exactly \(\sigma_p \) number of \(i \)'s for which \(p|b_i \) and for any \(i, \) \(pq \mid b_i \) whenever \(7 \leq q \leq k, q \neq p \). Now we get a contradiction by considering the \(i \)'s for which \(b_i \)'s are divisible by primes \(7, 13; 7, 41; 23, 11 \) when \(k = 29, 43, 47 \), respectively. For instance let \(k = 29 \). Then \(7|b_i \) for \(i \in \{ 0, 7, 14, 21, 28 \} \). Then \(13|b_i \) for \(i \in \{ h + 13j : 0 \leq j \leq 2 \} \) with \(h = 0, 1, 2 \). This is not possible. \(\square \)

Lemma 3.8. Let \(9 \leq k \leq 23 \) and \(d \) odd. Suppose that \(t - |R| \geq 3 \) for \(k = 23 \) and \(t - |R| \geq 2 \) for \(k < 23 \). Then (1.1) does not hold.

Proof. Suppose (1.1) holds. Let \(Q = 2 \) if \(k = 23 \) and \(Q = 1 \) if \(k < 23 \). We now apply Lemma 3.5 with \(z_0 = 3 \) for \(k = 23 \) and \(z_0 = 2 \) for \(k < 23 \) to get \(d < \frac{4}{Q} (k - 1), \) \(\theta_1 < \frac{4}{Q(k - 1)} \) and

\[\theta_1 + \theta_2 < \frac{1}{2} \left(\frac{1}{Q^2} + \frac{4}{Q(k - 1)} + \sqrt{\frac{1}{Q^4} + \frac{4}{Q^3(k - 1)}} \right) \leq \Omega(k - 1). \]

Further from (2.21), we have \(n + (k - 1)d \geq n + \gamma_id \geq p_i^{2(k-2)} \). Therefore \(p_i^x = d < \frac{4}{Q} (k - 1) \) and \(p_i^{2(k-2)} \leq n + (k - 1)d < (k - 1)^3 \Omega(k - 1) \). For these possibilities of \(n, d, k \), we check that there are at least three \(i \) with \(0 \leq i < k \) such that \(n + id \) is divisible by a prime \(> k \) to an odd power. This contradicts (1.1). \(\square \)

Lemma 3.9. Equation (1.1) with \(k \geq 9 \) implies that \(t - |R| \leq 1 \).

Proof. Assume that \(k \geq 9 \) and \(t - |R| \geq 2 \). Let \(d = 2, 4 \). Then \(|R| \leq t - 2 \) contradicting \(|R| = t \) by Lemma 3.4. Thus \(d \neq 2, 4 \). By Lemma 3.4, we have \(\nu(b_{0a}) \leq 2 \) and \(\nu(B_{0a}) \leq 2 \).

Let \(k \geq 81 \). Then \(t - |R| \geq 5 \) by Lemma 3.7. Now we derive from Lemma 3.5 with \(z_0 = 5 \) that \(d < k - 1 \) giving \(\theta_1 < \frac{1}{k - 1} \) and hence

\[n + (k - 1)d = (\theta_1 + \theta_2)(k - 1)^3 < \frac{(k - 1)^3}{2} \left\{ \frac{1}{16} + \frac{1}{k - 1} + \sqrt{\frac{1}{(16)^2} + \frac{1}{16(k - 1)}} \right\}. \]

On the other hand, we get from (3.2) and \(\nu(B_{0a}) \leq 2 \) that \(n + (k - 1)d \geq \frac{0.1754k}{2} k^2 \geq 0.1754\frac{k^3}{2} \). Comparing the upper and lower bounds of \(n + (k - 1)d \), we obtain

\[0.1754 < \left\{ \frac{1}{16} + \frac{1}{k - 1} + \sqrt{\frac{1}{(16)^2} + \frac{1}{16(k - 1)}} \right\} \leq 0.144 \]

since \(k \geq 81 \). This is a contradiction.

Thus \(k < 81 \). Let \(d \) be even. Then \(8|d \) and we see from \(\nu(a_i) \leq 2 \) and (2.14) that \(\xi_r \leq 2g_{2^s} \leq 2^{r-2} \). Let \(r = 3 \). From (2.9), we get \(k - 2 - F'(k, r) \leq \xi_r \leq 2^{r-2} \). We find \(k - 2 - F'(k, r) \leq 2^{r-2} \) by computation. This is a contradiction.

Thus \(d \) is odd. Since \(\psi \leq 2 \), we get from Lemmas 3.7 and 3.5 with \(z_0 = 3, 2 \) that \(d < 2(k - 1) \) if \(k \geq 55 \) and \(d < 4(k - 1) \) if \(k < 55 \). Since \(g_{2^s}(r) \leq 2^{r-1} \) for \(r = 4, p < 220 \) by (2.19), we get from (2.18) with \(r = 4 \) that \(t - |R| \geq k - 2 - F'(k, r) - 2^{r-1} \) which is \(\geq 5 \) for \(k \geq 29 \) and \(\geq 3 \) for \(k = 23 \).
Let $k \geq 29$. Then we get from Lemma 3.5 with $z_0 = 5$ that $d < k - 1$. By taking $r = 3$ for $k < 53$ and $r = 4$ for $53 \leq k < 81$, we derive from (2.17), (2.19), $\nu(a_i) \leq 2$ and (2.9) that $k - 2 - F'(k, r) \leq \xi_r \leq 2g_p \leq 2^r$. On the other hand, we check by computation that $k - 2 - F'(k, r) > 2^r$. This is a contradiction.

Thus $k \leq 23$. Then $t - |R| \geq 3$ for $k = 23$ and $t - |R| \geq 2$ for $k < 23$. By Lemma 3.8, this is not possible.

Corollary 3.10. Let $k \geq 9$. Equation (1.1) implies that either $k \leq 23$ or $k = 31$. Also $P(d) > k$.

Proof. By Lemmas 3.7 and 3.9, we see that either $k \leq 23$ or $k = 31$. Suppose that $P(d) \leq k$. Since $g_{P(d)}(r) \leq 2^{r-1}$ for $r = 3$ by (2.19), we get from (2.18) with $r = 3$ that $t - |R| \geq k - 2 - F'(k, r) - 2^{r-1} \geq 2$ except at $k = 9$ where $t - |R| = 1$. This contradicts Lemma 3.9 for $k > 9$. Let $k = 9$. By taking $r = 4$, we get from $g_{P(d)}(r) \leq 2^{r-2}$ by (2.19) and (2.18) that $t - |R| \geq k - 2 - F'(k, 4) - 2^{r-2} \geq 2$. This contradicts Lemma 3.9.

As a consequence, we derive the following Corollary which is [SaSh03a, Theorem 1 (ii)].

Corollary 3.11. Let $\psi = 0$. Equation (1.1) with $P(b) < k$ implies that $k \leq 9$.

Proof. Let $k \geq 10$. By Corollary 3.10, we see that either $k \leq 23$ or $k = 31$. Let $k = 10$. Then we get from (2.13) with $r = 2$ that $t - |R| \geq k - F'(k, r) - 2^r = 2$ contradicting Lemma 3.9. Thus (1.1) does not hold at $k = 10$. By induction, we may assume $k \in \{12, 14, 18, 20\}$ and further there is at most one i for which $p|a_i$ with $p = k - 1$. We take $r = 2$ for $k = 12, 14$ and $r = 3$ for $k = 18, 20$. Now we get from $|\{b_i : P(b_i) > p_r\}| \leq F'(k, r) - 1$ and (2.10) that $t - |R| \geq k - F'(k, r) + 1 - 2^r \geq 2$. This contradicts Lemma 3.9.

4. **Proof of Theorem 1**

Suppose that the assumptions of Theorem 1 are satisfied and assume (1.1) with $\omega(d) = 1$. By Corollary 3.10, we have $P(d) > k$ and further we restrict to $k \leq 23$ and $k = 31$. Also $t - |R| \leq 1$ by Lemma 3.9. Further it suffices to prove the assertion for $k \in \{15, 18, 20, 23, 31\}$ since the cases $k = 16, 17; k = 19$ and $k = 21, 22$ follows from those of $k = 15, 18$ and 20, respectively.

We shall arrive at a contradiction by showing $t - |R| \geq 2$. For a prime $p \leq k$, we observe that $p \nmid d$ and let i_p be such that $0 \leq i_p < p$ and $p|n + i_pd$. For any subset $\mathcal{I} \subseteq [0, k) \cap \mathbb{Z}$ and primes p_1 and p_2, we define

$$\mathcal{I}_1 = \{i \in \mathcal{I} : \left(\frac{i - i_{p_1}}{p_1}\right) = \left(\frac{i - i_{p_2}}{p_2}\right)\} \text{ and } \mathcal{I}_2 = \{i \in \mathcal{I} : \left(\frac{i - i_{p_1}}{p_1}\right) \neq \left(\frac{i - i_{p_2}}{p_2}\right)\}. $$

Then from $\left(\frac{a_i}{p}\right) = \left(\frac{i - i_p}{p}\right)$, we see that either

(4.1) \hspace{1cm} \left(\frac{a_i}{p_1}\right) \neq \left(\frac{a_i}{p_2}\right) \hspace{0.5cm} \text{for all } i \in \mathcal{I}_1 \text{ and } \left(\frac{a_i}{p_1}\right) = \left(\frac{a_i}{p_2}\right) \hspace{0.5cm} \text{for all } i \in \mathcal{I}_2$

or

(4.2) \hspace{1cm} \left(\frac{a_i}{p_1}\right) \neq \left(\frac{a_i}{p_2}\right) \hspace{0.5cm} \text{for all } i \in \mathcal{I}_2 \text{ and } \left(\frac{a_i}{p_1}\right) = \left(\frac{a_i}{p_2}\right) \hspace{0.5cm} \text{for all } i \in \mathcal{I}_1$.

We define \((M, B) = (I_1, I_2)\) in the case (4.1) and \((M, B) = (I_2, I_1)\) in the case (4.2). We call \((I_1, I_2, M, B) = (I_1^k, I_2^k, M^k, B^k)\) when \(I = \{0, k\} \cap \mathbb{Z}\). Then for any \(I \subseteq \{0, k\} \cap \mathbb{Z}\), we have
\[
I_1 \subseteq I_1^k, I_2 \subseteq I_2^k, M \subseteq M^k, B \subseteq B^k
\]
and
\[
|M| \geq |M^k| - (k - |I|), \quad |B| \geq |B^k| - (k - |I|).
\]

By taking \(m = n + \gamma t d\) and \(\gamma' = \gamma t - \gamma t - i + 1\), we re-write (1.1) as
\[
(m - \gamma' d) \cdots (m - \gamma' d) = by^2.
\]
The equation (4.4) is called the mirror image of (1.1). The corresponding \(t\)-tuple \((a_{\gamma_1}, a_{\gamma_2}, \ldots, a_{\gamma_t})\) is called the mirror image of \((a_{\gamma_1}, \ldots, a_{\gamma_t})\).

4.1. The case \(k = 15\). Then \(\sigma' = 3\) implies that \(7|a_j\) for \(j = 0, 1, 2\) and \(\sigma' = 2\) if \(7 \nmid a_0 a_2 a_{14}\). Similarly \(\sigma' = 2\) implies \(13|a_0, 13|a_{13}\) or \(13|a_{1}, 13|a_{14}\) and \(\sigma' = 1\) otherwise. Thus \(|\{a_i : 7|a_i\text{ or } 13|a_i\}| \leq 4\). It suffices to have
\[
|\{a_i : p|a_i\text{ for } 5 \leq p \leq 13\}| \leq 7
\]
since then \(t - |R| \geq k - 2 - |\{a_i : p|a_i\text{ for } 5 \leq p \leq 13\}| - 4 \geq 2\) by (2.10) with \(r = 2\), a contradiction.

Let \(p_1 = 11, p_2 = 13\) and \(I = \{\gamma_1, \gamma_2, \ldots, \gamma_t\}\). We observe that \(P(a_i) \leq 7\) for \(i \in M \cup B\).
Since \(\frac{3}{11} \neq \frac{3}{13}\) but \(\frac{3}{11} = \frac{3}{13}\) for a prime \(q < k\) other than \(5, 11, 13\), we observe that \(5|a_i\) whenever \(i \in M\). Since \(\sigma_5 \leq 3\) and \(|I| = k - 2\), we obtain from (4.3) that \(|M^k| \leq 5\) and \(5|a_i\) for at least \(|M^k| - 2\) \(a_i\)’s with \(i \in M^k\). Further \(5 \nmid a_i\) for \(i \in B\).

By taking the mirror image (4.4) of (1.1), we may suppose that \(0 \leq i_{13} \leq 7\). For each possibility \(0 \leq i_{11} < 11\) and \(0 \leq i_{13} \leq 7\), we compute \(|I_1^k|, |I_2^k|\) and restrict to those pairs \((i_{11}, i_{13})\) with \(\min(|I_1^k|, |I_2^k|) \leq 5\). We see from \(\max(|I_1^k|, |I_2^k|) \geq 6\) that \(M^k\) is exactly one of \(I_1^k\) or \(I_2^k\) with minimum cardinality and hence \(B^k\) is the other. Now we restrict to those pairs \((i_{11}, i_{13})\) for which there are at most two elements \(i \in M^k\) such that \(5 \nmid a_i\). There are 31 such pairs. By counting the multiples of 11 and 13 and also the maximum multiples of 5 in \(M^k\) and the maximum number of multiples of 7 in \(B^k\), we again restrict to those pairs \((i_{11}, i_{13})\) which do not satisfy (4.5). With this procedure, all pairs \((i_{11}, i_{13})\) are excluded other than
\[
(0, 6), (1, 3), (2, 4), (3, 5), (4, 6), (5, 3).
\]
We first explain the procedure by showing how \((i_{11}, i_{13}) = (0, 0)\) is excluded. Now \(M^k = \{5, 10\}\) and \(B^k = \{2, 4, 7, 8, 9, 10, 12, 13, 14\}\). Then there are 3 multiples of 11 and 13, at most 2 multiples of 5 in \(M^k\) and at most 2 multiples of 7 in \(B^k\) implying (4.5). Thus \((i_{11}, i_{13}) = (0, 0)\) is excluded.

Let \((i_{11}, i_{13}) = (5, 3)\). Then \(M^k = \{1, 6, 11\}\) and \(B^k = \{2, 4, 7, 8, 9, 10, 12, 13, 14\}\) giving \(i_5 = 1\) and \(5|a_1 a_6 a_{11}\). We may assume that \(7|a_i\) for \(i \in \{0, 7, 14\}\) otherwise (4.5) holds. By taking \(p_1 = 5, p_2 = 11\) and \(I = B^k\), we get \(I_1 = \{4, 10, 13\}\) and \(I_2 = \{2, 4, 7, 8, 9, 12, 14\}\). Since \(\frac{3}{5} = \frac{3}{11}\), \(\frac{2}{5} = \frac{2}{11}\) and \(\frac{3}{5} \neq \frac{3}{11}\), we observe that \(3|a_i\) for \(i \in I_1 \cap B\) and \(3 \nmid a_i\) for \(i \in I_2 \cap B\). Thus \(a_i \in \{3, 6\}\) for \(i \in I_1 \cap B\) and \(a_i \in \{1, 2, 7, 14\}\) for \(i \in I_2 \cap B\). Now from \(\frac{3}{5} = \frac{3}{11}\), \(\frac{2}{5} = \frac{2}{11}\) and \(\frac{3}{5} = \frac{3}{11}\), we see that at least one of 4, 10, 13 is not in \(B\) implying \(i \notin B\) for at most one \(i \in I_2\). Therefore there are distinct pairs \((i_1, i_2)\) and \((j_1, j_2)\) with
$i_1, i_2, j_1, j_2 \in I_3 \cap B$ such that $a_{i_1} = a_{i_2}, i_1 > i_2$ and $a_{j_1} = a_{j_2}, j_1 > j_2$ giving $t - |R| \geq 2$. This is a contradiction. Similarly, all other pairs (i_{11}, i_{13}) in (4.6) are excluded.

4.2. The case $k = 18$. We may assume that $\sigma'_{17} = 1$ and $17 \mid a_0 a_1 a_2 a_{15} a_{16} a_{17}$ otherwise the assertion follows the case $k = 15$. If $\{|a_i: P(a_i) = 5\}| = 4$, we see from $\{|a_i: P(a_i) = 5\} \subseteq \{5, 10, 15, 30\}$ that $a_5 a_{15} + 5 a_{16} + 10 a_{17}$ is a square, contradicting Eulers’ result for $k = 4$. Thus we have $\{|a_i: P(a_i) = 5\}| \leq 3$. Further for each prime $7 \leq p \leq 13$, we may also assume that $\sigma'_p = \sigma_p$ and for any $i, p q \nmid a_i$ whenever $7 \leq q \leq 17, q \neq p$ otherwise $t - |R| \geq k - 2 - \sum_{7 \leq p \leq 17} \sigma'_p - 3 - 4 \geq 2$ by (2.10) with $r = 2$.

Let $p_1 = 11, p_2 = 13$ and $I = \{\gamma_1, \gamma_2, \ldots, \gamma_l\}$. Since $(\frac{1}{11}) \neq (\frac{5}{11})$ and $(\frac{11}{11}) \neq (\frac{17}{11})$ but $(\frac{11}{17}) = (\frac{17}{17})$ for $q < k, q \neq 17, 11, 13$, we observe that for $i \in M$, exactly one of $5 a_i$ or $17 a_i$ holds. Thus $5 \cdot 17 \mid a_i$ whenever $i \in M$. For $i \in B$, either $5 \mid a_i, 17 \mid a_i$ or $5 | a_5, 17 | a_5$. Thus for $i \in B$, we have $P(a_i) \leq 7$ except possibly for one i for which $5 \cdot 17 | a_5$. Since $\sigma_5 \leq 4$ and $\sigma_{17} \leq 1$, we obtain $|M^k| \leq 7$ and $5 a_i$ for at least $|M^k| - 3$’s with $i \in M^k$. Hence $|M^k| = 7$ implies that either

$|a + 5 j : 0 \leq j \leq 3| \leq I^k_1$ or $|b + 5 j : 0 \leq j \leq 3| \leq I^k_2$ for some $a, b \in \{0, 1, 2\}$.

Since $\sigma'_{i_1} = 2$ and $\sigma'_{i_3} = 2$, we may suppose that $0 \leq i_{11} \leq 6$ and $0 \leq i_{13} \leq 4$. Further $i_{11} \neq i_{13}$ and $i_{11} + 11 \neq i_{13} + 13$. We observe that either $\min(|I^k_1|, |I^k_2|) \leq 6$ or $|I^k_1| = |I^k_2| = 7$. For pairs (i_{11}, i_{13}) with $|I^k_1| = |I^k_2| = 7$, we check that (4.7) is not valid. Thus we restrict to those pairs satisfying $\min(|I^k_1|, |I^k_2|) \leq 6$. There are 16 such pairs. Further we see from $\max(|I^k_1|, |I^k_2|) \geq 8$ that M^k is exactly one of I^k_1 or I^k_2 with minimum cardinality and hence B^k is the other one. Now we restrict to those pairs (i_{11}, i_{13}) for which $5 | a_i$ for at least 3 elements $i \in M^k$ otherwise $t - |R| \geq k - 2 - \sum_{7 \leq p \leq 17} \sigma'_p - 3 - 4 \geq 2$ by (2.10) with $r = 2$. We find that $(i_{11}, i_{13}) \in \{(1, 3), (2, 4), (4, 0), (5, 1)\}$. For these pairs (i_{11}, i_{13}), we check that there are at most 4 multiples of 5 and 17 with $i \in M^k \cup B^k$. Thus if $\{|i : i \in B, 7 | a_i\} \leq 2$, then $t - |R| \geq 2$ by (2.10) with $r = 2$. Therefore we may assume that $\{|i : i \in B, 7 | a_i\} = 3$ and hence $\{|i : i \in B^k, 7 | a_i\} = 3$. We now restrict to those pairs (i_{11}, i_{13}) for which $\{|i : i \in B^k, 7 | a_i\} = 3$. They are given by $(i_{11}, i_{13}) \in \{(2, 4), (4, 0)\}$.

Let $(i_{11}, i_{13}) = (2, 4)$. Then by taking $p_1 = 11$ and $p_2 = 13$ as above, we have $M^k = \{1, 6, 8, 11\} \cup B^k = \{0, 3, 5, 7, 9, 10, 12, 14, 15, 16\}$ giving $i_5 = 1$ and $5 | a_5 a_6 a_{11}$. We may assume that $17 | a_8$ since $17 \nmid a_{16}$. Hence $P(a_i) \leq 7$ for $i \in B$. Consequently $P(a_i) \leq 7$ for exactly 8 elements $i \in B^k$ and other 2 elements are not in B. Further $7 | a_i$ for $i \in \{0, 7, 14\}$ and $0, 7, 14 \in B$. Now we take $p_1 = 5, p_2 = 11$ and $I = B^k$ to get $I_1 = \{0, 5, 7, 9\}$ and $I_2 = \{3, 10, 12, 14, 15\}$. Since $(\frac{5}{11}) = (\frac{5}{17}), (\frac{7}{11}) = (\frac{7}{17})$ and $(\frac{5}{17}) = (\frac{7}{17})$, we observe that either $3 | a_i$ for $i \in I_1 \cap B$ or $3 | a_i$ for $i \in I_2 \cap B$. The former possibility is excluded since $0, 7 \in I_1 \cap B$ and the latter is not possible since $14 \in I_2 \cap B$. The other case $(i_{11}, i_{13}) = (4, 0)$ is excluded similarly.

4.3. The case $k = 20$. We may assume that $\sigma'_{i_9} = 1$ and $19 \nmid a_0 a_{19}$ otherwise the assertion follows from the case $k = 18$. Also we have $\{|a_i: P(a_i) = 5\}| \leq 3$ by Eulers’ result for $k = 4$. Further for each prime $7 \leq p \leq 17$, we may also assume that $\sigma'_p = \sigma_p$ and for any $i, p q \nmid a_i$ whenever $7 \leq p < q \leq 19$ otherwise $t - |R| \geq k - 2 - \sum_{7 \leq p \leq 17} \sigma'_p - 3 - 4 \geq 2$ by (2.10) with $r = 2$.

Let $p_1 = 11$, $p_2 = 13$ and $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. Then as in the case $k = 18$, we observe that for $i \in \mathcal{M}$, exactly one of $5a_i$ or $17a_i$ holds but $5 \cdot 17 \nmid a_i$. For $i \in \mathcal{B}$, either $5 \nmid a_{i}$, $17 \nmid a_{i}$ or $5|a_{i}$, $17|a_{i}$. Since $\sigma_5 \leq 4$ and $\sigma_{17} \leq 2$, we obtain $|\mathcal{M}^k| \leq 8$ and $5|a_{i}$ for at least $|\mathcal{M}^k| - 4$ i's with $i \in \mathcal{M}^k$. Hence $|\mathcal{M}^k| = 8$ implies that either

$$\{a + 5j : 0 \leq j \leq 3\} \subseteq \mathcal{I}_1^k$$

or $\{b + 5j : 0 \leq j \leq 3\} \subseteq \mathcal{I}_2^k$

for some $a, b \in \{0, 1, 2, 3, 4\}$.

Since $\sigma'_{11} = 2$ and $\sigma'_{13} = 2$, we may suppose that $0 \leq i_{11} \leq 8$ and $0 \leq i_{13} \leq 6$. Further $i_{11} \neq i_{13}$ and $i_{11} + 11 \neq i_{13} + 13$. We observe that either $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \leq 7$ or $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 8$. For pairs (i_{11}, i_{13}) with $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 8$, we check that (4.8) is not valid. Thus we restrict to those pairs satisfying $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \leq 7$. There are 40 such pairs. Further we see from $\max(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \geq 8$ that \mathcal{M}^k is the one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality and hence \mathcal{B}^k is the other. Now we restrict to those pairs (i_{11}, i_{13}) for which $5|a_{i}$ for at least 3 elements $i \in \mathcal{M}^k$ otherwise $t - |R| \geq k - 2 - 1 - \sum_{7 \leq p \leq 17} \sigma'_p - 2 - 4 \geq 2$ by (2.10) with $r = 2$. We are left with 22 such pairs. Further by (4.3) and $|\mathcal{I}| = k - 2$, we restrict to those pairs (i_{11}, i_{13}) for which there are at least $|\mathcal{M}^k| - 2$ elements $i \in \mathcal{M}^k$ such that $5|a_{i}$ or $17|a_{i}$. There are 12 such pairs (i_{11}, i_{13}) and for these pairs, we check that there are at most 4 multiples of a_{i} of 5 and 17 with $i \in \mathcal{M}^k \cup \mathcal{B}^k$. This implies $t - |R| \geq k - 2 - 1 - \sum_{11 \leq p \leq 13} \sigma'_p - 4 \geq 2$ by (2.10) with $r = 2$. For instance, let $(i_{11}, i_{13}) = (3, 5)$. Then $\mathcal{M}^k = \{2, 7, 9, 12\}$ and $\mathcal{B}^k = \{0, 1, 4, 6, 8, 10, 11, 13, 15, 16, 17, 19\}$. Since $5|a_{i}$ for at least three elements $i \in \mathcal{M}^k$, we get $5|a_i$ for $i \in \{2, 7, 12\}$ giving $i_5 = 2$. Further $17|a_9$ or $5 \cdot 17|a_{17}$ giving 4 multiples of a_{i} of 5 and 17 with $i \in \mathcal{M}^k \cup \mathcal{B}^k$. Thus $t - |R| \geq 2$ as above.

4.4. **The case** $k = 23$. We may assume that $\sigma'_{23} = 1$ and $23 \nmid a_{i}$ for $0 \leq i \leq 2$ and $20 \leq i < 23$ otherwise the assertion follows from the case $k = 20$. We have $\sigma'_{13} = 3$ if $11|a_{11j}$ with $j = 0, 1, 2$ and $\sigma'_{11} = 2$ if $11 \nmid a_{01}a_{11}a_{22}$. Also $\sigma'_{4} = 4$ implies that $7|a_{7j}$ or $7|a_{1+7j}$ with $0 \leq j \leq 3$ and $\sigma'_{7} \leq 3$ otherwise. Thus $|\{a_{i} : 7|a_{i} \text{ or } 11|a_{i}\}| \leq 6$. Further by Euler's result for $k = 4$, we obtain $|\{a_{i} : P(a_{i}) = 5\}| \leq 4$. If

$$|\{a_{i} : p|a_{i}, 5 \leq p \leq 23\}| \leq 4 + \sum_{7 \leq p \leq 23} \sigma_p - 1 - 2 = 15,$$

then we get from (2.10) with $r = 2$ that $t - |R| \geq k - 2 - 15 - 4 = 2$, a contradiction. Therefore we have

$$4 + \sum_{7 \leq p \leq 23} \sigma_p - 2 \leq |\{a_{i} : p|a_{i}, 5 \leq p \leq 23\}| \leq 4 + \sum_{7 \leq p \leq 19} \sigma_p - 1.$$
is a contradiction. For example, let \((i_{11}, i_{13}) = (0, 2)\). Then \(M^k = \{4, 6, 9, 18, 19, 20\}\) and \(B^k = \{1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 21\}\) giving \(5|a_i\) for \(i \in \{4, 9, 19\}\), \(i_5 = 4\). Further \(17|a_i\) for exactly one \(i \in \{6, 18, 20\}\) and other two \(i\)'s in \(\{6, 18, 20\}\) deleted. Thus \(5 \cdot 17 \nmid a_{i4}\) so that (4.9) is not valid. For another example, let \((i_{11}, i_{13}) = (4, 0)\). Then \(M^k = \{6, 9, 11, 16, 21\}\) and \(B^k = \{1, 2, 3, 5, 7, 8, 10, 12, 14, 17, 18, 19, 20, 22\}\) giving \(5|a_i\) for \(i \in \{6, 11, 16, 21\}\), \(i_5 = 1\). Further we have either \(17|a_9\), \(\gcd(5 \cdot 17, a_1) = 1\) or \(9 \notin M, 5 \cdot 17|a_1\). Now \(7|a_i\) for at most 3 elements \(i \in B^k\) so that (4.9) is not satisfied. This is a contradiction.

4.5. The case \(k = 31\). From \(t - |R| \geq k - 2 - \sum_{7 \leq p \leq 31} \sigma'_p - 8 \geq k - 2 - \sum_{7 \leq p \leq 31} \sigma_p - 8 = 1\) by (2.10) and (2.13) with \(r = 3\), we may assume for each prime \(7 \leq p \leq 31\) that \(\sigma'_p = \sigma_p\) and for any \(i, pq \nmid a_i\) whenever \(7 \leq p < q \leq 31\). Let \(I = \{\gamma_1, \gamma_2, \ldots, \gamma_t\}\). By taking the mirror image (4.4) of (1.1) and \(\sigma_{19} = \sigma_{29} = 2\), we may assume that \(i_{29} = 0\) and \(1 \leq i_{19} \leq 11, i_{19} \neq 10\). For \(p \leq 31\) with \(p \neq 19, 29\), since \(\left(\frac{p}{19}\right) \neq \left(\frac{p}{29}\right)\) if and only if \(p = 11, 13, 17\), we observe that for \(i \in M\), either \(11|a_i\) or \(13|a_i\) or \(17|a_i\). Since \(\sigma_{11} + \sigma_{13} + \sigma_{17} \leq 8\), we obtain \(|M^k| \leq 10\) and \(p|a_i\) for at least \(|M^k| - 2\) elements \(i \in M^k\) and \(p \in \{11, 13, 17\}\). Now for each of the pair \((i_{19}, i_{29})\) given by \(i_{29} = 0, 1 \leq i_{19} \leq 11, i_{19} \neq 10\), we compute \(|I'_1|, |I'_2|\). Since \(\max(|I'_1|, |I'_2|) \geq 14\), we restrict to those pairs \((i_{19}, i_{29})\) with \(\min(|I'_1|, |I'_2|) \leq 10\). Then we are left with the only pair \((i_{19}, i_{29}) = (1, 0)\). Further noticing that \(M^k\) is exactly one of \(I'_1\) or \(I'_2\) with minimum cardinality, we get \(M^k = \{3, 5, 6, 7, 11, 14, 15, 19, 24, 25\}\) and \(B^k = \{2, 4, 8, 9, 10, 12, 13, 16, 17, 18, 21, 22, 23, 26, 27, 28, 30\}\). We find that there are at most 7 elements \(i \in M^k\) for which either \(11|a_i\) or \(13|a_i\) or \(17|a_i\). This is not possible.

References

[LaSh06a] S. Laishram and T. N. Shorey, The equation \(n(n + d) \cdots (n + (k - 1)d) = by^2\) with \(\omega(d) \leq 4\) or \(d \leq 10^3\), to appear.

[SaSh03a] N. Saradha and T. N. Shorey, Almost squares in arithmetic progression, Compositio Math. 138 (2003), 73-111.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: shanta@math.tifr.res.in
E-mail address: shorey@math.tifr.res.in