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SUMMARY. In a parallel line assay, there are three treatment contrasts of major importance. Block designs

allowing the estimability of all the three contrasts free from block effects, called L-designs, necessarily have the

block sizes even. For odd block sizes, we provide here a class of highly efficient designs, called nearly L-designs.

These nearly L-designs have been constructed by establishing a link with linear and nearly linear trend-free

designs.

1. Introduction

Biological assays or bioassays involve two stimuli applied to subjects. One preparation of
the stimulus, called the standard preparation, has a known effect on subjects, while the other
preparation of the stimulus, called the test preparation, has an unknown strength. A major
purpose of a bioassay is to estimate the potency of the test relative to the standard preparation.
The relative potency is defined as the ratio of two equivalent doses of the standard to the test
preparation. In a bioassay, we thus have two groups of treatments, one for standard preparation
and the other for test preparation. Often, within each group, the treatment effect is represented
by a polynomial in the logarithm of the dose. In particular, when the polynomial has degree
one and both the groups share the same slope, then the assay is called a parallel line assay. If
the number of doses of both the preparations are same, then the parallel line assay is called
symmetric, otherwise, it is called asymmetric. In the context of parallel line assays, three
treatment contrasts (contrasts among dose effects) are of major importance. The first two, the
preparation contrast and the combined regression contrast, provide an estimate of the relative
potency and the third one, the parallelism contrast, is used to test the parallelism of the two
regression lines. For an excellent description of the theory and application of bioassays, the
reader is referred to Finney (1978).

If a block design is used for the assay, it is desirable that the design allows
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the estimability of these three contrasts with full efficiency. For symmetric parallel line assays,
an equireplicate block design is called an L-design if the three contrasts of importance are
estimated with full efficiency. L-designs have been studied quite extensively; see the review by
Gupta and Mukerjee (1996) where more references can be found. Most of these L-designs are
for even number of doses of each of the preparations. Gupta and Mukerjee (1990) suggested a
somewhat unified method of construction of L-designs. They provided a (i) complete solution
of L-designs for even number of doses, and (ii) table of L-designs for all odd number (≤ 15)
of doses. However, there are situations where it is impossible to construct an L-design. For
such situations, Chai and Das (2001) introduced a class of designs, called nearly L-designs
for symmetric parallel line assays. Recall that a necessary condition for the existence of an
L-design is that the block size be even. The designs of of Chai and Das (2001) also require the
block size to be even.

Thus, it appears that a systematic study for obtaining efficient block designs for parallel
line assays with odd block sizes has not been attempted. In this paper we propose a class
of designs, called nearly L-designs, with odd block sizes. In Section 2, some preliminaries on
linear trend-free designs are given. Nearly L-designs are introduced in Section 3 and a link
between linear trend-free (nearly linear trend-free) designs and nearly L-designs is established.
With the help of this connection, a necessary and sufficient condition for the existence of nearly
L-designs as well as a construction method is provided. The proposed designs are shown to be
highly efficient.

2. Linear trend-free designs

Throughout, D(v, b, k, r) will denote the class of all connected block designs with v treat-
ments each replicated r times and arranged in b blocks each of size k ≥ 2. Similarly,
D(v, b, k, r1, . . . , rv) will denote the class of all connected block designs with v treatments,
b blocks each of size k ≥ 2 and the ith treatment replicated ri times, 1 ≤ i ≤ v.

Trend-free block designs were introduced by Bradley and Yeh (1980). The setup they
considered involves v treatments and b blocks each of size k (≥ 2), where, the k experimental
units within each block are linearly ordered over time and space. Thus each block has k
periods, numbered 1, 2, . . . , k. Suppose that, in addition to treatment and block effects, there is
a common polynomial trend effect within each block. The postulated model for an observation
in period l of block j is

yjl = µ+
v∑
i=1

δijlτi + βj +
p∑

α=1

φα(l)θα + εjl, (2.1)

where µ is a general mean, τ1, . . . , τv, the treatment effects, β1, . . . , βb, the block effects and
θ1, . . . , θp, the trend effects. Moreover, for 1 ≤ α ≤ p, φα(l), is an orthogonal polynomial of

degree α, based on 1, 2, . . . , k, with
k∑
l=1

φα(l) = 0 and
k∑
l=1

φα(l)φα′(l) = δαα′ , δαα′ being the
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Kronecker delta, α, α′ = 1, . . . , p. Also,

δijl =

{
1, if treatment i is applied in period l of block j,
0, otherwise,

with
v∑
i=1

δijl = 1.

Let τ = (τ1, . . . , τv)′, β = (β1, . . . , βb)′ and θ = (θ1, . . . , θp)′. A trend-free block design has
the property that the presence of trend effect in a treatment-block model does not affect the
analysis of the treatment effects. A design d is said to be p-trend-free if

Rd(τ |µ,β,θ) = Rd(τ |µ,β), (2.2)

where Rd(τ |µ,β,θ) denotes the adjusted treatment sum of squares under (2.1) and Rd(τ |µ,β)
denotes Rd(τ |µ,β,θ) when θ = 0 in (2.1).

If p = 1, then a design d ∈ D(v, b, k, r) satisfying (2.2) is called a linear trend-free block
design. Equivalently, d is called a linear trend-free block design if

b∑
j=1

k∑
l=1

δijll =
r(k + 1)

2
, 1 ≤ i ≤ v.

Clearly, a necessary condition for a design d ∈ D(v, b, k, r) to be linear trend-free is

r(k + 1) ≡ 0 (mod 2). (2.3)

Stufken (1988) showed that (2.3) is both necessary and sufficient for the existence of a
linear trend-free block design. The result of Stufken (1988) has recently been generalized by
Chai (2002), who shows that a linear trend-free design exists in D(v, b, k, r1, . . . , rv) if and only
if ri(k + 1) ≡ 0 (mod 2) for each i, 1 ≤ i ≤ v. In D(v, b, k, r), when k is even and r is
odd, Yeh, Bradley and Notz (1985) defined a class of designs, called nearly linear trend-free
design. We give a more general definition of a nearly linear trend-free design belonging to
D(v, b, k, r1, . . . , rv).

Definition 1. For a design belonging to D(v, b, k, r1, . . . , rv), suppose k is even and at least
one of the ri’s is odd. Then d ∈ D(v, b, k, r1, . . . , rv) is called a nearly linear trend-free block
design if for 1 ≤ i ≤ v,

∑b
j=1

∑k
l=1 δ

i
jll equals (a) either ri(k+1)−1

2 or ri(k+1)+1
2 , if ri is odd

and, (b) ri(k+1)
2 , if ri is even.

We have the following result which shows that a nearly linear trend-free design, as per
Definition 1, always exists. A proof of Theorem 1 appears in the Appendix.

Theorem 1. Suppose k is even and at least one of ri’s is odd. Then a nearly linear trend-free
block design exists in D(v, b, k, r1, ..., rv).
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For the purpose of obtaining designs for parallel line assays, we need to consider a class
of nearly linear trend-free designs with the following parametric structure : there are v ≡
0 (mod 4) treatments which can be split into two sets, say S1 and S2, both with cardinality 1

2v.
Furthermore, each treatment in S1 has replication r1 ≡ 1 (mod 2) and each treatment belonging
to S2 has replication r2 ≡ 0 (mod 2). Then, since

∑
i∈S1

∑b
j=1

∑k
l=1 δ

i
jll = vr1(k + 1)/4, it is

easy to see that for 1
4v treatments in S1,

∑b
j=1

∑k
l=1 δ

i
jll = r1(k+1)−1

2 and for the remaining 1
4v

treatments in S1,
∑b
j=1

∑k
l=1 δ

i
jll = r1(k+1)+1

2 . Also, for each treatment i ∈ S2,
∑b
j=1

∑k
l=1 δ

i
jll =

r2(k+1)
2 .

3. Nearly L-designs

The three contrasts of major importance in the context of parallel line assays are preparation
(Lp), combined regression (L1) and parallelism (L′1). The three contrasts, Lp, L1, L1

′, in the
context of symmetric parallel line assays, can be explicitly written as

Lp = m−1(1′m,−1′m)τ , L1 = δ0(w′,w′)τ , L′1 = 2δ0(w′,−w′)τ , (3.1)

where v = 2m, 1s is a s × 1 vector of all ones, δ0 = 6/{θ0log h}, θ0 = m(m2 − 1) and
w = (1, 2, . . . ,m)′ − 1

2(m+ 1)1m.

Suppose a symmetric parallel line assay involving m doses of each of the preparations is
conducted in b blocks each of size k. As mentioned earlier, there are v = 2m treatments,
in which the first m treatments represent the doses of standard preparation and the last m
treatments represent the doses of the test preparation. Each treatment is replicated r = bk/v

times. Let Nd be the incidence matrix of d ∈ D(v = 2m, b, k, r). We postulate a fixed effects
additive model for the data collected through d, making the usual assumption that errors are
independent with mean zero and variance σ2. Under such a model the information matrix
of the reduced normal equations for estimating contrasts among dose effects, using a design
d, is Cd = rI − k−1NdNd

′ where I is the identity matrix. Every contrast among dose effects
is estimable via d if and only if Rank(Cd) = v − 1 and in such a case the design d is called
connected. Note that Nd may be partitioned as Nd = (N ′1d, N

′
2d)
′, where N1d(N2d) is the m× b

incidence matrix for the m doses of the standard (test) preparation. Hence we have

1′mN1d + 1′mN2d = k1′b, (3.2)

Nid1b = r1m , i = 1, 2. (3.3)

From Lemma 3.1 of Gupta and Mukerjee (1996), a design d ∈ D(v = 2m, b, k, r) retains full
information on Lp, L1 and L1

′ if and only if
1′m −1′m
w′ w′

w′ −w′


[
N1d

N2d

]
= 0, (3.4)
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where 0 is a null matrix (or, vector) of appropriate order.
A block design d ∈ D(v = 2m, b, k, r) satisfying (3.4) is called an L-design. It follows from

(3.2) - (3.4), that d ∈ D(v = 2m, b, k, r) is an L-design if and only if

1′mN1d = 1′mN2d =
1
2
k1′b; w′N1d = w′N2d = 0. (3.5)

Clearly, from (3.5) it follows that a necessary condition for an L-design to exist is that
k ≡ 0 (mod 2). Furthermore, Chai (2002) has shown that a necessary and sufficient condition
for an L-design in D(v = 2m, b, k, r) to exist is that 1

2k(m+ 1) ≡ 0 (mod 2). Thus, one cannot
construct an L-design if either of the following conditions hold:
(i) k ≡ 1 (mod 2);
(ii) k ≡ 2 (mod 4) and m ≡ 0 (mod 2).

When k ≡ 2 (mod 4) and m ≡ 0 (mod 2), Chai and Das (2001) defined a class of designs,
called nearly L-designs. These designs allow the estimability of Lp and L1 free from block
effects. In this paper, we attempt to construct highly efficient block designs for parallel line
assays when k is odd. In the rest of the paper, we take k > 2 to be an odd integer. We continue
to call such designs nearly L-designs. Clearly, in such a case, 1′mN1d 6= 1′mN2d and thus such
designs do not allow the estimability Lp free from block effects. We formally define nearly
L-designs considered in this paper.

Definition 2. A block design d ∈ D(v = 2m, b, k, r) with k(> 2) odd is called a nearly L-design
if the following are true :
(a) 1′mN1d = (k+1

2 1′b
2

, k−1
2 1′b

2

);

(b) 1′mN2d = (k−1
2 1′b

2

, k−1
2 1′b

2

).
Furthermore if m is odd,
(c) w′N1d = w′N2d = 0′,
and, if m is even,
(c′) w′N1d = 1

2(1′b
4

,−1′b
4

,0′); w′N2d = 1
2(0′,1′b

4

,−1′b
4

).

The normalized contrasts corresponding to Lp, L1 and L1
′ are given respectively by g′1τ , g

′
2τ , g

′
3τ ,

where g1 = (2m)−1/2 (1′m, −1′m)′, g2 = [m(m2 − 1)/6]−1/2 (w′, w′)′ and g3 = [m(m2 −
1)/6]−1/2 (w′, −w′)′ . Let G = ((gij)) be a 3× v matrix with rows g′1, g′2 and g′3.

Let Nd = (N ′1d, N
′
2d)
′ be the incidence matrix of a nearly L-design d ∈ D(v = 2m, b, k, r).

Further, we restrict attention to a convenient family of nearly L-designs {d} for which N1d =
[M1d,M2d], N2d = [M2d,M1d] for some m × 1

2b matrices Md1,Md2. Then, from Definition 2,
we have

1′mM1d =
k + 1

2
1′b

2

; 1′mM2d =
k − 1

2
1′b

2

.

Let G = V Cd for some 3× 2m matrix V =


v′11 v′12

v′21 v′22

v′31 v′32

 where each vij is an m× 1 vector

(see pages 883-884 of Gupta and Mukherjee (1996)).
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For an arbitrary d ∈ D(v = 2m, b, k, r), the covariance matrix of Gτ̂ , the best linear
unbiased estimator of Gτ , under d, is

Cov(Gτ̂ )d = σ2V CdV
′,

Cov(Gτ̂ )− σ2

r
GG′ = σ2V (Cd − r−1CdC

′
d)V

′.

Hence,

Cov(Gτ̂ )d = σ2r−1GG′ + σ2V (Cd − r−1C2
d)V ′ = σ2(r−1GG′ + (rk)−1GNdN

′
dV
′). (3.6)

We consider two cases, according as m is odd or even.

Case (i). m is odd. We seek a nearly L-design d0 for parallel line assays with parameters
k = 2k1 + 1,m = 2m1 + 1(⇒ v = 2m = 2(2m1 + 1)), b = 2b1, r = bk

v = b1(2k1+1)
2m1+1 . Here, k1 and

m1 are positive integers.
As a first step, we construct a linear trend-free design d∗ with parameters v∗ = b, b∗ =

r, k∗ = m, r∗1 = · · · = r∗v∗
2

= k1 + 1; r∗v∗
2

+1
= · · · = r∗v∗ = k1. Such a design can be a constructed,

since r∗i (k
∗ + 1) ≡ 0 (mod 2) for 1 ≤ i ≤ v∗.

From d∗, we construct a design d0 as follows : Suppose, without loss of generality that k1

is even, so that k1 + 1 is odd. Write the blocks of d∗ as columns of a k∗ × b∗ matrix, say ∆.
Now construct a k∗ × v∗ matrix, N1d0 , whose columns are indexed by the v∗ treatments of d∗

and the rows by the positions of the treatments in each column (block). If a treatment symbol
j appears in the ith row of ∆ n1

ij times, then the (i, j)th element of N1d0 is n1
ij and, zero,

otherwise. Let the m× 1
2b matrix consisting of the first 1

2b columns of N1d0 be denoted by M1d0

and the matrix consisting of the last 1
2b columns of N1d0 be M2d0 . Then, N1d0 = [M1d0 ,M2d0 ].

Define N2d0 = [M2d0 ,M1d0 ]. The required nearly L-design d0 ∈ D(v = 2m, b, k, r) has incidence

matrix Nd0 =

[
N1d0

N2d0

]
. Then d0 has the following properties :

(i) N1d0 = [M1d0 ,M2d0 ] and N2d0 = [M2d0 ,M1d0 ].
(ii) 1′mM1d0 = (k1 + 1)1′b1 , 1′mM2d0 = k11′b1 , w

′M1d0 = 0′, w′M2d0 = 0′.

From (i) and (ii) above, it follows that

1
rk
GNd0N

′
d0
V ′

=
1
rk

1√
2m


1′b1(M1d0 −M2d0)′(v11 − v12) 0 0

0 0 0
0 0 0

 .
Hence, under d0,

Cov(Gτ̂ )d0 = σ2


1
r + 1

rk
1√
2m

1′b1(M1d0 −M2d0)′(v11 − v12) 0 0

0 1
r 0

0 0 1
r

 . (3.7)
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From (3.7), we have Var(g′1τ̂ )d0 = σ2(1
r+ 1

rk
1√
2m

1′b1(M1d0−M2d0)′(v11−v12) and Var(g′2τ̂ )d0 =
var(g′3τ̂ )d0 = σ2r−1, where for i = 1, 2, 3, Var(g′iτ̂ )d0 is the variance of the best linear un-
biased estimator of g′iτ under d0. Since for an arbitrary design d ∈ D(v = 2m, b, k, r),
Var(g′iτ̂ )d ≥ σ2/r, i = 1, 2, 3, it follows that the design d0 estimates the contrasts L1 and
L′1 with full information.

Now let us concentrate on the contrast g′1τ . Let d ∈ D(v = 2m, b, k, r) be arbitrary and as
before, let Var(g′1τ̂ )d denote the variance of the best linear unbiased estimator of g′1τ under d.
Then,

σ−2Var(g′1τ̂ )d = g′1C
−
d g1 ≥ (g′1Cdg1)−1 ≥ 1

maxd∈D g′1Cdg1

.

Now,

maxd∈D g′1Cdg1 = r −mind∈D k−1g′1NdN
′
dg1

= r − (2mk)−1 mind∈D
b∑

j=1

(ad1j − ad2j)2,

where (ad11, . . . , ad1b) = 1′mN1d, (ad21, . . . , ad2b) = 1′mN2d. The minimum of
∑b
j=1(ad1j−ad2j)2

is attained when
|ad1j − ad2j | = 1, for all j = 1, . . . , b, (3.8)

as k > 2 is odd. Hence, when (3.8) holds, we have

maxd∈D (g′1Cdg1) = r − b(2mk)−1 = r(1− k−2).

Therefore,

σ−2Var(g′1τ̂ )d ≥
1

r(1− k−2)
.

On the basis of the above analysis, one can obtain a lower bound to the efficiency factor of
the contrast g′1τ under a design d as

ed = σ2/{Var(g′1τ̂ )d r(1− k−2)}.

Also, a lower bound to the measure of an overall efficiency factor of a design d, based on all
the three contrasts, is given by ēd = σ2(3k2−2)

r(k2−1)
/
∑

1≤i≤3 Var(g′iτ̂ )d.
Note that the proposed design d0 satisfies (3.8) and also estimates g′iτ , i = 2, 3 with

efficiency one. Thus, it is expected that d0 will have a high overall efficiency factor - in fact,
in several examples, it is found that ēd0 > 0.95. Thus when m is odd, the design d0 allows
the estimability of the contrasts g′2τ and g′3τ with efficiency one, while the efficiency factor of
g′1τ (Lp) is expected to be close to unity for appropriately chosen d0.

Example 1. Let m = 5, k = 5, b = 12, r = 6. We first find a linear trend-free block design
d∗ ∈ D(v∗ = 12, b∗ = 6, k∗ = 5, r∗1 = · · · = r∗6 = 3; r∗7 = · · · = r∗12 = 2). Such a design, with
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columns as blocks, is shown below.

d∗ ≡

5 4 9 7 8 6
11 12 1 3 2 10
1 2 6 4 5 3

12 10 2 1 3 11
8 7 5 9 6 4

Following the method of construction of d0 described in this section, we have

N1d0 =



0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0



N2d0 =



1 1 1 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1



and Nd0 =

[
N1d0

N2d0

]
is the incidence matrix of d0 ∈ D(10, 12, 5, 6). The blocks of the design d0

are
(2, 3, 4, 6, 10), (2, 3, 4, 6, 10), (2, 3, 4, 6, 10), (1, 3, 5, 7, 9), (1, 3, 5, 7, 9), (1, 3, 5, 7, 9),

(1, 5, 7, 8, 9), (1, 5, 7, 8, 9), (1, 5, 7, 8, 9), (2, 4, 6, 8, 10), (2, 4, 6, 8, 10), (2, 4, 6, 8, 10),

where 1, . . . , 5 are the standard doses and 6, . . . , 10 are the test doses. The efficiency factor
for the contrast g′1τ under this design is at least 0.9921 and the overall efficiency factor of the
design is at least 0.9973.

Case (ii). m is even. Here the parameters of the design that we seek are k = 2k1 + 1,m =
2m1(⇒ v = 2m = 4m1), b = 4b1, r = bk

v = 4b1(2k1+1)
4m1

= b1(2k1+1)
m1

.
As in Case (i), we assume that k1 is even. Now, let d∗ be a nearly linear trend-free

design in D(v∗ = b, b∗ = r, k∗ = m, r∗1 = · · · = r∗v∗
2

= k1 + 1; r∗v∗
2

+1
= · · · = r∗v∗ = k1).

Note that a linear trend-free design cannot exist in this case, as r∗i (k
∗ + 1) 6= 0 (mod 2)

for all i, 1 ≤ i ≤ v∗. Following the discussion in the last paragraph of Section 2, without
loss of generality, we take a d∗, such that for 1 ≤ i ≤ 1

4v
∗,
∑b∗
j=1

∑k∗
l=1 δ

i
jll = r∗1(k∗+1)−1

2 ,

for 1
4v
∗ + 1 ≤ i ≤ 1

2v
∗,
∑b∗
j=1

∑k∗
l=1 δ

i
jll = r∗1(k∗+1)+1

2 and for the remaining 1
2v
∗ treatments,∑b∗

j=1

∑k∗
l=1 δ

i
jll = r∗

v∗ (k∗+1)

2 = (r∗1−1)(k∗+1)
2 .

From d∗, we obtain the matrices N1d0 and N2d0 leading to the proposed design d0 ∈

D(v = 2m, b = 4b1, k = 2k1 + 1, r = b1(2k1+1)
m1

), with incidence matrix Nd0 =

[
N1d0

N2d0

]
,
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where N1d0 , N2d0 are obtained from d∗ exactly in the same manner as in Case (i). Then

Nd0 =

[
M1d0 M2d0

M2d0 M1d0

]

with

1′mM1d0 = (k1 + 1)1′2b1 ,1
′
mM2d0 = k11′2b1

w′M1d0 =
1
2
[
1′b1 ,−1′b1

]
and w′M2d0 = 0′.

For an arbitray design d ∈ D(v = 2m, b, k, r), consider the matrix GCdG
′ = rGG′ −

k−1GNdNd
′G′. Now,

GNd =


(2m)−1/21′m −(2m)−1/21′m

(m(m2 − 1)/6)−1/2w′ (m(m2 − 1)/6)−1/2w′

(m(m2 − 1)/6)−1/2w′ −(m(m2 − 1)/6)−1/2w′


[
N1d

N2d

]

=


(2m)−1/2(1′mN1d − 1′mN2d)

(2m(m2 − 1)/3)−1/2(f ′N1d + f ′N2d)
(2m(m2 − 1)/3)−1/2(f ′N1d − f ′N2d)


where f = 2w.

As before, 1′mN1d = (ad11, . . . , ad1b), 1′mNd2 = (ad21, . . . , ad2b), and let f ′N1d = (cd11, . . . , cd1b)
and f ′N2d = (cd21, . . . , cd2b). Then, since the design is equireplicate,

∑b
j=1 cd1j =

∑b
j=1 cd2j = 0.

In order to maximize g′iCdgi, i = 1, 2, 3 over D(v = 2m, b, k, r), we need to minimize g′iNdN
′
dgi,

since g′igi = 1 is fixed. Now,

g′1NdN
′
dg1 =

b∑
j=1

(2m)−1(ad1j − ad2j)2

g′2NdN
′
dg2 =

b∑
j=1

(2m(m2 − 1)/3)−1(cd1j + cd2j)2

g′3NdN
′
dg3 =

b∑
j=1

(2m(m2 − 1)/3)−1(cd1j − cd2j)2.

To begin with, recall that as in Case (i), g′1NdN
′
dg1 is minimized when |ad1j−ad2j | = 1 for all

j = 1, . . . , b. Since m is even, f ′ = 2w′ = (−(m−1),−(m−3), . . . ,−3,−1, 1, 3, . . . ,m−3,m−1)
and α′ = f ′+1′ = (−(m−2),−(m−4), . . . ,−4,−2, 0, 2, 4, . . . ,m−4,m−2,m). We now show
that for 1 ≤ j ≤ b, cd1j ± cd2j 6= 0. To see this, if possible, let cd1j + cd2j = 0 for some j. Then,
for this j, cd1j + cd2j = f ′(n1dj + n2dj) = 0, where n1dj(n2dj) is the jth column of N1d(N2d).
Also, 1′(n1dj+n2dj) = k = 2k1+1. Thus, α′(n1dj+n2dj) = (f ′+1′)(n1dj+n2dj) = k. But each
element of α is even and thus we have a contradiction. Again, if possible, let cd1j − cd2j = 0
for some j. Then, cd1j − cd2j = f ′(n1dj − n2dj) = 0. Also, 1′(n1dj − n2dj) is an odd integer.
Thus, α′(n1dj − n2dj) = (f ′ + 1′)(n1dj − n2dj) is odd and the proof is complete.
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The minimum of each of
∑b
j=1(cd1j + cd2j)2 and

∑b
j=1(cd1j − cd2j)2 is therefore attained

when cd1j + cd2j = ±1, 1 ≤ j ≤ b and cd1j − cd2j = ±1, 1 ≤ j ≤ b respectively. With these
values of {adij}, i = 1, 2 and {cd1j ± cd2j}, j = 1, . . . , b, the minimum of g′iNdN

′
dgi, i = 1, 2, 3

are given respectively by
b

2m
,

3b
2m(m2 − 1)

,
3b

2m(m2 − 1)
.

Hence,
maxd∈D (g′1Cdg1) = r(1− k−2),

maxd∈D (g′2Cdg2) = r(1− 3k−2(m2 − 1)−1) = maxd∈D (g′3Cdg3),

and these maximum values are attained by the proposed design d0.
Therefore, σ−2Var(g′1τ̂ )d ≥ (r(1 − k−2))−1 and for i = 2, 3, σ−2Var(g′iτ̂ )d ≥ {r(1 −

3k−2(m2 − 1)−1)}−1. One can now obtain a lower bound to the efficiency factor of the con-
trasts g′iτ under a design d as

e1d = σ2/{Var(g′1τ̂ )d r(1− k−2)}

and
eid = σ2/{Var(g′iτ̂ )d r(1− 3k−2(m2 − 1)−1)}, i = 2, 3.

Also, a lower bound to a measure of the overall efficiency factor of a design d is given by

ēd =
σ2k2{(m2 − 1)(3k2 − 2)− 3}
r(k2 − 1){k2(m2 − 1)− 3}

/
∑

1≤i≤3

Var(g′iτ̂ )d.

For the proposed class of nearly L-designs, we find in several appropriately chosen examples
that ēd0 > 0.95.

Example 2. Let m = 6, k = 9, b = 8, r = 6. We find a nearly linear trend-free block design
d∗ ∈ D(v∗ = 8, b∗ = 6 = k∗, r∗1 = · · · = r∗4 = 5; r∗5 = · · · = r∗8 = 4). The design d∗, with columns
as blocks is shown below.

d∗ ≡

2 3 6 5 4 1
3 1 5 7 2 4
7 4 8 3 6 8
1 6 2 8 8 7
4 2 7 1 3 5
6 5 4 2 1 3

Following the method of construction of d0 described above, we have

N1d0 =



1 1 1 1 1 1 0 0
1 1 1 1 1 0 1 0
0 0 1 1 0 1 1 2
1 1 0 0 0 1 1 2
1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0


= [M1d0 M2d0 ]

N2d0 = [M2d0 M1d0 ] .

10



Then, Nd0 =

[
N1d0

N2d0

]
is the incidence matrix of the design d0 ∈ D(12, 8, 9, 6). For this design

ēd0 = 0.9994.
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Appendix

The following definition and lemmas are needed in the proof of Theorem 1.

Definition 3. Given a block size k, two plots l and l′ are said to be mirror-symmetric if
l + l′ = k + 1.

Let Sk = {1, 2, . . . , k} , V1 = {1, 2, . . . , t} and V2 = {t+ 1, . . . , v}.

Lemma 1. Suppose k = 2h and p = 2l + 1, 3p < k. Then there exists p sets of size 3, say
X1, X2, . . . , Xp, such that

(i)
p⋃
i=1

Xi = Sk\({1, 2, . . . , (k−3p−1)/2}∪{k/2+1}∪{(k+3p+1)/2+1, (k+3p+1)/2+2, . . . , k});

(ii) Xi ∩Xj = ∅, for all i 6= j, where ∅ is the null set ;
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(iii) For 1 ≤ i ≤ l,
∑
x∈Xi

x = (3k + 4)/2 and for l + 1 ≤ i ≤ p,
∑
x∈Xi

x = (3k + 2)/2.

Proof. Let z = (k − 3p− 1)/2. Define

Xi = {i+ z, 3l + 3 + i+ z, 6l + 5− 2i+ z} , 1 ≤ i ≤ l,

and

Xl+j = {l + j + z, 2l + 1 + j + z, 6l + 6− 2j + z} , 1 ≤ j ≤ l + 1.

The results (i), (ii) and (iii) follow easily from the construction of Xi’s.

Lemma 1′. Let X̃i = {k+1−x | x ∈ Xi}, where Xi’s, 1 ≤ i ≤ p, are constructed as in Lemma
1. Then

(i)
p⋃
i=1

X̃i = Sk\({1, 2, . . . , (k−3p−1)/2}∪{k/2}∪{(k+3p+1)/2+1, (k+3p+1)/2+2, . . . , k});

(ii) X̃i ∩ X̃j = ∅, for all i 6= j;

(iii) For 1 ≤ i ≤ l,
∑
x∈X̃i

x = (3k + 2)/2 and for l + 1 ≤ i ≤ p,
∑
x∈X̃i

x = (3k + 4)/2.

Lemma 2. Suppose k = 2h and p = 2l, 3p ≤ k. Then there exists p sets of size 3, say
Y1, Y2, . . . , Yp, such that

(i)
p⋃
i=1

Yi = Sk \ ({1, 2, . . . , (k − 3p)/2} ∪ {(k + 3p)/2 + 1, (k + 3p)/2 + 2, . . . , k});

(ii) Yi ∩ Yj = ∅, for all i 6= j;

(iii) For 1 ≤ i ≤ l,
∑
y∈Yi

y = (3k + 4)/2 and for l + 1 ≤ i ≤ p,
∑
y∈Yi

y = (3k + 2)/2.

Proof. Let z = (k − 6l)/2. Define

Yi = {i+ z, 3l + i+ z, 6l + 2− 2i+ z} , 1 ≤ i ≤ l.

and
Yl+j = {l + j + z, 2l + j + z, 6l + 1− 2j + z} , 1 ≤ j ≤ l.

The results (i), (ii) and (iii) follow easily from the construction of Yi’s.

Lemma 3. (Yeh et al. (1985)). Suppose k is even. Then there exists a nearly linear trend-free
block design d ∈ D(k, 3, k, 3).
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Proof. The three blocks of d can be constructed as follows:
block 1: (1, 2, . . . , k/2, k/2 + 1, k/2 + 2, . . . , k − 1, k) ;

block 2: (k, k − 2, . . . , 4, 2, k − 1, k − 3, . . . , 3, 1) ;

block 3: (k − 1, k − 3, . . . , 3, 1, k, k − 2, . . . , 4, 2).

For 1 ≤ i ≤ k/2,
3∑
j=1

k∑
l=1

δ2i−1
jl · l = (3k+ 2)/2 and

3∑
j=1

k∑
l=1

δ2i
jl · l = (3k+ 4)/2. Hence d is a nearly

linear trend-free block design.

Next, we will prove that a nearly linear trend-free block design d ∈
D(v, b, k, r1, . . . , rv) exists when k is even and at least one of ri’s is odd. Suppose k is even and
at least one of ri’s is odd. First, in Lemma 4, we handle the basic case of ri equal to 2 or 3.
Then in Theorem 1, we consider the general case ri ≥ 2.

The key idea for the proof of Lemma 4 is the following. Suppose ri = 3, i ∈ V1, and
rj = 2, j ∈ V2.

Step I : With the help of Lemmas 1, 2 and 3, we can identify and fill those three proper
plots with three replications of treatment i, i ∈ V1, in an un-filled k × b array d such that

(i)
b∑

j=1

k∑
l=1

δijll = (3k + 2)/2 or (3k + 4)/2, 1 ≤ i ≤ t; (ii) All remaining un-filled plots in d are

mirror-symmetric in pairs, i.e., if a plot l in block j is unfilled, then there always exists another
unfilled plot k + 1− l in some block j′.

Step II : Fill each pair of mirror-symmetric plots with two replications of treatment j, j ∈ V2.

From the property of the mirror-symmetric plots, we get
b∑

j=1

k∑
l=1

δijll = ri(k + 1)/2 =

2(k + 1)/2, t + 1 ≤ i ≤ v. Therefore, the filled array d is a nearly linear trend-free block
design.

Lemma 4. Suppose k is even, ri = 3, i ∈ V1, and rj = 2, j ∈ V2. Then a nearly linear
trend-free block design d ∈ D(v, b, k, r1, . . . , rv) exists.

Proof. Note that t is even since t = bk − 2v. Let t = pk + q, 0 ≤ q ≤ k − 1 and b = 3p + b1.
Consequently q is even. Our desired nearly linear trend-free block design will be constructed
as

d =

d1

...

...
d2

...

...
. . .

...

...
dp

...

...
dp+1

...

...
dp+2

 ,
where (i) for 1 ≤ i ≤ p, di ∈ D(k, 3, k, 3) is a nearly linear trend-free block design consisting of
treatments (i−1)k+1, (i−1)k+2, . . . , ik, constructed from Lemma 3; (ii) dp+1 is a k×h array
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and can be written as


dq1
dq

dq2

, where h could be 3, 2, 1 depending on cases. Furthermore in

dp+1, dq occupies the middle ρ rows (ρ could be q, 3q/2 or 3q depending on cases), contains
treatments pk+ 1, pk+ 2, . . . , pk+ q and maybe some treatments from V2, dq1 and dq2 occupies
the first (k− ρ)/2 rows and the last (k− ρ)/2 rows respectively, containing treatments from V2

only; (iii) dp+2 has b1 − h blocks containing treatments from V2 only. Our goal is to construct
proper dp+1 and dp+2 to make d a nearly linear trend-free block design. We divide the proof
into three cases.

Case 1. b1 ≥ 3. Here h = 3.
From Lemma 3, we can construct a nearly linear trend-free block design dq ∈ D(q, 3, q, 3)
consisting of treatments pk + 1, pk + 2, . . . , pk + q. Observe that all un-filled plots in dq1 , dq2
and dp+2 are mirror-symmetric in pairs. Hence, fill each pair of mirror-symmetric plots with
two replications of treatment j, j ∈ V2. From the property of mirror-symmetric plots, we get
b∑

j=1

k∑
l=1

δijll = ri(k+1)/2 = 2(k+1)/2, t+1 ≤ i ≤ v. The resulting design d is our desired nearly

linear trend-free block design.

Case 2. b1 = 2. Here h = 2 and dp+2 vanishes. Let q = 2m. Write dq asdm1
q

...

...
dm2
q


where dmiq , 1 ≤ i ≤ 2, is a 3m× 1 vector consisting of treatments pk + (i− 1)m+ 1, pk + (i−
1)m+ 2, . . . , pk + im.
(a) m is odd. dm1

q is constructed by inserting three replications of treatment pk + j into the
(x)th plot of an un-filled 3m× 1 vector, where x ∈ Xj , 1 ≤ j ≤ m and Xj ’s are obtained from
Lemma 1 by letting p = m and k = 3m+1. dm2

q is constructed by inserting three replications of
treatment pk+m+ j into the (x)th plot of an un-filled 3m×1 vector, where x ∈ X̃j , 1 ≤ j ≤ m
and X̃j ’s are obtained from Lemma 1′ by letting p = m and k = 3m+ 1.
(b) m is even. dmiq is constructed by placing three replications of treatment pk + (i− 1)m+ j

into the (y)th plot of an un-filled 3m × 1 vector, where y ∈ Yj , 1 ≤ i ≤ 2, 1 ≤ j ≤ m and Yj ’s
are obtained from Lemma 2 by letting p = m and k = 3m. Check the remaining unfilled plots
in dp+1, they are mirror-symmetric in pairs. Hence the desired design is constructed.

Case 3. b1 = 1. Here h = 1 and dp+2 vanishes. dq is a 3q × 1 vector consisting of treat-
ments pk+ 1, pk+ 2, . . . , pk+ q. Now, let dq act as the dm1

q of Case 2(b), then the proof follows
along the lines of Case 2(b).

The resulting designs in the above cases are nearly linear trend-free but not necessarily
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connected. Hence, we have to horizontally shift the positions of the treatments among di’s to
make d a connected design. That completes the proof.

Proof of Theorem 1. Without loss of generality, we assume ri is odd, 1 ≤ i ≤ t and ri

is even, t + 1 ≤ i ≤ v. For 1 ≤ i ≤ t, we can write ri = 3 + 2r1i. Then ri replications of
treatment i can be renamed as 3 replications of one new treatment plus 2 replications of r1i

new treatments. For t + 1 ≤ i ≤ v, we can write ri = 2r1i. Then ri replications of treat-

ment i can be renamed as 2 replications of r1i new treatments. Let v∗ = t +
v∑
i=1

r1i. In other

words, a design belonging to D(v, b, k, r1, r2, . . . , rv) can be renamed as another design belong-
ing to D(v∗, b, k, r∗1, . . . , r

∗
t , r
∗
t+1, . . . , r

∗
v∗) with r∗i = 3, 1 ≤ i ≤ t and r∗i = 2, t + 1 ≤ i ≤ v∗.

From Lemma 4, we know a nearly linear trend-free block design d∗ ∈ D(v∗, b, k, r∗1, . . . , r
∗
v∗)

exists. In d∗, revert new treatments back to the original treatments resulting into our required

d. Obviously, d ∈ D(v, b, k, r1, . . . , rv) and for 1 ≤ i ≤ t,
b∑

j=1

k∑
l=1

δijll = ((3(k + 1) − 1)/2

or (3(k + 1) + 1)/2) + r1i · 2(k + 1)/2 = (ri(k + 1) − 1)/2 or (ri(k + 1) + 1)/2 and for

t + 1 ≤ i ≤ v,
b∑

j=1

k∑
l=1

δijll = r1i · 2(k + 1)/2 = ri(k + 1)/2. Hence, d is a nearly linear

trend-free block design.
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