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Abstract

Classical discriminant analysis focusses on Gaussian and nonparametric models where in
the second case the unknown densities are replaced by kernel densities based on the train-
ing sample. In the present article we assume that it suffices to base the classification on ex-
ceedances above higher thresholds, which can be interpreted as observations in a conditional
framework. Therefore, the statistical modeling of truncated distributions is merely required.
In this context, a nonparametric modeling is not adequate because the kernel method is in-
accurate in the upper tail region. Yet one may deal with truncated parametric distributions
like the Gaussian ones. Our primary aim is to replace truncated Gaussian distributions by
appropriate generalized Pareto distributions and to explore properties and the relationship of
discriminant functions in both models.
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Key words: Discriminant analysis, Gaussian model, Truncation, Generalized Pareto distributions, Lin-

ear discriminant functions, Hüsler-Reiss triangular arrays.

0 Introduction

The basic idea of discriminant analysis is to classify an object of unknown origin to one of
several given classes based on the measurement vector (also called discriminator) within a
d-dimensional space. The available data sets to do this are samples of objects of which both
their class memberships and their measurements are known. In the present article we confine
ourselves to the case of two classes; the modifications required for dealing with more than
two classes are straightforward. Consider a d-dimensional discriminator x from one of the
two classes which are described by the densities w(x|1) and w(x|2). Let p1 , p2 and c1 , c2 be
the corresponding prior probabilities and costs of misclassification to the first and the second

1Research enabled through a grant from the Deutsche Forschungsgemeinschaft
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E–mail addresses: bgmanjunath@gmail.com (Manjunath B.G.), frick.melanie@googlemail.com (M. Frick),
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population, respectively. The optimal discriminant decision is determined by the following
rule: an observation vector x is classified to class 1 if the inequality

w(x|1)
w(x|2)

≥ c2 p2

c1 p1
(1)

is fulfilled. The optimal common border or discriminant function is obtained by formulating
(1) as an equation and solving it as a function in the discriminator x.

Classical discriminant analysis focusses on the Gaussian model. In that case one gets an
explicit representation of the discriminant function. Denote by

ϕµ,Σ(x) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

(2π)d/2 |Σ|1/2 , x ∈ Rd, (2)

the d-dimensional Gaussian density with location parameter vector µ ∈ Rd and non-singular
covariance matrix Σ. The pertaining distribution function is denoted by Φµ,Σ(x).

The corresponding discriminant function for classifying an observation x between ϕµ(1),Σ(1)(x|1)
and ϕµ(2),Σ(2)(x|2) is

DQ(x) = −1
2
(x− µ(1))TΣ(1)−1

(x− µ(1)) +
1
2
(x− µ(2))T

Σ(2)−1
(x− µ(2))− log

c2 p2

∣∣∣Σ(1)
∣∣∣1/2

c1 p1
∣∣Σ(2)

∣∣1/2 . (3)

Therefore, the decision rule entails that an observation vector x is classified to ϕµ(1),Σ(1)(x|1)
if DQ(x) ≥ 0, cf. Lachenbruch [17], page 11, or Falk et al. [6], page 231. This function is
quadratic in x. In addition, in the case of identical covariance matrices Σ(1) = Σ(2) = Σ the
discriminant function

DL(x) =
[

x− 1
2
(µ(1) + µ(2))

]T

Σ−1(µ(1) − µ(2))− log
c2 p2

c1 p1
. (4)

is linear, and the common border constitutes a hyperplane. This result can be regarded as a
benchmark in discriminant analysis.

We refer to Kocherlakota et al. [15] for discriminant analysis concerning truncated univari-
ate Gaussian distributions. Discriminant analysis within univariate extreme value models and
an application to life span classification was investigated by Abdalla [1]. Another important
reference is Avery [2] dealing with discriminant analysis in the case of multivariate Gaussian
distributions with linear truncation applied to credit scoring data. The present article may be
regarded as a first systematic investigation with respect to the multivariate case; one can hope
that it stimulates further theoretical research work and encourages practitioners to use such
models.
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The specification of multivariate extreme value models and exploring their properties is
an active research area. The main goal of the present article is to introduce an extreme value
model to discriminant analysis. We are primarily interested in modeling the upper tail of dis-
tributions, which can be done by using appropriate exceedance (truncated) distributions, and,
later, explore properties and the relationship of discriminant functions in different models. We
primarily confine ourselves to the classification among two classes.

It is well known that the asymptotic distribution of exceedances over high thresholds is
that of a generalized Pareto (GP) random vector if, and only if, the corresponding maxima
are asymptotically distributed according to an extreme value distribution (EVD). We mainly
deal with the classical Gaussian model. According to Theorem 1 of Hüsler and Reiss [9] the
asymptotic distribution of the maxima of a triangular scheme of Gaussian random vectors is
the Hüsler–Reiss EVD. With the help of the characterization theorem we will deduce the GPD
pertaining to the Hüsler–Reiss distribution. There are quite a few approaches how to construct
GPDs from extreme value distributions and all these are closely related to each other. In the
present article we confine to the procedure given by Tajvidi [24] and Rootzén and Tajvidi [22].
We finish by investigating properties and relationships between the classical Gaussian and the
GPD discriminant functions.

1 Discriminant functions for the truncated
Gaussian model

In this section we discuss the truncated Gaussian model, cf. Horrace [12], under rectangular
truncations, and present the pertaining discriminant function. Truncation of distributions
outside of the upper tail region is a crucial idea in extreme value theory.

Let X = (X1, ..., Xd)T be a d-dimensional Gaussian vector with non-singular covariance
matrix Σ and location parameter µ ∈ Rd. The rectangularly truncated version of X with
truncation vector c = (c1, ..., cd)T ∈ Rd has the density

fRT(x) =

{
ϕµ,Σ(x)
P{X>c} , for x > c,

0, otherwise.
(5)

The discriminant function for classifying an observation between two classes with the den-
sities fRT(x|1) and fRT(x|2) which have different location parameters µ(1) and µ(2) and trun-
cation vectors c1 and c2, respectively, can be determined by using equation (1). We have

DRT(x) =
[

x− 1
2
(µ(1) + µ(2))

]T

Σ−1(µ(1) − µ(2))− log
c2 p2

c1 p1
+ Tr(c1, c2),
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where Tr(c1, c2) is given by

Tr(c1, c2) = log P{X2 > c2} − log P{X1 > c1}

with X1 and X2 denoting the corresponding Gaussian random vectors. Note that DRT(x) is
linear in x. If one chooses different correlation matrices Σ(1) and Σ(2), one gets a function that
is quadratic in x corresponding to DQ in (3).

We add some remarks about elliptical truncation, cf. Tallis [25]. Let X = (X1, ..., Xd)T be
again a d-dimensional Gaussian vector with non-singular covariance matrix Σ and location
parameter µ ∈ Rd. The elliptically truncated version of X has the density

fET(x) =

{
ϕµ,Σ(x)
P{X∈E} , for x ∈ E,

0, otherwise,

where E =
{

x : (x− µ)TΣ−1(x− µ) ≥ u
}

and u is non-negative real value.
The discriminant function for classifying an observation between two classes with the den-

sities fET(x|1) and fET(x|2) which have different location parameters µ(1) and µ(2) and trun-
cation regions E1 and E2, respectively, can again be determined by using equation (1). We
have

DET(x) =
[

x− 1
2
(µ(1) + µ(2))

]T

Σ−1(µ(1) − µ(2))− log
c2 p2

c1 p1
+ Te(E1, E2) (6)

where Te(E1, E2) is given by

Te(E1, E2) = log P{X2 ∈ E2} − log P{X1 ∈ E1}

with X1 and X2 denoting the corresponding Gaussian random vectors. Obviously, the two
truncation borders have the same shape but differ in the shift which depends on the type of
truncation.

One could also think of certain convex truncations in this context. With a linear trunca-
tion one would not obtain an approximation by means of GP distributions. In the following
section we will concentrate on the rectangular truncation. Finally, we also mention that some
numerical work concerning the generation of random samples for the multivariate truncated
Gaussian distribution using Gibbs sampling was done in Stefan and Manjunath [23].

2 Extreme value and generalized Pareto models

In this section we present the main results of Hüsler and Reiss [9] and the approach of Rootzén
and Tajvidi [22] concerning the construction of a GPD and we deduce a simple form of the
Hüsler–Reiss GP density.
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Let (X1, X2) be a bivariate Gaussian vector with associated distribution function Fρ1,2 ,
where X1 and X2 are standard Gaussian random variables and ρ1,2 is the correlation coef-
ficient. Subsequently, we consider n iid copies of (X1, X2) with the correlation coefficient
depending on the sample size n. Then, according to Theorem 1 by Hüsler and Reiss [9] the
following result holds. If

(1− ρ1,2(n)) log n→ λ2
1,2 ∈ [0, ∞] , n→ ∞, (7)

then
lim
n→∞

Fn
ρ1,2(n)(bn + x1/bn, bn + x2/bn) = Hλ1,2(x1, x2)

for every x1, x2 ∈ R, where bn = nϕ(bn), ϕ is the standard Gaussian density, and the limiting
function is given by

Hλ1,2(x1, x2) = exp
[
−Φ

(
λ1,2 +

x1 − x2

2λ1,2

)
e−x2

−Φ
(

λ1,2 +
x2 − x1

2λ1,2

)
e−x1

]
(8)

with Φ being the standard Gaussian distribution function. For an explicit, approximate solu-
tion to the equation bn = nϕ(bn) we refer to Reiss [20], page 161. Moreover, independence
and complete dependence are achieved at λ1,2 = ∞ and λ1,2 = 0, respectively, i.e.,

H∞(x1, x2) = exp(−e−x1) exp(−e−x2) and

H0(x1, x2) = exp
(
−e−min(x1,x2)

)
.

Now, following Section 3 by Hüsler and Reiss [9] and Section 12.1 by Reiss and Thomas
[21], page 297, let X = (X1, ..., Xd)T be a d-dimensional standard Gaussian vector with df FΣ,
where Σ = (ρi,j)i,j≤d is the correlation matrix. Again, we let the correlations depend on the
sample size of n iid copies of X, i.e. we consider a correlation matrix Σ(n), n ∈N. Apparently,
by imposing a certain rate of convergence on ρi,j(n), i.e., for 1 ≤ i, j ≤ d,

(1− ρi,j(n)) log n→ λ2
i,j ∈ [0, ∞] , n→ ∞,

the limit of the standardized Gaussian maxima distribution function Fn
Σ(n), as n → ∞, is the

d-dimensional Hüsler-Reiss extreme value distribution

HΛ(x) = exp

(
−

d

∑
k=1

∫ ∞

xk

ΦΣ(k)

((
λi,k +

xi − z
2λi,k

)k−1

i=1

)
e−zdz

)
(9)

(in the represention given by Joe [13]) where Λ is a symmetric d× d-matrix Λ = (λi,j) with
λi,j > 0 if i 6= j and λi,i = 0, and ΦΣ(k) is a (k − 1)–variate Gaussian distribution function
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(with the convention ΦΣ(1) = 1). The mean vector of ΦΣ(k) is zero and Σ(k) = (σi,j(k)) is the
correlation matrix given by

σi,j(k) =

{
1

2λi,kλj,k

(
λ2

i,k + λ2
j,k − λ2

i,j

)
, 1 ≤ i < j ≤ k− 1,

1, i = j.
(10)

In some recent articles Hashorva [10], [11] shows that the multivariate Hüsler–Reiss dis-
tribution is as well the limiting distribution of multivariate maxima of elliptical triangular
arrays if the random radius of the elliptical random vectors belongs to the max–domain of
attraction of a Gumbel distribution. Concerning a corresponding result in the GPD case we
refer to Manjunath [18].

Now we discuss the construction of a GPD belonging to an EVD. The derivation of uni-
variate GPDs, which is presented in Section 1.3 of Reiss et al. [5], page 21, has to be modified
in the multivariate case. In the framework of the construction of multivariate GPDs there are
different approaches by different authors. One can be found in the dissertation of Tajvidi [24],
another one in Kaufmann and Reiss [14] and in Section 5.1 by Reiss et al. [5], and still another
one in Section 8.3 by Beirlant et al. [3]. In the present work we use the definition given by
Tajvidi [24], which is investigated in detail in Rootzén and Tajvidi [22].

Now, let H(x) be a d–variate EVD with 0 < H(0) < 1. Then the corresponding GPD has
the representation

W(x) :=

{
1− log H(x)

log H(0)
, if x ≥ 0

0, otherwise.
(11)

The above definition has independently also been noted in Section 8.3.1 of Beirlant et al.
[3], page 278. A similar definition can be found in Lemma 5.1.3 of Reiss et al. [5], where it is
given for the entire negative quadrant, particularly for its upper region close to the origin.

Hence, the multivariate Hüsler–Reiss GPD has the form

WΛ(x) = 1− log HΛ(x)/ log HΛ(0) (12)

= 1− 1
C(Λ)

(
d

∑
k=1

∫ ∞

xk

ΦΣ(k)

((
λi,k +

xi − z
2λi,k

)k−1

i=1

)
e−zdz

)

where

C(Λ) =
d

∑
k=1

∫ ∞

0
ΦΣ(k)

((
λi,k −

z
2λi,k

)k−1

i=1

)
e−zdz.
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Remark 2.1. For d = 2 the constant C(Λ) reduces to

C(λ1,2) =
∫ ∞

0
e−zdz +

∫ ∞

0
ΦΣ(2)

(
λ1,2 −

z
2λ1,2

)
e−zdz

= 2ΦΣ(2)(λ1,2).

Multivariate GPDs in the framework of extreme value theory are still under scrutiny. So,
due to the limits in defining a multivariate GPD we use the above definition. One shortfall of
it, as discussed by Tajvidi [24], is that there is some probability mass on each of the axes. i.e.,
the threshold line which consists of null sets with respect to the Lebesgue measure has a pos-
itive probability. This leads to one d-dimensional measure on Rd

+ and d univariate measures
on each axis. This point is also noted in Section 2 by Michel [19].

In the following theorem we present a simple form of the density of the multivariate
Hüsler–Reiss GPD.

Theorem 2.2. Let WΛ(x) be the Hüsler–Reiss GPD as defined in equation (12). Then for each 0 <

λi,j < ∞, i < j ≤ d− 1, the multivariate Hüsler-Reiss GP conditional density given x > 0 is of the
form

wΛ(x) =
e−xd

2d−1
(

∏d−1
i=1 λi,d

)
C∗(Λ)

ϕΣ(d)

((
λi,d +

xi − xd

2λi,d

)d−1

i=1

)
, (13)

where C∗(Λ) is a scaling factor given by

C∗(Λ) = C(Λ)(1− K(Λ)),

K(Λ) being the mass on the axes, and ϕΣ(d) is the (d− 1)–variate Gaussian density. The mean vector
of ϕΣ(d) is zero and Σ(d) = (σi,j(d)) is the correlation matrix satisfying (10) for k = d.

Proof. We first prove the assertion for the bivariate case. Plugging equation (8) into (11) we
obtain

Wλ1,2(x1, x2) = 1−
Φ(λ1,2 + x1−x2

2λ1,2
)e−x2 + Φ(λ1,2 + x2−x1

2λ1,2
)e−x1

2Φ(λ1,2)
.

If the continuous partial derivative of Wλ1,2 exists on the open support, then according to
Theorem A.2.2 in Bhattacharya and Rao [4], page 264, the density is given by
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w∗λ1,2
(x1, x2) =

∂2Wλ1,2(x1, x2)
∂x2∂x1

=
1

2Φ(λ1,2)

[
e−x2

4λ2
1,2

ϕ
′
(

λ1,2 +
x1 − x2

2λ1,2

)
+

e−x1

4λ2
1,2

ϕ
′
(

λ1,2 +
x2 − x1

2λ1,2

)
+

e−x2

2λ1,2
ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
+

e−x1

2λ1,2
ϕ

(
λ1,2 +

x2 − x1

2λ1,2

)]
where ϕ

′(a) = (−a)ϕ(a) is the derivate of ϕ . Note that

e−x2 ϕ

(
λ1,2 +

x1 − x2

2λ1,2

)
= e−x1 ϕ

(
λ1,2 +

x2 − x1

2λ1,2

)
according to Reiss and Thomas [21], page 296. With this identity the function reduces to

w∗λ1,2
(x1, x2) =

e−x2 ϕ(λ1,2 + x1−x2
2λ1,2

)

4λ1,2Φ(λ1,2)
, x1, x2 > 0. (14)

As discussed, if we integrate w∗λ1,2
(x1, x2) on the entire support, the total mass is less than

one, namely, (1−Φ(λ1,2))/Φ(λ1,2). Of course, the total mass sums up to one if we addition-
ally consider the mass on the axes. Now, the mass on the x2–axis is equal to Wλ1,2(0, ∞) =
(2Φ(λ1,2)− 1)/2Φ(λ1,2). Since the bivariate Hüsler–Reiss distribution function is symmetric
in x1 and x2, the same mass is obtained on the x1–axis. One can easily see that the mass on
the axes increases as λ1,2 increases, i.e., the degree of independence between the two vari-
ables increases. In case of independence the entire mass lies on the axes. If λ1,2 tends to zero,
i.e., we move towards complete dependence, the mass on the axes converges to zero. There-
fore it has been investigated that the mass on the axes is directly related to the strength of
the tail dependence. The conditional bivariate density on R2

+ is obtained by truncating the
mass on each axis. This implies that we are truncating the observations on each axis. Further,
it means that we are modeling in an open rectangle of R2

+. So, by dividing the function in
(14) by (1−Φ(λ1,2))/Φ(λ1,2) (which is calculated within the truncated model), we obtain the
bivariate Hüsler–Reiss GP conditional density

wλ1,2(x1, x2) =
e−x2 ϕ(λ1,2 + x1−x2

2λ1,2
)

4λ1,2(1−Φ(λ1,2))
, x1, x2 > 0. (15)

Now we generalize our proof to arbitrary dimensions. We use Theorem A.2.2 in Bhat-
tacharya and Rao [4], page 264, again to deduce the multivariate density. The partial derivate
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of WΛ with respect to x is given by

w∗Λ(x) =
e−xd

2d−1
(

∏d−1
i=1 λi,d

)
C(Λ)

ϕΣ(d)

((
λi,d +

xi − xd

2λi,d

)d−1

i=1

)
. (16)

Similarly as in the bivariate case the above function leads to positive mass on each axis. The
mass on the ith axis can easily be determined by calculating WΛ(0, ..., 0, ∞, 0, ..., 0). The total
mass on the d axes is denote by K(Λ). We know that the sum of the mass on the axes and the
mass on Rd

+ will add up to one. Now, similar to the bivariate case we are interested in the
density upon the open rectangle of Rd

+. Therefore, the new scaling factor is given by

C∗(Λ) = C(Λ)(1− K(Λ)).

Replacing C(Λ) by C∗(Λ) in (16) completes the proof. �

Remark 2.3. For d = 2 the constant C∗(Λ) is given by C∗(λ1,2) = 1−Φ(λ1,2). Generally, if all λi,j

are close to 0, C∗(Λ) is approximately equal to C(Λ).

3 Discriminant analysis for the GP model

In this section we construct the discriminant function within the multivariate Hüsler-Reiss GP
model based on rectangular trunctation. Therefore, we extend the multivariate Hüsler–Reiss
GPD in (12) by a location parameter µ ∈ Rd and scale parameter σ > 0 in the corresponding
EVD. Then WΛ becomes

WΛ,µ,σ(x) = 1−
(

log HΛ

(
x− µ

σ

)
/ log HΛ

(
0− µ

σ

))
= 1− 1

C(Λ, µ, σ)

×

 d

∑
k=1

∫ ∞(
xk−µk

σk

) ΦΣ(k)


λi,k +

(
xi−µi

σk

)
− z

2λi,k

k−1

i=1

 e−zdz

 (17)

where

C(Λ, µ, σ) =
d

∑
k=1

∫ ∞(
− µk

σk

) ΦΣ(k)

((
λi,k −

z
2λi,k

)k−1

i=1

)
e−zdz.

Theorem 3.1. Let wΛ,µ(1),σ(x|1) and wΛ,µ(2),σ(x|2) be two multivariate Hüsler-Reiss GP densities

which differ in the location parameters µ(1) and µ(2). Then, using equation (1) we obtain the optimal
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common border

DHR(x) = (∆−1xσ)TΣ(d)−1(∆−1(Γ(2) − Γ(1)))

+
1
2
(2L + ∆−1(Γ(2) + Γ(1)))TΣ(d)−1(∆−1(Γ(2) − Γ(1)))− C,

where L = (λ1,d, ..., λd−1,d)T, xσ = ((σdx1 − σ1xd), ..., (σdxd−1 − σd−1xd))T and Γ(i) = ((σ1µ
(i)
d −

σdµ
(i)
1 ), ..., (σd−1µ

(i)
d −σdµ

(i)
d−1))

T, i = 1, 2, are (d− 1)–dimensional vectors, and ∆ = diag(2σ1σdλ1,d, ..., 2σd−1σdλd−1,d)
is a (d− 1)× (d− 1) diagonal matrix. Obviously, DHR is linear in x.

Proof. We rewrite the density wΛ,µ,σ(x) in (13) using d–dimensional location and scale pa-
rameters, i.e.,

wΛ,µ,σ(x) =
e−
(

xd−µd
σd

)
exp

(
− 1

2 zTΣ(d)−1z
)

2d−1
(

∏d
i=1 σi

) (
∏d−1

i=1 λi,d

)
C∗(Λ, µ, σ)(2π)(d−1)/2 |Σ(d)|1/2

, (18)

where z = L + ∆−1 (xσ + Γ) and L, xσ , Γ and ∆ are defined as above.
The scaling factor C∗(Λ, µ, σ) is now given by

C∗(Λ, µ, σ) = C(Λ, µ, σ)(1− K(Λ, µ, σ)),

where K(Λ, µ, σ) is the total mass on the d axes in the extended model.
Now, using (1), we obtain

−1
2

(
z(1)
)T

Σ(d)−1z(1) +
1
2

(
z(2)
)T

Σ(d)−1z(2) = C, (19)

where

C = log((c2 p2)/(c1 p1)) +
1
σd

(
µd

(2) − µd
(1)
)

+ log
(

C∗
(

Λ, µ(1), σ
)

/C∗
(

Λ, µ(2), σ
))

is a constant and z(1) = L + ∆−1
(

xσ + Γ(1)
)

and z(2) = L + ∆−1
(

xσ + Γ(2)
)

. By substituting

z(1) and z(2) in equation (19) we obtain

−1
2

(
L + ∆−1

(
xσ + Γ(1)

))T
Σ(d)−1

(
L + ∆−1

(
xσ + Γ(1)

))
+

1
2

(
L + ∆−1

(
xσ + Γ(2)

))T
Σ(d)−1

(
L + ∆−1

(
xσ + Γ(2)

))
= C,

which is equivalent to (
∆−1xσ

)T
Σ(d)−1

(
C(2) − C(1)

)
+

1
2

(
C(2) + C(1)

)T
Σ(d)−1

(
C(2) − C(1)

)
= C

10



where C(1) = L + ∆−1Γ(1) and C(2) = L + ∆−1Γ(2). Further simplification leads to the dis-
criminant function DHR(x) as noted in the theorem. Notice that DHR is linear in x. Hence the
proof is complete. �

Remark 3.2. When the correlation matrices Σ(d) and scale parameter σ are not identical between
the two models, then the discriminant function will be a quadratic function in x which can be solved
numerically. The pertaining discriminant function can be obtained by just plugging in (19).

4 Convergence of the discriminant procedure

Having established the densities and discriminant functions within the truncated Gaussian
and the Hüsler–Reiss GP model, we will now present a convergence theorem that relates both
models to each other. By using the normalizing constants as Hüsler and Reiss [9] one can
show that the density fRT in (5) of the rectangularly truncated Gaussian model converges to
the density wΛ,µ,σ of the Hüsler–Reiss GP model, cf. (18).

In the following theorem we restrict ourselves to the bivariate case. Nevertheless the proof
can be generalized to arbitrary dimensions in a straightforward manner. Concerning density
convergences in the univariate case we refer to Hüsler and Li [8].

Theorem 4.1. Let fRT,µ,Σ be the density of the bivariate rectangularly truncated Gaussian distribution
with truncation vector c as in (5), location parameter µ = (µ1, µ2) and covariance matrix

Σ =

(
σ2

1 σ1σ2ρ1,2

σ1σ2ρ1,2 σ2
2

)
.

Now let µ and Σ depend on n. We assume that the correlation coefficient ρ1,2(n) satisfies again

(1− ρ1,2(n)) log n→ λ2
1,2 ∈ [0, ∞], n→ ∞,

cf. (7), and put
µ(n) = (µ1 − σ1b2

n, µ2 − σ2b2
n)

and

Σ(n) =

(
σ2

1 b2
n σ1σ2b2

nρ1,2(n)
σ1σ2b2

nρ1,2(n) σ2
2 b2

n

)
,

with bn = nϕ(bn). Then we have

lim
n→∞

fRT,µ(n),Σ(n)(x1, x2) = wλ1,2(x1, x2).

11



The limiting function is given by

wλ1,2(x1, x2) (20)

= e−(x2−µ2)/σ2 ϕ

(
λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2

)
/{

2λ1,2σ1σ2

[(
1−Φ

(
λ1,2 +

(c2 − µ2)/σ2 − (c1 − µ1)/σ1

2λ1,2

))
e−(c1−µ1)/σ1

+
(

1−Φ
(

λ1,2 +
(c1 − µ1)/σ1 − (c2 − µ2)/σ2

2λ1,2

))
e−(c2−µ2)/σ2

]}
.

Proof. Using definition (5) for the truncation x > c we obtain

fRT,µ(n),Σ(n)(x1, x2)

=

exp

(
− 1

2

(
x1−µ1
σ1bn

+bn

)2
−2ρ1,2(n)

(
x1−µ1
σ1bn

+bn

)(
x2−µ2
σ2bn

+bn

)
+
(

x2−µ2
σ2bn

+bn

)2

(1−ρ1,2(n)2)

)
2πσ1σ2b2

n
√

1− ρ1,2(n)2 P
{

X1 > c1−µ1
σ1bn

+ bn, X2 > c2−µ2
σ2bn

+ bn

} , (21)

where the distribution of (X1, X2) is the standard Gaussian distribution with correlation coef-
ficient ρ1,2(n). Corresponding to the proof of Theorem 1 in Hüsler and Reiss [9] one gets

nP
{

X1 >
c1 − µ1

σ1bn
+ bn, X2 >

c2 − µ2

σ2bn
+ bn

}
→
(

1−Φ
(

λ1,2 +
(c2 − µ2)/σ2 − (c1 − µ1)/σ1

2λ1,2

))
e−(c1−µ1)/σ1

+
(

1−Φ
(

λ1,2 +
(c1 − µ1)/σ1 − (c2 − µ2)/σ2

2λ1,2

))
e−(c2−µ2)/σ2 , (22)

as n→ ∞, and
bn

√
1− ρ1,2(n)2 → 2λ1,2, (23)

as n→ ∞, which proves the convergence of the denominator.
From the proof in Hüsler and Reiss [9] we also deduce that

x1−µ1
σ1bn

+ bn − ρ1,2(n)
(

x2−µ2
σ2bn

+ bn

)
√

1− ρ1,2(n)2
→ λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2
, (24)

12



as n→ ∞, which we use to show the convergence of the numerator. We can write

n exp

(
− 1

2

(
x1−µ1
σ1bn

+bn

)2
−2ρ1,2(n)

(
x1−µ1
σ1bn

+bn

)(
x2−µ2
σ2bn

+bn

)
+
(

x2−µ2
σ2bn

+bn

)2

(1−ρ1,2(n)2)

)
2πbn

=
1√
2π

exp

−1
2

 x1−µ1
σ1bn

+ bn − ρ1,2(n)
(

x2−µ2
σ2bn

+ bn

)
√

1− ρ1,2(n)2

2
× n

bn

1√
2π

exp

(
−1

2

(
x2 − µ2

σ2bn
+ bn

)2
)

, (25)

where the first factor converges to

ϕ

(
λ1,2 +

(x1 − µ1)/σ1 − (x2 − µ2)/σ2

2λ1,2

)
,

as n→ ∞, because of (25) and the second factor satisfies

n
bn

1√
2π

exp

(
−1

2

(
x2 − µ2

σ2bn
+ bn

)2
)

=
n
bn

ϕ(bn) exp

(
−1

2

(
x2 − µ2

σ2bn

)2
)

e−(x2−µ2)/σ2

= exp

(
−1

2

(
x2 − µ2

σ2bn

)2
)

e−(x2−µ2)/σ2

→ e−(x2−µ2)/σ2 , n→ ∞. (26)

Combining the above convergences completes the proof. �

Because the discriminant functions are obtained by using the inequality (1) which con-
tains a ratio of densities, Theorem 4.1 directly implies the convergence of the discriminant
functions. More precisely, the discriminant function DRT (appropriately normalized) of the
rectangularly truncated Gaussian model converges to the discriminant function DHR of the
Hüsler-Reiss GP model.

An analogous result still holds if different covariance matrices Σ(1) and Σ(2) are chosen. In
this case the quadratic discriminant function of the truncated Gaussian model converges to
the quadratic one in the Hüsler–Reiss GP model, cf. Remark 3.2.

5 Concluding Remarks

We shortly discuss the question why one should carry out the discriminant analysis within the
limiting GP model in place of the truncated Gaussian model. As already mentioned in Section

13



2 the limit results hold in the elliptical case under a certain condition on the random radius.
We also refer to a recent article by Frick and Reiss [7] where it is verified that multivariate
EVDs—including the Hüsler-Reiss EVD—occur as limiting dfs of maxima under a certain
technical condition. Consequently, according to the insight gained from the limit results we
know that the truncated Gaussian model as well as the GP model lead to statistical procedures
which are approximately valid for a broader class of distributions.

Arguments from extreme value theory speak in favour of the GP model. First of all the GP
models satisfy a certain pot-stability property, that is, truncations of such distributions are of
the same type. Also, we may extend the GP model above by replacing the univariate margins.
Further extensions of the initial model may be explored in the same manner; if the model is
extended to the family of all GP distributions then we are in a nonparametric setup.

In practice the discriminant procedure can be executed in the following manner (formu-
lated for d = 2):

1. Fix sufficiently high truncation vectors so that one is in the realm of extreme value the-
ory. As a rule of thumb, take truncation vectors so that for each sub-sample about 15%
of the original observations are in the truncated sample. In the extreme value literature
one may find automatic procedures for the selection of truncation points.

2. Select a model of GP densities as given in (20).

3. Specify the discriminant function.

4. Estimate the ratio p2/p1 of expected frequencies by the ratio of corresponding sample
frequencies, and estimate the GP parameters by MLEs. It would be desirable to explore
other estimators of the GP parameters, e.g., in order to get initial estimators for the MLE
procedure.
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