
isid/ms/2004/22

December 24, 2004

http://www.isid.ac.in/˜statmath/eprints

Weibull Distribution: Some Stochastic

Comparisons Results

Baha-Eldin Khaledi

Subhash Kochar

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India





Weibull Distribution: Some Stochastic Comparisons Results

Baha-Eldin Khaledi ∗

Department of Statistics, College of Science, Razi University,

Kermanshah, Iran

e-mail: bkhaledi@hotmail.com

Subhash Kochar

Indian Statistical Institute, 7, SJS Sansanwal Marg

New Delhi-110016, India

e-mail : kochar@isid.ac.in

Abstract Let X1, . . . ,Xn be independent random variables such that Xi has Weibull distribu-

tion with shape parameter α and scale parameter λi, i = 1, . . . , n. Let X∗

1 , . . . ,X
∗

n be another

set of independent Weibull random variables with the same common shape parameter α, but

with scale parameters as λ
∗ = (λ∗1, . . . , λ

∗

n). Suppose that λ
m
� λ

∗. We prove that when

0 < α < 1, (X(1), . . . ,X(n))
st
� (X∗

(1), . . . ,X
∗

(n)). For α ≥ 1 we prove that X(1) ≤hr X
∗

(1) whereas

the inequality is reversed when α ≤ 1. Let Y1, . . . , Yn be a random sample of size n from a

Weibull distribution with shape parameter α and scale parameter λ̃ = (
∏n

i=1 λi)
1/n, the geo-

metric mean of the λi’s. It is shown that X(n) ≥hr Y(n) for all values of α and in case α ≤ 1,

we also have that X(n) is greater than Y(n) according to dispersive ordering. In the process we

also prove some new results on stochastic comparisons of order statistics for the proportional

hazards family.

Key-Words : Proportional hazards family, hazard rate ordering, dispersive ordering, Schur

functions, majorization and p-larger ordering.

∗Corresponding author



1 Introduction

Weibull distribution is perhaps the most commonly used distribution in reliability and life

testing. In the MathSciNet we found 475 entries which contain the word Weibull in their titles.

The recent book by Prabhakar Murthy, Xie and Jiang (2004) is solely devoted to the study of

Weibull models. In its standard form it has the probability density function

f(x, α, λ) = αxα−1λαe−(xλ)α
, x > 0.

Here α (> 0) is the shape parameter and λ (> 0) is the scale parameter. We shall use the

notation W (α, λ) to denote such a random variable. It is a very flexible family of distributions,

having decreasing, constant and increasing failure rates when 0 < α < 1, α = 1 and α > 1,

respectively.

An assumption often made in reliability models is that the components have lifetimes with

proportional hazards. Let Xi denote the lifetime of the ith component of a reliability system

with survival function F i(t), i = 1, . . . , n. Then they have proportional hazard rates (PHR)

if there exist constants λ1, . . . , λn and a (cumulative hazard) function R(t) ≥ 0 such that

F i(t) = e−λiR(t) for i = 1, . . . , n. If X1, . . . ,Xn are independent random variables such that

Xi ∼W (α, λi) for i = 1, . . . , n, then they belong to the PHR family with R(t) = exp(−tα) and

a new parameter vector (µ1, . . . , µn), where µi = λi
α, i = 1, . . . , n, but not with the original

parameters.

Let X1, . . . ,Xn be n random variables and let X(i) denote their ith order statistic. A k-out-

of-n system of n components functions if at least k of n components function. The time of a

k-out-of-n system of n components with life times X1, . . . ,Xn corresponds to the (n− k+ 1)th

order statistic. Thus, the study of lifetimes of k-out-of-n systems is equivalent to the study

of the stochastic properties of order statistics. In particular, a 1-out-of-n system corresponds

to a parallel system and a n-out-of-n system corresponds to a series system. Lot of work has

been done in the literature on different aspects of order statistics when the observations are

i.i.d. In many practical situations, like in reliability theory, the observations are not necessarily

i.i.d. Because of the complicated nature of the problem, not much work has been done for the

non-i.i.d. case. Some interesting partial ordering results on order statistics when the parent

observations are independent with proportional hazard rates have been obtained by Pledger

and Proschan (1971), Proschan and Sethuraman (1976), Boland, El-Neweihi and Proschan

(1994), Dykstra, Kochar and Rojo (1997), and Khaledi and Kochar (2000a), among others. In

this paper we obtain some new results on stochastic comparisons of order statistics and sample

range when the parent observations are independent Weibull with a common shape parameter

α, but with different scale parameters.

Now we introduce notations and recall some definitions. Throughout this paper increasing

means nondecreasing and decreasing means nonincreasing; and we shall be assuming that all

distributions under study are absolutely continuous. Let X and Y be univariate random

variables with distribution functions F and G, survival functions F and G, density functions f
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and g; and hazard rates rF (= f/F ) and rG (= g/G), respectively. Let lX (lY ) and uX (uY ) be

the left and the right endpoints of the support of X (Y ). The random variable X is said to be

stochastically smaller than Y (denoted by X ≤st Y ) if F (x) ≤ G(x) for all x. This is equivalent

to saying that Eg(X) ≤ Eg(Y ) for any increasing function g for which expectations exist.

X is said to be smaller than Y in hazard rate ordering (denoted by X ≤hr Y ) if G(x)/F (x)

is increasing in x ∈ (−∞, max(uX , uY )). In case the hazard rates exist, it is easy to see

that X ≤hr Y , if and only if, rG(x) ≤ rF (x) for every x. Note that hazard rate ordering

implies stochastic ordering. The reversed hazard rate of a life distribution F is defined as

r̃F (x) = f(x)/F (x). Let r̃G(x) denote the reversed hazard rate of G. Then X is said to be

smaller than Y in the reversed hazard rate order (and written as X ≤rh Y ) if r̃F (x) ≤ r̃G(x),

for all x, or equivalently, if F (x)/G(x) is decreasing in x. The reversed hazard rate ordering

also implies stochastic ordering, but in general, there are no implications between hazard rate

and reversed hazard rate orderings. A random vector X = (X1, . . . ,Xn) is said to be smaller

than another random vector Y = (Y1, . . . , Yn) according to multivariate stochastic ordering

(denoted by X
st
� Y) if h(X) ≤st h(Y) for all increasing functions h. It is easy to see that

multivariate stochastic ordering implies component-wise stochastic ordering. For more details

on stochastic orderings, see Chapters 1 and 4 of Shaked and Shanthikumar (1994).

Let F−1 and G−1 be the right continuous inverses (quantile functions) of F and G, respec-

tively. We say that X is less dispersed than Y (denoted by X ≤disp Y ) if F−1(β) − F−1(α) ≤

G−1(β) − G−1(α), for all 0 ≤ α ≤ β ≤ 1. A consequence of X ≤disp Y is that |X1 −X2| ≤st

|Y1 − Y2| and which in turn implies var(X) ≤ var(Y ) as well as E[|X1 −X2|] ≤ E[|Y1 − Y2|],

where X1,X2 (Y1, Y2) are two independent copies of X (Y ). For details, see Section 2.B of

Shaked and Shanthikumar (1994).

One of the basic tools in establishing various inequalities in statistics and probability is

the notion of majorization. Let {x(1) ≤ . . . ≤ x(n)} denote the increasing arrangement of

the components of a vector x = (x1, . . . , xn). A vector x is said to majorize another vector

y (written x
m
� y) if

∑j
i=1 x(i) ≤

∑j
i=1 y(i) for j = 1, . . . , n − 1 and

∑n
i=1 x(i) =

∑n
i=1 y(i).

Functions that preserve the majorization ordering are called Schur-convex functions. Marshall

and Olkin (1979) provides extensive and comprehensive details on the theory of majorization

and its applications in statistics. A vector x in IR+n
is said to be p-larger than another vector

y also in IR+n
(written x

p
� y) if

∏j
i=1 x(i) ≤

∏j
i=1 y(i), j = 1, . . . , n. As shown in Khaledi and

Kochar(2002) when x,y ∈ IR+n
, x

m
� y =⇒ x

p
� y. The converse is, however, not true. The

proofs of some of the results in this paper hinge on the following result.

Theorem 1.1. ( Marshall and Olkin, 1979, p. 57) Let I ⊂ IR be an open interval and let

φ : In → IR be continuously differentiable. Necessary and sufficient conditions for φ to be

Schur-convex on In are: φ is symmetric on In and for all i 6= j,

(zi − zj)[φ(i)(z) − φ(j)(z)] ≥ 0 for all z ∈ In,

where φ(i)(z) denotes the partial derivative of φ with respect to its ith argument.
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The organization of the paper is as follows. In Section 2, we stochastically compare the

order statistics corresponding to two sets of independent Weibull random variables with a

common shape parameter but when their scale parameters majorize each other. In Section 3,

we prove some new results for the order statistics corresponding to two random samples when

their distributions belong to the proportional hazards family. We then use these results to get

bounds on the hazard rates of k-out-of-n systems made out of independent components with

Weibull distributions. We also obtain a bound on the survival function of the sample range

when the component life times differ in their scale parameters.

2 Stochastic comparisons of order statistics from Weibull dis-

tributions

In this section we study the stochastic properties of order statistics associated with independent

random variablesX1, . . . ,Xn whenXi ∼W (α, λi) for i = 1, . . . , n. It is of interest to investigate

the effect on the survival function, the hazard rate function and other characteristics of the time

to failure of a system consisting of such components when we switch the vector (λ1, . . . , λn) to

another vector say (λ∗1, . . . , λ
∗

n).

Pledger and Proschan (1971) proved the following result for the PHR model which contains

exponential distributions as a special case.

Theorem 2.1. Let (X1, . . . ,Xn) and (X∗

1 , . . . ,X
∗

n) be two random vectors of independent life-

times with proportional hazards and with (λ1, . . . , λn) and (λ∗1, . . . λ
∗

n) as the constants of pro-

portionality. Then

λ
m
� λ

∗ =⇒ X(i) ≥st X
∗

(i), i = 1, . . . , n. (2.1)

Proschan and Sethuraman (1976) extended this result from componentwise stochastic or-

dering to multivariate stochastic ordering. That is, under the assumptions of Theorem 2.1,

they proved that

(X(1), . . . ,X(n))
st
� (X∗

(1), . . . ,X
∗

(n)). (2.2)

It follows from Theorem 2.1 that in the case of Weibull distributions with a common shape

parameter α and with scale parameters as (λ1, . . . , λn) and (λ∗1, . . . λ
∗

n), (2.1) and (2.2) hold if

(λα
1 , . . . , λ

α
n)

m
� (λ∗1

α, . . . , λ∗n
α). In the next theorem we prove that a similar result holds in the

Weibull case also when the two original vectors of scale parameters majorize each other and

0 < α ≤ 1.

Theorem 2.2. Let X1, . . . ,Xn be independent random variables with Xi ∼ W (α, λi), i =

1, . . . , n. Let X∗

1 , . . . ,X
∗

n be another set of independent random variables with X∗

i ∼W (α, λ∗i ),

i = 1, . . . , n. Then for 0 < α ≤ 1,

λ
m
� λ

∗ ⇒ (X(1), . . . ,X(n))
st
� (X∗

(1), . . . ,X
∗

(n)).
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Proof : First we prove the result for n = 2. According to Theorem 5.4.13 of Barlow and

Proschan (1975), in order to prove the required result, it is sufficient to prove that for 0 < α ≤ 1,

(a) X(1) ≥st X
∗

(1)

(b) for x ≤ x′,
{
X(2)

∣∣X(1) = x
}
≤st

{
X(2)

∣∣X(1) = x′
}

and

(c)
{
X(2)

∣∣X(1) = x
}
≥st

{
X∗

(2)

∣∣∣X∗

(1) = x
}
.

Proving (a) is equivalent to proving that F̄X(1)
(x), the survival function of X(1) is Schur-

convex in (λ1, λ2). To prove it, we use Theorem 1.1. The partial derivative of F̄X(1)
(x) with

respect to λi is
∂F̄X(1)

(x)

∂λi
= −αλα−1

i xαe−xα(λα
1 +λα

2 ), i = 1, 2.

This leads to

(λ1 − λ2)

(
∂F̄X(1)

∂λ1
−
∂F̄X(2)

∂λ2

)
≥ 0,

thus proving (a).

The conditional survival function of X(2)

∣∣X(1) = x,

F̄X(2)|X(1)=x(z) =
λα

1 e
−(xλ1)α

−(zλ2)α
+ λα

2 e
−(xλ2)α

−(zλ1)α

(λα
1 + λα

2 )(e−(xλ1)α−(xλ2)α)

=
λα

1

λα
1 + λα

2

e−(zλ2)α+(xλ2)α
+

λα
2

λα
1 + λα

2

e−(zλ1)α+(xλ1)α

is increasing in x, thus proving (b). Proving (c) is equivalent to proving that

F̄X(2)|X(1)=x(z) is Schur convex in (λ1, λ2). Its partial derivatives with respect to λ1 and λ2,

respectively are

∂

∂λ1
F̄X(2)|X(1)=x(z) =

αλα−1
1 (λα

1 + λα
2 ) − αλ2α−1

1

(λα
1 + λα

2 )2
e−λα

2 (zα
−xα) −

αλα−1
1 λα

2

(λα
1 + λα

2 )2

×e−λα
1 (zα

−xα)

−(zα − xα)αλα−1
1 e−λα

1 (zα
−xα) λα

2

λα
1 + λα

2

,

and

∂

∂λ2
F̄X(2)|X(1)=x(z) =

αλα−1
2 (λα

1 + λα
2 ) − αλ2α−1

2

(λα
1 + λα

2 )2
e−λα

1 (zα
−xα) −

αλα−1
2 λα

1

(λα
1 + λα

2 )2

×e−λα
2 (zα

−xα)

−(zα − xα)αλα−1
2 e−λα

2 (zα
−xα) λα

1

λα
1 + λα

2

.

Now the difference between these two derivatives is

∂

∂λ1
F̄X(2)|X(1)=x(z) −

∂

∂λ2
F̄X(2)|X(1)=x(z) =

αλα−1
1 λα−1

2

(λα
1 + λα

2 )2

×
{
e−λα

2 (zα
−xα) (λ1 + λ2 + λ1(z

α − xα)(λα
1 + λα

2 ))

−eλ
α
1 (zα

−xα) (λ1 + λ2 + λ2(z
α − xα)(λα

1 + λα
2 ))
}
.
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If λ1 > λ2, then e−λα
2 (zα

−xα) ≥ e−λα
1 (zα

−xα), since z > x. If λ1 < λ2, then the above inequality

is reversed. That is,

(λ1 − λ2)

(
∂

∂λ1
F̄X(2)|X(1)=x(z) −

∂

∂λ2
F̄X(2)|X(1)=x(z)

)
≥ 0.

The proof of part (c) again follows from Theorem 1.1. This completes the proof in the case of

n = 2. The proof for n > 2 follows from this and using similar kind of arguments as used in

Theorem 3.4 of Proschan and Sethuraman (1976).

For comparing two series systems with independent Weibull components, we have the fol-

lowing stronger result.

Theorem 2.3. Let X1, . . . ,Xn be independent random variables with Xi ∼ W (α, λi), i =

1, . . . , n. Let X∗

1 , . . . ,X
∗

n be another set of independent random variables with X∗

i ∼W (α, λ∗i ),

i = 1, . . . , n. Then λ
m
� λ

∗ implies that X(1) ≥hr X
∗

(1) for 0 < α ≤ 1 and X(1) ≤hr X
∗

(1) for

α ≥ 1.

Proof : The hazard rate of X(1) is

rX(1)
(x;λ1, . . . λn) =

n∑

i=1

αxα−1λi
α.

The function g(λ) = αxα−1λi
α is concave (convex) in λ for 0 < α ≤ 1 (α ≥ 1). It follows from

Proposition C.1. of Marshall and Olkin (1979, p.64) that
∑n

i=1 g(λi) is Schur concave (convex).

This completes the proof.

It will be interesting to see whether the above result can be extended to other order statistics.

Boland, El-Neweihi and Proschan (1994) have proved that in case α = 1, such a result does

not hold for parallel systems with more than two components.

3 Some new results for the PHR model

Khaledi and Kochar (2000a) studied the problem of stochastically comparing the largest order

statistic of a set of n independent and non-identically distributed exponential random variables

with that corresponding to a set of n independent and identically distributed exponential

random variables. They proved the following result.

Theorem 3.1. Let X1, . . . ,Xn be independent exponential random variables with Xi having

hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential

distribution with common hazard rate λ̃ = (
∏n

i=1 λi)
1/n. Then

(a) X(n) ≥hr Y(n) ;
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(b) X(n) ≥disp Y(n) .

In Theorem 3.1 we extend this result from exponential to the PHR model. To prove this

we need the following result due to Rojo and He (1991).

Theorem 3.2. Let X and Y be two random variables such that X ≤st Y . Then X ≤disp Y

implies that γ(X) ≤disp γ(Y ) where γ is a nondecreasing convex function.

Theorem 3.3. Let X1, . . . ,Xn be independent random variables with Xi having survival func-

tion F
λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from a distribution

with survival function F
λ̃
(x), where λ̃ = (

∏n
i=1 λi)

1/n. Then

(a) X(n) ≥hr Y(n) ; and

(b) if F is DFR, then X(n) ≥disp Y(n) .

Proof :

(a) Let H(x) = − logF (x) denote the cumulative hazard of F . Let Zi = H(Xi), i = 1, . . . , n

and Wi = H(Yi), i = 1, . . . , n. Since the Xi’s follow the PHR model, it is easy to show that Zi

is exponential with hazard rate λi, i = 1, . . . , n. Similarly, Wi is exponential with hazard rate

λ̃, i = 1, . . . , n. It follows from Theorem 3.1(a) that Z(n) ≥hr W(n). Using this fact, (since H−1,

the right inverse of H, is nondecreasing) it is easy to show that H−1(Z(n)) ≥hr H
−1(W(n)) from

which part (a) follows.

(b) Theorem 3.1 (a) and (b), respectively, imply that Z(n) ≥st W(n) and Z(n) ≥disp W(n).

The function H−1(x) is convex, since F is DFR, and is nondecreasing. Using these obser-

vations, it follows from Theorem 3.2 that H−1(Z(n)) ≥disp H
−1(W(n)) which is equivalent to

X(n) ≥disp Y(n).

We show with the help of the next example that the DFR condition in the above theorem

can not be dispensed with.

Exapmle 3.1. LetX1 andX2 be independent random variable withXi having survival function

F i(x) = (1 − x)λi , 0 ≤ x ≤ 1, i = 1, 2. Let Y1 and Y2 be independent random variables with

common survival function G(x) = (1 − x)(λ1λ2)1/2

, 0 ≤ x ≤ 1. Let λ1 = 1 and λ2 = 4. Under

this setting, it is easy to find that var(X(2)) = 43
720 < 11

225 = var(Y(2)), from which it follows

that part (b) of Theorem 3.3 may not hold for the case when F , the baseline distribution, is

not DFR. Note that in this example F being uniform distribution on (0, 1) is IFR.

Corollary 3.1. Let X1, . . . ,Xn be independent random variables with Xi ∼ W (α, λi), i =

1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from a W (α, λ̃) distribution, where

λ̃ = (
∏n

i=1 λi)
1/n. Then

(a) for any α > 0, X(n) ≥hr Y(n)

(b) for 0 < α ≤ 1, X(n) ≥disp Y(n) and
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(c) for 0 < α ≤ 1, X(n) −X(1) ≥st Y(n) − Y(1).

Proof : The proof of (a) and (b) follows from Theorem 3.3 since for any α > 0, the geometric

mean of λ1
α, . . . , λn

α is λ̃α and the fact that the Weibull distribution is DFR when 0 < α ≤ 1.

The proof of (c) follows from Theorem 3.1 of Khaledi and Kochar (2000b).

In Theorem 3.4 below we prove that for the largest order statistic, the conclusion of Theorem

2.1 holds under the weaker p-larger ordering. To prove this we use the following lemma.

lemma 3.1. (Khaledi and Kochar, 2002) The function ψ : IR+n
→ IR satisfies

x
p
� y =⇒ ψ(x) ≥ ψ(y) (3.1)

if and only if,

(i) ψ(ea1 , . . . , ean) is Schur-convex in (a1, . . . , an)

(ii) ψ(ea1 , . . . , ean) is decreasing in ai, for i = 1, . . . , n,

where ai = log xi, for i = 1, . . . , n.

Theorem 3.4. Let X1, . . . ,Xn be independent random variables with Xi having survival func-

tion F
λi(x), i = 1, . . . , n. Let X∗

1 , . . . ,X
∗

n be another set of independent random variables with

X∗

i having survival function F
λ∗

i (x), i = 1, . . . , n. Then

λ
p
� λ

∗ =⇒ X(n) ≥st X
∗

(n).

Proof : The survival function of X(n) can be written as

FX(n)
(x) = 1 −

n∏

i=1

(1 − e−eaiH(x)), (3.2)

where ai = log λi, i = 1, . . . , n and H(x) = − logF (x).

Using Lemma 3.1, we find that it is enough to show that the function FX(n)
given by (3.2)

is Schur-convex and decreasing in ai’s. To prove its Schur-convexity, it follows from Theorem

1.1 that, we have to show that for i 6= j, (ai − aj)(
∂F X(n)

∂ai
−

∂F X(n)

∂aj
) ≥ 0. That is, for i 6= j

H(x)(ai − aj)

(
n∏

i=1

(1 − e−eaiH(x))

)(
eaje−eaj H(x)

1 − e−eaj H(x)
−

eaie−eaiH(x)

1 − e−eaiH(x)

)
≥ 0. (3.3)

It is easy to see that the function be−bH(x)/(1−e−bH(x)) is decreasing in b, for each fixed x > 0.

Replacing b with eai , it follows that the function eaie−eaiH(x)/(1− e−eaiH(x)) is also decreasing

in ai for i = 1, . . . , n. This proves that (3.3) holds. The partial derivative of FX(n)
with respect

to ai is negative and which in turn implies that the survival function of X(n) is decreasing in

ai for i = 1, . . . , n. This completes the proof.
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Since for any α > 0,

(λ1, . . . , λn)
p
� (λ∗1, , . . . , λ

∗

n) ⇔ (λ1
α, . . . , λn

α)
p
� (λ∗1

α, , . . . , λ∗n
α),

the proof of the following corollary immediately follows from the above theorem.

Corollary 3.2. Let X1, . . . ,Xn be independent random variables with Xi ∼ W (α, λi), i =

1, . . . , n. Let X∗

1 , . . . ,X
∗

n be another set of independent random variables with X∗

i ∼W (α, λ∗i ),

i = 1, . . . , n. Then for any α > 0,

λ

p
� λ

∗ =⇒ X(n) ≥st X
∗

(n).

Khaledi and Kochar (2000a) proved a special case of the above corollary when α = 1.

Boland, El-Neweihi and Proschan (1994) pointed out that for n > 2, (2.1) cannot be strength-

ened from stochastic ordering to hazard rate ordering. Since majorization implies p-larger

ordering, it follows that, in general, Theorem 3.4 cannot be strengthened to hazard rate order-

ing.

As shown in the next example, a result similar to Theorem 3.4 may not hold for other order

statistics.

Example 3.2 : Let X1,X2,X3 be independent exponential random variables with λ =

(0.1, 1, 7.9) and X∗

1 ,X
∗

2 ,X
∗

3 be independent exponential random variables with λ
∗ = (1, 2, 5).

It is easy to see that λ
p
� λ

∗. Then X(1) and X∗

(1) have exponential distributions with respective

hazard rates 9 and 8, which implies that X∗

(1) ≥st X(1).
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