On the Galois groups of generalized Laguerre Polynomials

Shanta Laishram

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India
ON THE GALOIS GROUPS OF GENERALIZED LAGUERRE POLYNOMIALS

SHANTA LAISHRAM

Abstract. For a positive integer \(n \) and a real number \(\alpha \), the generalized Laguerre polynomials are defined by

\[
L_n^{(\alpha)}(x) = \sum_{j=0}^{n} \frac{(n+\alpha)(n-1+\alpha)\cdots(j+1+\alpha)(-x)^j}{j!(n-j)!}.
\]

These orthogonal polynomials are solutions to Laguerre’s Differential Equation which arises in the treatment of the harmonic oscillator in quantum mechanics. Schur studied these Laguerre polynomials for its interesting algebraic properties. In this short article, it is shown that the Galois groups of Laguerre polynomials \(L_n^{(\alpha)}(x) \) is \(S_n \) with \(\alpha \in \{ \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7 \} \) except when \((\alpha, n) \in \{(\pm \frac{1}{4}, 2), (-\frac{7}{3}, 11), (\frac{1}{2}, 7)\}\). The proof is based on ideas of \(p \)-adic Newton polygons.

1. Introduction

For a positive integer \(n \) and a real number \(\alpha \), the generalized Laguerre polynomials are defined by

\[
L_n^{(\alpha)}(x) = \sum_{j=0}^{n} \frac{(n+\alpha)(n-1+\alpha)\cdots(j+1+\alpha)(-x)^j}{j!(n-j)!}.
\]

These orthogonal polynomials has a wide range of applications in several areas of mathematics. Not long after its appearance in the literature early in the twentieth century, it became evident, in the hands of Schur, that the generalized Laguerre polynomials also enjoys algebraic properties of great interest. In fact the irreducibility of these polynomials is connected to finding explicit examples as solutions to Hilbert’s Inverse Galois Problem. We refer to [FKT12] for more details.

It was shown that \(L_n^{(\alpha)}(x) \) is irreducible for \(\alpha \in \{ \pm \frac{1}{2}, \pm \frac{3}{2} \} \) in [Sch29] and [Sch31] and for \(\alpha \in \{ \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{2}, \pm \frac{3}{2} \} \) in [LaSh, Theorem 1] except when \(\alpha = \frac{1}{2}, n = 2 \). By using these results of irreducibility, it was shown in [SaSh15, Theorem 1.4] that the Galois group of \(L_n^{(\alpha)}(x) \) is \(S_n \) for \(n \geq n_0 \) where \(n_0 = 182, 876, 1325 \) if \(q \in \{ \pm \frac{1}{2}, q \in \{ \pm \frac{1}{3}, \pm \frac{2}{3} \} \) and \(q \in \{ \pm \frac{1}{2}, \pm \frac{3}{2} \} \), respectively. In this short note, we give a complete result for all \(n \). Here \(S_n \) is the Symmetric Group on \(n \) symbols and \(A_n \) is the Alternating Group on \(n \) symbols. We prove

2000 Mathematics Subject Classification: Primary 11A41, 11B25, 11N05, 11N13, 11C08, 11Z05. Keywords: Irreducibility, Hermite-Laguerre Polynomials, Newton Polygons, Arithmetic Progressions, Primes.
Theorem 1. Let \(\alpha \in \{ \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{4}, \pm \frac{3}{4} \} \). The Galois group of Laguerre polynomials \(L_n^{(\alpha)}(x) \) is \(S_n \) for every \(n \geq 1 \) except when \((\alpha, n) \in \{ (\frac{1}{4}, 2), (-\frac{2}{3}, 11), (\frac{2}{3}, 7) \} \) where it is \(A_n \) for \((\alpha, n) \in \{ (-\frac{2}{3}, 11), (\frac{2}{3}, 7) \} \) and \(S_1 \) for \((\alpha, n) = (\frac{1}{4}, 2) \).

We give a proof of Theorem 1 in Section 3. The proof of Theorem 1 is an application of a result of Hajir [Haj05] based on \(p \)-adic Newton polygons, see Lemmas 2.1 and 2.2. The new ingredient in this paper is the clever use of Lemma 2.1 as Lemma 2.2 instead of [SaSh15, Lemma 3.3]. In fact the proof of [SaSh15, Theorem 1.4] can be much shortened by using Lemma 2.2.

2. Preliminaries

Hajir [Haj05] gave a criterion for an irreducible polynomial to have large Galois group using Newton polygons. We restate the result which is [Haj05, Lemma 3.1].

Lemma 2.1. Let \(f(x) = \sum_{j=0}^{m} c_j x^j \in \mathbb{Q}[X] \) be an irreducible polynomial of degree \(m \). Let \(p \) be a prime with \(\frac{m}{2} < p < m-2 \) such that

(i) \(\text{ord}_p(c_0) = 1 \),

(ii) \(\text{ord}_p(c_j) \geq 1 \) for \(0 \leq j \leq m-p \),

(iii) \(\text{ord}_p(c_p) = 0 \).

Then \(p \) divides the order of Galois group of \(f \) over \(\mathbb{Q} \). In fact, this Galois group is \(A_m \) if \(\text{disc}(f) \in \mathbb{Q}^* \) and \(S_m \) otherwise.

We will be applying the above lemma to following polynomial. Let \(\alpha = \frac{u}{v} \) with \(u, v \in \mathbb{Z} \), \(\gcd(u, v) = 1 \) and \(v > 0 \). Let

\[
G(x, u, v) := v^n n!L^{(\frac{u}{v})}(\frac{-x}{v})
\]

\[
= \sum_{j=0}^{n} \binom{n}{j} (u + vn)(u + v(n-1)) \cdots (u + v(j+1))x^j.
\]

In [Sch31], Schur showed that its discriminant is given by

\[
D_{n}^{(u,v)} := \text{Disc}(G(x, u, v)) = \prod_{j=2}^{n} j^j \left(\frac{u}{v} + j \right)^{j-1}.
\]

We write \(D_{n}^{(u,v)} = bY^2 \), \(Y \in \mathbb{Q} \) with

\[
b = \begin{cases}
3 \cdot 5 \cdots \frac{(u+2v)(u+4v)\cdots(u+(n-1)v)}{v^\delta} & \text{if } n \equiv 1, 3 \pmod{4} \\
3 \cdot 5 \cdots (n-1) \cdot \frac{(u+2v)(u+4v)\cdots(u+nv)}{v^\delta} & \text{if } n \equiv 0, 2 \pmod{4}
\end{cases}
\]

where \(\delta = 0 \) if \(n \equiv 0, 1 \pmod{4} \) and 1 if \(n \equiv 2, 3 \pmod{4} \).

We now apply Lemma 2.1 to \(G(x, u, v) \). We prove
Lemma 2.2. Let $1 \leq r < v$, $\gcd(r, v) = 1$ and p be a prime with
\[p > v, p \equiv r^{-1}u \pmod{v} \quad \text{and} \quad \frac{u + v + nv}{r + v} \leq n - 3. \]

Let $G(x, u, v)$ be given by (1) be an irreducible polynomial of degree n. Assume that $|u| < v$. Then the Galois group of $G(x, u, v)$ is A_n or S_n according as b (given by (2)) is a square or not an square of an integer.

Proof. We apply Lemma 2.1 with
\[c_j = (u + vn)(u + v(n - 1)) \cdots (u + v(j + 1)). \]

Since $1 \leq r < v$, we have $\frac{u + v + nv}{r + v} > \frac{n}{2}$ and hence $\frac{n}{2} < p < n - 2$ is valid. It suffices to check conditions (i) – (iii) of Lemma 2.1.

Since $p \equiv r^{-1}u \pmod{v}$, we get $p|(u + iv)$ for some i. Let i_0 be the least positive integer i with this property. Then $1 \leq i_0 < p$. Further let $u + iv = pr_0$. Then $r_0 \equiv r \pmod{v}$. We claim that $r_0 < v$. Suppose not. Then $u + iv = pr_0 \geq pv \geq (i_0 + 1)v$ since $i_0 < p$ contradicting $|u| < v$. Thus $r_0 < v$. This with $r_0 \equiv r \pmod{v}$ and $1 \leq r < v$ implies $r = r_0$. Since $\frac{u + v + nv}{r + v} \leq p$, we have
\[u + v + (n - p)v \leq rp = r_0p = u + iv \]
giving $i_0 > n - p$. Thus $n - p < i_0 < p$. This gives $i_0 - p < 0$ and $i_0 + p > n$ and hence $u + iv$ is the only multiple of p in $\{u, u + v, \cdots, u + nv\}$. Further $u + iv = pr < pv < p^2$ implying $p|\alpha = \frac{u + v + nv}{r + v}$. Hence conditions (i) – (iii) of Lemma 2.1 are valid and the assertion follows.

The above Lemma contains [SaSh15, Lemma 3.3]. We also need the following result on b being a square or not.

Lemma 2.3. Let $2 \leq n \leq 1325$,
\[\alpha = \frac{u}{v} \in \{\pm\frac{1}{2}, \pm\frac{1}{3}, \pm\frac{2}{3}, \pm\frac{1}{4}, \pm\frac{3}{4}\} \]
and b be given by (2). Then b is square only when $(u, v, n) \in \{(-2, 3, 3), (-2, 3, 11), (2, 3, 7)\}$.

Proof. First we check that for $2 \leq n \leq u + 2v$, the assertion is valid. Hence we now take $n > u + 2v$. Let
\[n_1 = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{2} & \text{if } n \text{ is odd}. \end{cases} \]

Assume $u \neq \pm2$ if $v = 3$. Then we see that b is divisible by every prime $p \equiv u \pmod{2v}$ with $n < p \leq u + 2vn_1$ to the first power. Hence if there is such a prime, b cannot be a square. For $u + 2v < n \leq 1325$, we check that this is true. Thus we now take $v = 3, u = \pm 2$. Let $u_1 = \frac{u}{2}$. Then
\[(u + 2v) \cdots (u + 2n_1v) = 2^{n_1}(u_1 + v)(u_1 + 2v) \cdots (u_1 + n_1v) \]
and hence b is not an square if there is a prime p with $n < p \leq u_1 + n_1v$ and $p \equiv u_1 \pmod{v}$ where $v = 3$. We check that this is the case for $u + 2v < m \leq 1325$ except when
\(u = -2, m \in \{5, 6, 7, 11\} \) and \(u = 2, m = 19 \). For \(u = -2, m \in \{5, 6, 7, 11\} \) and \(u = 2, m = 19 \), we check that \(b \) is not a square except when \(u = -2, m = 11 \). Hence the assertion follows. \(\square \)

3. Proof of Theorem 1

Let
\[
\alpha = \frac{u}{v} \in \{\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{4}, \pm \frac{3}{4}\}.
\]

As mentioned before, it was shown that \(L^{(\alpha)}(x) \) is irreducible for \(\alpha \in \{\pm \frac{1}{2}\} \) in [Sch29] and [Sch31] and in [LaSh] for \(\alpha \in \{\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{4}, \pm \frac{3}{4}\} \) except when \(\alpha = \pm \frac{1}{2}, \alpha = \pm \frac{3}{4}, n = 2 \) and hence same is true for \(G(x, u, v) \). For \(n \leq 13 \), we check in SAGE for \(n \leq 11 \) and MAGMA for \(n = 12, 13 \) that the assertion of Theorem 1 is valid.

Hence we may suppose that \(n > 13 \). Further we can take \(n \leq 1325 \) by [SaSh15, Theorem 1.4]. It suffices to prove that \(G(x, u, v) \) has Galois group \(S_n \). We use Lemmas 2.2 and 2. It suffice to find a prime \(p \) with
\[
p > v, p \equiv r^{-1}u \pmod{v} \quad \text{and} \quad \frac{u + v + n v}{r + v} \leq p \leq n - 3.
\]

for some \(r, 1 \leq r < v, \gcd(r, v) = 1 \). Let \(\alpha = \frac{u}{v} \in \{\pm \frac{1}{2}\} \). We check that there is a prime \(p \) with \(2n + \frac{2 + u}{3} \leq p \leq n - 3 \) except when \(u = 1, n = 19 \). We check that for \(n = 19 \), the Galois group of \(L^{(\frac{1}{2})}(x) \) is \(S_n \).

Let \(\alpha = \frac{u}{v} \in \{\pm \frac{1}{3}, \pm \frac{2}{3}\} \). Since \(1 \leq r < 3 \), we need to find a prime \(p \) with
\[
\frac{3n}{4} + \frac{3 + u}{4} \leq p \leq n - 3, p \equiv u \pmod{3}
\]
or
\[
\frac{3n}{5} + \frac{3 + u}{5} \leq p \leq n - 3, p \equiv 2u \pmod{3}.
\]

Hence it suffices to find a prime \(p \) with \(\frac{3n}{4} + \frac{3 + u}{4} \leq p \leq n - 3 \) or
\[
\frac{3n}{5} + \frac{3 + u}{5} \leq p < \frac{3n}{4} + \frac{3 + u}{4}, p \equiv 2u \pmod{4}.
\]

We check that this is the case except when
\[
\begin{align*}
u &= -1 : n = 15 \\
u &= -2 : n = 19 \\
u &= 1 : n \in \{18, 19\} \\
u &= 2 : n \in \{14, 15, 31\}.
\end{align*}
\]

For these values of \(\frac{u}{v} \) and \(n \), we check in MAGMA that Galois group of \(L^{(\frac{2}{3})}(x) \) is \(S_n \).

Let \(\alpha = \frac{u}{v} \in \{\pm \frac{1}{4}, \pm \frac{3}{4}\} \). Since \(r \in \{1, 3\} \), we need to find a prime \(p \) with
\[
\frac{4n}{5} + \frac{4 + u}{5} \leq p \leq n - 3, p \equiv u \pmod{4}
\]
or
\[
\frac{4n}{7} + \frac{4 + u}{7} \leq p \leq n - 3, p \equiv 3u(\text{mod} \ 4).
\]
Hence it suffices to find a prime \(p \) with \(\frac{4n}{5} + \frac{4+u}{5} \leq p \leq n - 3 \) or
\[
\frac{4n}{7} + \frac{4 + u}{7} \leq p < \frac{4n}{5} + \frac{4 + u}{5}, p \equiv 3u(\text{mod} \ 4).
\]
We check that this is the case except when
\[
u = -1 : n \in \{14, 15, 30, 31\}
\]
\[
u = -3 : n \in \{20, 21, 23\}
\]
\[
u = 1 : n \in \{19, 20, 21\}
\]
\[
u = 3 : n \in \{14, 29, 30, 31\}.
\]
For these values of \(\frac{u}{2} \) and \(n \), we check that in MAGMA that Galois group of \(L^{\left(\frac{u}{2}\right)}(x) \)
is \(S_n \). This completes the proof of Theorem 1. \(\blacksquare \)

Acknowledgements

We thank the anonymous referee for the remarks in an earlier version of this paper. We also thank DST for supporting this work under the Fast Track Project.

References

Stat-Math Unit, India Statistical Institute, 7, S. J. S. Sansanwal Marg, New Delhi, 110016, India

E-mail address: shantalaishram@gmail.com