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Abstract

Let {X,,,n > 1} be a sequence of stationary associated random variables. We derive uniform
and non-uniform Berry-Esseen type bounds for associated as well as functions of associated
random variables. We discuss an application of these to kernel type density estimation for

stationary associated random variables.
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1 Introduction

Let {X;,1 <i < n} be a set of stationary associated random variables, that is, for every pair

of functions h(z) and g(z) from R™ to R, which are nondecreasing componentwise,
Cov(h(X),9(X)) = 0,

whenever it is finite, where X = (X1, Xo, ..., X,).

Associated random variables are of considerable interest in reliability studies (cf. Esary,
Proschan and Walkup (1967), Prakasa Rao and Dewan (2001), Roussas (1999)). A Berry-
Esseen type bound for the sum of stationary associated random variables were earlier discussed
by Wood (1983) and Birkel (1988). The rate obtained by Wood is O(n~1/5), which is far from
the optimal rate O(n_l/ 2) in the classical Berry-Esseen bound in the case of independent and
identically distributed random variables (cf Feller (1977)). Birkel (1988), under certain set of
conditions on {X,}, obtained the rate of O(n~'2log?n). Even though the rate obtained by
Birkel (1988) gives a vastly improved rate for the Berry-Esseen type bound under certain set of
conditions, it is not clear how the constants involved in the bound depend on the moments of the
random variables { X,,}. Dewan and Prakasa Rao (1997) obtained the bounds more explicitly in
terms of moments of the sequence {X,,} and bounds on the density function of the partial sums
of independent copies of X7. For completeness, we give the details in Section 2. We also obtain
non-uniform Berry-Esseen type bounds in the Section 3 . In Section 4 we obtain uniform and

non-uniform Berry-Esseen type bounds for functions of stationary associated random variables.



Finally we discuss an application of these results to kernel type density estimation for stationary

associated random variables .

2  Uniform Berry-Esseen type bound for Stationary Associated

Random Variables

Theorem 2.1 : Let {X;,1 < i < n} be a set of stationary associated random variables with
E[X1] =0, Var[X;] =0?>>0 and E[X1|’] < oo . Suppose X; has an absolutely
n

continuous distribution function. Let S, = ZXi and s2 = Var(S,). Suppose % — o2
i=1
as n — oo. Let F,(x) be the distribution function of f—: and F(.) be the distribution

n

function of =l where Z;,1 < i < n are i.i.d. with distribution function same as that
of Xi. Let m, be a bound on the derivative of F . Then there exist absolute constants
B;>0,1<1i<3, such that

dnl/gmn2/3 E’X1’3
sup |Fn(2) — ®(z)] < By TR o3
1B (- 1) (2.1)

where ®(z) is the distribution function of a standard normal random variable and

dn = Z(n —Jj+1)Cov(X1, Xj).
j=2

Proof : Let ,(t) and }(t) be the characteristic functions corresponding to F,(.) and
E}(.), respectively. Note that, for 7" > 0

swp|Fo(r) ~ () <+ [0ty

m™J_T t

mnp
24 — 2.2
+24 — (2.2)

by the basic smoothing inequality (cf. Feller (1997), Vol II, pp 512).
Applying Newman and Wright’s (1981) inequality to the stationary associated set of random
variables {X;,1 < i < n}, we have

12
Z TCOU(Xi,Xj)
1<i<j<n ®n
t2 n n
= 8_2 Z Z CO?}(XZ',XJ‘)
n =1 j=i+1
+? &
= 2 Z(n —Jj+1)Cov(X1, Xj)
noj=9
42

IN

[¥n(t) = (1)l



From (2.2) and (2.3), we get that

* dn 2 My
Sup |Fn(x) — Fr(x)] < ET + 24ﬁ. (2.4)
Choose /3
24my,s2
p o (2t (2.5)

Then it follows that

2(24 2/3 n1/3 n2/3
sup | Fy() — Fi(z)] < 2CUT0 dn Tm

Applying the classical Berry-Esseen bound for the i.i.d. random variables {Z;,1 < i < n}
(cf. Feller (1977), Vol 11, pp 515), we have

N Sp& E\Zl\?’
F*(z) — ® <
sgp\ () (U\/ﬁ)! < C\/ﬁag
E|X?
_ o B (2.7)

Vn o3

where C is an absolute constant such that % < C <0.7975 (cf. Esseen (1956), Van Beek
(1972)).
Further using a result from Petrov (1975, pp 114), we get that

SpT < (fsnn -1)

o\/n

sup |®(
xT

2
n

Combining (2.6) to (2.8) we get our result.

2

since s2 > no“.

Remark 2.2 : The bound given above can be made more explicit by bounding m,, in (2.1).
Suppose that the characteristic function of X; is absolutely integrable. Then, following Feller

(1977, Vol 11, pp 489), we have 05\% has a density g, where S = >"I' | Z; and the density g,

tends uniformly to the standard normal density. Since the standard normal density is bounded,

it follows that g,, is bounded and the bound is \/%—W for large n.

S*

Since the density of US\% is gn(z), the density of 2= is 0_5—"\/77 gn( Us’i/:%), which can be
written in the form
Sn Sp T Sn T
-1 — .
(a\/ﬁ )gn(a \/ﬁ)+gn(0 \/ﬁ)
Hence
Sn Spn T Sn T
< 1 Sn Sn
my < (U\F ) Sup gn( \/ﬁ)+81ipgn(a\/ﬁ)
2 Sn 2
< — —1)+ 2.9
TV 27 (U\/ﬁ ) V2w (2:9)
for large n.



3 Non -Uniform Berry-Esseen type bounds

In this section we find non-uniform Berry-Esseen type bounds following the techniques of Petrov
(1975) and Hall (1982). Note that C is a generic positive constant.

3.1 Petrov’s Approach (Stationary Associated Sequences )

Let F7 and F3 be two distribution functions. If the distributions have moments of order p > 0,
then Petrov (1975, pp 120) proved that

[Fi(z) — Fa(z)| < z#0

W?
where 8 = maz (51, B2), Bk = [Zo |2|PdFy(2). Furthermore
1 AY
Fae) - Fafo)] < (R, 5.

for all x, for r > 0,s > 0, A; = sup,, |Fi(z) — Fa(x)|.
Let F(z) be an arbitrary distribution function and ®(x) the standard normal distribution
function. Let
A =sup |F(x) — ®(x)|. (3.2)
xX

Further suppose that -
/ 2[PdF(z) < oo (3.3)

for some p > 0. The following theorem is due to Petrov (1975, pp 121).
Theorem 3.1 : Suppose that 0 < A < e~/2 and the inequality (3.3) is satisfied. Then

c(p)A(log(1/A)P2 + X,

Flx)—® < 4
|F(z) — ®(x)| < Tt [a]p : (3.4)

for all x, where ¢(p) is a positive constant depending only on p, and
A= [ lalPdF@) - [ laPdo)) (35)

Let F,,(z) and F;(z) be the distribution functions of SZ and respectlvely, where S, =
S X; and S5 = Y7, Z; are as defined in Section 2. Then Var2 SZ =1 and Varg < 1 by the

associative property of the random variables X1i,..., X, . Hence
2A10 119
F Er / 3.6
(@) = Fo(@)l < {27 (3.6)

from (3.1) by choosing p = 2,7 =1 and s = 1 where

) d,Y/3m, 2/3
Ay = Slip [Fu(x) — Fp(z)] < CW’



from (2.6). Further there exists an absolute constant ¢(2) > 0 such that

( )Ainog(l/AQn) + )\Qn

Fi(a) - 0(a) < et (35
where
Agy = sup|F;(z) — @(z)],
xr
Now = y/ S2dF (z) — 1|
= |[Var(S,/sn) — 1|
= |no’2/s721 —1]. (3.9)

Note that Agy, is the Berry-Esseen bound obtained from (2.7) and (2.8).

Hence we have the following Theorem.

Theorem 3.2 : Let {X,,n > 1} be a sequence of stationary associated random variables
satisfying the conditions of Theorem 2.1. Suppose that 0 < Ag, < e /2. Then there exist

absolute positive constants ¢ and ¢(2) such that

2A1n }1/2 ( )A2nlog(1/A2n) + )\Zn
1+ 22

(3.10)

for all z.

3.2 Hall’s Approach (General Case)

Following Hall (1982, pp 33), we now obtain another non-uniform bound between the distri-
bution function of > %' ; X; for a random vector (Xi,...,X,) and the distribution function
of > Z;, where Z;, 1 < i < n are independent random variables and Z; has the same
distribution as X;, 1 <7 < n.

Theorem 3.3: Let F(z) be a non-decreasing function and G(z) be a function of bounded
variation on R and suppose that F(—oo0) = G(—o0) and F(o0) = G(00). Assume that

/_o:o 2|d{F(z) — G(x)}] < oo (3.11)
and -
(6 = /_  eap(ita)da*{F(x) - G2}, (3.12)
Further suppose that
_Sup, (1+23)|G (z)] < k < oo, (3.13)

where G'(x) is the derivative of G(z). Let f(t) and g(t) denote the Fourier -Stieltjes transforms
of F' and G, respectively. Then

sgp(l + 2°)|F(x) — G(z)| < C’{/OT Mdt + /OT |Xi )‘dt + = } (3.14)

5



for all T'> 1 where C is a universal positive constant (cf. Hall (1982)).

Let H(x) = F(x) — G(x). Then

x(t) = /O:O exp(itz)d(z*H(z))
= /oo exp(itz){2’dH (z) + 2z H (z)dx)}
= /oo exp(itz)z*dH (x +2/ exp(itx)xH (x)dzx. (3.15)
Let
() = f(t)—g(t)
_ [ _eap(ite)d(F(z) - G(x))
= /_o:o exp(itz)dH (z), (3.16)
Then 00
7 (t) = Lm izexp(itr)dH (x), (3.17)
and .
V() = 2 /_ aPeap(ita)dH (@) (3.18)
Hence
x(t) = — — 22—{/ exp(itz)H (x)dx}
— 0+ 25{¥}
S {OR R IEAC ) (3.19)

Bivariate Case

Let (X,Y) be a bivariate random vector and let F(z) = P(X +Y < z). Let (X,Y) be
another random vector with distribution of X and Y same as that of X and Y, but X and
Y are independent. Let G(z) = P(X +Y < ). Note that F is nondecreasing and G is
nondecreasing and hence a function of bounded variation. Furthermore F(—oc) = G(—o0) =0
and F(co) = G(o0) = 1. Assume that the condition (3.13) holds for the function G(.). Then

W) = [ eoplita)d(Fla) - G)
= FElexp(it(X +Y))] — Elexp(itX)|E[exp(itY)]
= Cov(exp(itX),exp(itY))
// (i*tH)exp(it(x + y)) H (2, y)dzdy (3.20)



where
Hxy(z,y) = H(z,y) = P[X <z,Y <y] - P[X <z]P[Y <y].

Then

Y(#t) = Cov(iXexp(itX),exp(itY)) + Cov(exp(itX),iY exp(itY))
= / / t(2 + xit + yit)exp(it(x + y) ) H (z, y)dzdy

and

7'(t) = —Cov(X2exp(itX),exp(itY)) — Cov(exp(itX),Y?exp(itY))
—2Cov(Xexp(itX),Yexp(itY))
= // (2 + 4it(z + y) — (x + y)*t2)exp(it(z + y))H(x, y)dzdy

Hence, after simplification,

t) = //exp(it(m +y)[2it(z +y) — (z + y)*t* ] H (z,y)dzdy.

Therefore
IX(t)] < [t|Ar + [t]*As,

And from (3.20), we get that
[y (1)] < ¢2 Ao.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Hence, by using (3.24) and (3.25) in ( 3.14), it follows that there exists an absolute constant

C > 0 such that
sup(1 + 2?)|PIX +Y < 2] - P[X +Y < z]| < O[(Ag + 241 + A2)T? + K/T),
where
Ay = / / H(z,y)|dzdy,
A = [ eyl () ldady,
A = [ [ @ y)ldedy.
Choosing T' = (Ag + 241 + A3) "3, we get

sup(1+22)|P[X +Y < a] — P[X +Y < ]| < CK3(Ag + 24, + Ag)3.

Trivariate Case

(3.27)

(3.28)

(3.29)

Let X,Y,Z be random variables and suppose F'(x) and G(x) are defined as earlier for the

trivariate case. Suppose the condition (3.13) holds for the function G(z).



For more than two variables, the function ~(¢) is expressed in terms of the cumulants which

are defined as below.

Definition : (Block and Fang (1988)) The rth-order joint cumulant of (X1,..., X, ), denoted
by cum(X1, ..., X,), is defined by

cum(Xy,..., X)) =Y (1) ' p-DUE ] X;) ... (E I X)) (3.30)
VSO JEUp
where summation extends over all partitions (vi,...,vp), p=1,2...,r, of (1,...,r).
For real valued functions f;,i = 1,...,r, assume that E|f;(X;)|” < oo. Then Dewan and

Prakasa Rao (2000) proved the following result.

Lemma 3.4: If F|f;(X;)|™ < oo, then

m

E[fi(X1) ... fm( X)) = [] ELf:(X3)]
i=1
= Zcum(fk(Xk),k: €vy)...cum(fr(Xk), k € vp), (3.31)
where }_ extends over all partitions (vi,...,vp),p=1,...,m —1, of {1,...,m}.
In particular, for m = 3, we have
3
E[f1(X1) fa(X2) f3(X3)] — [ [ ELfi(X0)]
i=1

= cum(f1(X1), f2(X2), f3(X3)) + E[f1(X1)]eum(f3(X3), f2(X2))
+E[fo(X2)eum(f1(X1), f3(X3)) + E[f3(X3)]cum(f1(X1), f2(X2)).
(3.32)

Cumulants of functions can be expressed as follows. For details see Dewan and Prakasa
Rao (2000).

Theorem 3.5 : If E|f;(X;)|" < oo and f; is differentiable for i =1,...,r, then

cum(f1(X1),..., fr(X}))

= [ [T e (@), xx, ()dan . day (3.33)
—00 —00 ;4
where
( ) 1 1fXZZa:Z
A\T; =
XX 0 otherwise.



Observe that

v(t) = E(exp(it(X +Y 4+ Z))) — E(exp(itX))E(exp(itY))E(exp(itZ))

_ Cum(eitX’ ez‘tY’ eitZ) + E(eitX)COV(eitY, eitZ)

+ E(eity)COV(eitX,eitZ> —I—E(eitZ)COV(eitX,eitY).

Therefore, by Theorem 3.4,

@) <
+
+
Furthermore
'(t)

Similarly, we have

—"(t)

+ 4+ + + + + + o+ o+

+ o+ 4+ + o+

/, [ [ |Cum(xx (), xv (), xz(2))|drdydz
t2/ / |HXY($7y)|da:dy+t2/ / |Hy 7 (y, 2)|dydz

tQ/ / |Hzx (2, x)|dxdz.

Cum(iXe™X, @Y 7y 4 B(iX ) Cov(e?  it7)
E(@)Cov(iXe™X | et7) 4 B(e?)Cov(iX X | eitY)
Cum(e™™ Y™ eZ) 4+ B(eX)Cov(iY ey e'?)
E(iY ™) Cov(eX, e?) 4 E(e?)Cov(e™ iy etY)
Cum(eX, eitY i Z"2) 4 E(e™)Cov(e™Y | iZe?)

E(e™)Cov(e™X iZe"?) 4+ E(iZe?)Cov(e™X, V).

Cum(X2etX | | ¢it2) 4 B(X24X)Cov (e, it?)
E(é™)Cov(X2etX ¢itZ) 1 B(7)Cov(X 26X, ™)
Cum (e, Y2t | 2 4 B(eY)Cov(Y2eitY | it?)
E(Y2™Y)Cov (X ¢t7) 1 B(e*Z)Cov(et, Y 2eitY)
Cum(eX, ¢ | 72617) 4 B(tX)Cov(eltY | Z26M2)
E(é™)Cov(eX, 22612 4 E(Z2"2)Cov (X, itY)

2 Cum(X e Vel e2) 1 2 B(Xe™™ ) Cov(YelY, eit?)
2 E(Y ™) Cov(XeX, e?) + 2 E(e?)Cov(X ™, YeltY)
2 Cum(eX, Ve | Ze?) 1+ 2 E(eX)Cov(Y e, Zeit?)
2 E(Y e )Cov(e™X, Ze'?) + 2 E(Ze)Cov(e™X, YeltY)
2 Cum(X e Y| Ze7) 1 2 B(X e X)Cov(e™, Ze?)

2 E(e™)Cov(Xe™X, Ze2) 1+ 2 B(Ze"?)Cov(X ™, ).

Then, it is easy to see that

ol < 2t [ [ [ jcun(uce) o (9). xa(e)ldedydz

9

(3.34)

(3.35)

(3.36)

(3.37)



* 4t2/ / / ’w+y+zHCllm(XX(x)?XY(y)>XZ(Z))|dxdde
+ t3/ / / (z +y+ 2)?|Cum(xx (2), xy (y), x2(2))|dzdyd=z
+ (2t + tz)[/ / |Hxy (z,y)|dzdy
—00 J—00
+ / / |HYZ(y,Z)|dydz+/ / |Hx z(z, 2)|dzdz]
+ 2(t+t2)[/ / |z + y||Hxy (2, y)|dzdy
t [Ty syoldydz+ [T [ ot 2llHxs () dods)
+ tQ[/ / (z +9)* | Hxy (2, y)|dxdy

+ /O:O /o:o(y+ 2)%|Hy z(y, 2)|dydz + /O:O /O:O(x+ 2| Hx (. 2)|dad?]
(3.38)

where Hy 7z and Hxy are defined analogous to (3.21). Let

v = [ [ la+ ulrCum(x (@), xy () dady, (3:39)

and o e e
Mz = [ [ [ le ey el Cumto @), x (), x2(2) ldodydz - (3.40)

—00 J =00 J —00

forr =0,1,2. Ay, and A% , are defined analogous to (3.39). Then , from (3.14), (3.34) ,(3.39)
and (3.40) , we get that there exists an absolute constant C' > 0 such that

sup, (14 2?)|P[X +Y + Z < z] — G(z)|
K
< C{[max—o12(Axy 7z, Axy, Ay 2, )T + T} (3.41)
for all T' > 0 so that

sup, (1 +2?)|P[X +Y + Z < 2] — G(=)|
< CKi{max,—o12(A%y 7, Ay, Ay 7, A% ) }5. (3.42)

n-variate case

For the general case we have the following result. We omit the proof.

Theorem 3.6 : Let (Xi,...,X,) be a random vector with Fy,(z) =
P(X; 4+ ...+ X, < x). Let Z; have the same distribution as X;,1 < i < n and sup-
pose that Z;;1 < i < n are independent . Suppose G, (x),gn(z) are respectively, the
distribution function and the density function of > i ; Z;. Further suppose that

sup (1 +22)gn(z) < ky < 0. (3.43)

—oo<r<o0

10



Then there exists an absolute constant C' > 0 such that
sup(1 4 z3)|P[X1 + ...+ X,, < z] — Gn(2)| < Ckyy o {max,—o124%, x,.. xn}"“ (3.44)
X
where

r
X1X2..Xn

/ / |z1 + ...+ 2| |[Cum(x x, (1), - - -, XX, () |dxy . . . day,
(3.45)

forr=20,1,2.

4 Uniform and non-uniform bounds for functions of associated

random variables

Next we extend the results in Sections 2 and 3 to functions of associated random variables.

Let g be a continuous function from R™ — R such that for any z € R" andany k =1,...,n
there exist finite dervatives d;g E:E) and d_g (x) . Further suppose that for each k = 1,...,n there

are atmost finite number of points x at Wthh dr o (x) # 4 3 (x) . Let

Tg(x —g(x
Taty) = max{l| 2D, | L2

[loo}- (4.1)

Lemma 4.1: Let {X,,,n > 1} be a sequence of associated random variables. Let g;, j =

1,...,n be functions defined as above. Then
n
Elexp thg] H [exp(itg; (X;))]]
< Z L;(97) Li(98) Cov (X, Xp). (4.2)
1<j<k<n

Proof : We prove the result by induction. For n = 2 using Newman’s inequality

2
|Elexp it(g1(X1) + g2(X2))] — [[ Elexp itg;(X;)]|
7j=1

= |Cov(exp itgi(X1), expitga(X2))|
S tle(gl)LQ(QQ)COV(Xl,X2>. (43)

Suppose that the result is true for n = M. Then for n = M + 1 , using Bulinski’s inequality
(1996) and the induction hypothesis we get

M-+1 M-+1
Elexpit Y g;(X;)] — ] Elexp itg;(X;)]|
: =

11



M
= |Cov(exp it ) g;(X;), exp itg(Xnr41)|

j=1
M M
+  |Elexp itg(Xar)]||Blexp it Yy g;(X;)] — [ Elexp itg;(X;)]]
j=1 j=1
M
< ) Li(g5) Lms(gm+1)Cov(Xy, Xara) +¢° > Lj(g) Li(gr) Cov(Xj, Xi)
= 1<j<k<M
= > Lij(g;)Li(gr)Cov(X;, X) (4.4)
1<j<k<M+1

which proves the result.

We use this lemma to prove uniform Berry-Esseen bounds for functions of associated random
variables.
Theorem 4.2 : Let {X,,,n > 1} be a sequence of stationary associated random variables.

Let g be a differentiable function with
sup |¢'(z)] < C.
xX

Further suppose that E[g(X1)] = 0, Var[g(X1)] = o} > 0, E[|g(X1)|*] < oo and g(X}) has an
absolutely continuous distribution. Let V;, = > ; g(X;) and v2 = VarV},. Suppose % — 0% as

n — oo. Let H,(x) be the distribution function of L/—Z and H;(.) be the distribution function

.z . - . TR .
of @, where Z,1 < i < n are i.i.d with distribution function same as that of g(X;). Let

Un

m; be a bound on the density of H}. Then there exist absolute constants C; > 0,1 < i < 3,
such that

dn1/3m*2/3
sup |[Hy(z) — ®(z)] < Cisup(¢(z))” 273
x x Un
Elg(X1)P n
b B ooy (4.5)

Vn o} o1 v/n
The proof follows on the same lines as Theorem 2.1 by using Lemma 4.1.

The following theorem gives the non-uniform bounds for functions of associated random
variables. Note that Bi, = [*_ 2?dH,(z) = 1 and (2, = [°° 2?dH}(z) is bounded by the
condition % — 02 as n — oo.

Theorem 4.3 : Let {X,,,n > 1} be a sequence of stationary associated random variables.

Let g be a differentiable function with
sup |g/(2)] < oo.
x

Suppose the conditions of Theorem 4.2 hold. Then there exist absolute positive constants C
and ¢(2) such that

|Hp(z) — @(x)] < C{%}l/z n

c(2)A5,l09(1/A5,) + A3,
— 1 + 1‘2 b

1+ 22

(4.6)

12



for all x where

Tn = sup]Hn(a:)—H*(:c)L
x

5, = sup|Hp(z) — ®(z)], and
x

= | atdm@) -]
= |no? /v —1|. (4.7)

5 Applications

We consider an application of the above result to kernel type density estimation. We obtain a
bound on the expected value of the integrated mean deviation of a kernel-type density estimator
fn for the true density function f.

Let us first assume that X1,...,X,, be ii.d. random variables with the probability density
function f . Let f,(x) be a kernel-type density estimator where f,,(x) is given by

1 nK.’L'—Xi

n n

(5.1)

where K is a symmetric bounded differentiable density function with compact support. Further

suppose that

T WK = 0 (52)
/jo w K (u)du < oo, (5.3)
sup |K'(x) < C, (5.4)

where h,, is a sequence of positive numbers satisfying

lim h, =0 lim nh, = cc. (5.5)

n—oo n—~oo

Let F be the class of densities f satisfying
(i) f is absolutely continuous with a.e. dervative f’;
(ii) f’ is absolutely continuous with a.e. dervative f” and
(iii) f” is continuous and bounded.
Then Devroye and Gyorfi (1985) proved the following result
Theorem 5.1 : For all f in F having compact support, the kernel estimate defined above

satisfies

E/ () — f(@)|dz = J(n, hy) + o(R2 + (nhy)~2), (5.6)

where

T(n, hn) = Ooa\/_vnh W(y/nh Qf;_ (5.7)

13



where
2 _a?
w(lal) = alPN] < Ja)) +/ 2e . 55)
and

a= /_O:o K?(z)dx, (= /_O:O 22K (x)dz. (5.9)

Here N is a standard normal random variable.
We will extend the above result to a sequence of stationary associated random variables
{Xy,n > 1} using the non-uniform bound (3.10) .

Lemma 5.2: Let {X,,n > 1} be a sequence of stationary associated random variables with
common distribution function F for X;. Let the conditions of Theorem 2.1 hold. Then

Sh
sup |[E(|— —al) — E(|N — al)|
a€ER §

n

< C(\/ A1, + Agnlog(l/Agn) + )\2n) (5.10)

where C is a universal positive constant and Aq,, Ag, and Ao, are as defined in Section 3.
Proof : Let F,, be the distribution function of f—: Let @ be the distribution function of a

standard normal random variable.

Then
E(|f—: —a) = /Ooo P(]f—: _q > bydt
— /000(1 ~ Fu(at ) + Fula—t))dt. (5.11)
Similarly .
E(N —al) :/0 (1— ®(att)+(a—t))dt. (5.12)
Therefore g o
\E(|S—: —al) = E(|N —a|)[} < /_OO |®(t) — Fy(t)]dt. (5.13)

The result now follows from integrating the inequality in (3.10) and using the facts
1+a22 < (1+2?)

and
vt
—dz < c.
—00 1+ $2
On similar lines, we can prove the following Lemma.

Lemma 5.3 : Let {X,,,n > 1} be a sequence of stationary associated random variables with
distribution function F for X;. Let g be a differentiable function with sup, |¢'(z)| < C. Let
E(g(X1)) = 0, Var(g(X1)) = 02 > 0, and E[|g(X1)|?] < oo and suppose that g(X;) has an

14



absolutely continuous distribution function. Let V;,, = > g(X;) and v2 = VarV,,. Suppose

2
n. 1 asn — oo. Then
nal

Va
sup |[E(|— —a|) — E(IN —a)|
a€R Un

< C(/A7, + Aglog(1/A%,) + A3,) (5.14)

where C' is a positive constant and A}, A3 and A3, are as defined in (4.7).

Let T be an arbitrary bounded interval. Let K be a symmetric bounded differentiable
density function with compact support. Suppose [—r, 7] is the support of the kernel K and
let K* be an upper bound for K. Suppose {X,,n > 1} is a stationary associated sequence
of random variables with density function f for X;. Let f,(z), as given by (5.1) be a kernel

estimator of f(x).

Lemma 5.4 : Under the conditions stated above, for any =z,

n B, (z)n K*? B2,
Proof : Let ) X ) X
T — Ay Xr — Ay
Y =g(X;) = h_nK( I )_EEK( I )
where g(.) satisfies the conditions in Lemma 5.3. Then
1 & Sn
fn(x) = EZ:ZIY; = ;7
and )
ES, =0, s2(z) = Var(S,), o2(z) = Varfy(z) = 5’;1(?
Note that
Then , choosing a = —iz((z))” , in Lemma 5.3 we get
LY
| \m) —al —(|al)]
o fn(x)_Efn(x) o _
= BRI o) w(al)
fn(x) — f(2) By (z)
e s o BA e e B
B 1 B _n B, (x)n
- e B — 1) - P
< C( /A, + Ablog(1/A3,) + As,). (5.16)
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Hence

B,
Blfale) = )] = 5 DI
< o Varfu(@)(y/A1, + A3, log(1/A3,) + As,). (5.17)
Since :—55 — 1, we get
1 A5, — 0 as n — oo. (5.18)

From the Newman’s inequality we get that

T — Xi xTr — Xj 32
(CovtB ("3 =), K2 < (5.19)
Further note that
1 xr — X1 1 xr — Xz xTr — Xj
Varf,(z) = WVMK( I )+ 202 1<Z Cov (K ( I ),K(Tnﬂ
<i#j<n
K**  B%d,
< (5.20)

2 2p4
nhZ ~ n?h;

Since A}, A3, and A5, — 0 as n — oo, the result follows from (5.16) and (5.22)

Remark : The condition 7‘%212 — 1 holds under the condition (A1) (iv) discussed by Roussas
1
(2000).

Lemma 5.5 : Let T be a bounded interval . Suppose that

1 n
WXECOV(Xl,Xj) — 0asn — oo.. (5.21)
n j=
Then, as h,, — 0,
on(x)v/nhy B
J 17 [ @)de = of1) (5.22)

where « is as defined in (5.9).
Proof: For all bounded sets T" we have [,+\/f(z)dr < oo. Let A(.) denote the Lebesgue

measure. Let

T ~ 2 x
Ko(o) = K(5), Ry = 0
frR@ = [ foEE-yay= [ K@) -y
Now
02(x) = an(x) + by(x) + cn(x) (5.23)
where
042 x
an(z) = n];(n ) (5.24)
i U f%h%)h; e (f ity 5.5
) = g 3 Cov(k(T ) K(ET) (5.26)
n1<iZj<n n n
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Note that a,(z) > 0. Let b, (z) and ¢} (z) denote the positive parts of b, (z) and ¢, (z) . Note

that
V(@) + ba(@) + ala) < \Janle) +1/bh (@) + e (2)

Integrating over T" and applying the Cauchy-Schwarz inequality gives

/Tan(m)dx wj‘Tn(/T mdm—i—/T\/\f*f(h(x)—f(x)\dx)—i—/T\/%dx

< WTU*&@) F(@)ldz A(T \// len(@)lde A(T)
(5.27)
Further,
Van(@) + (@) + ea(z) > \Jan(@) = /lba(@)] — /lea(@)]- (5.28)
Therefore,

@ = L[ deﬁ J 11+ Bat@) = f(a)lda XT)

r/f « K (z)da) \// len ()] dz A(T). (5.29)

Using the stationarity of the sequence {X,,} and Bulinski’s inequality, it is easy to see that

len(z)] < vy ZCOV X1, Xj). (5.30)
nJ 1
Furthermore A\(T) < oo and
hm \f x Kp(x) — f(x)|dz = 0. (5.31)

hn—

The result now follows by combining (5.27), (5.29) to (5.31).
Remark 5.6 : Condition (5.21) will hold if Cov(X1, X;) = j~",4/5 <r < 1 and hy, = n"5.
For proof of the following two Lemmas, see Devroye and Gyorfi (1985).

Lemma 5.7 : For all f € F and for all symmetric bounded density functions K with compact

support and all bounded intervals T,
/ |Bn(z) — ghi\f"(w)l\dx = o(hy) as hy, — 0. (5.32)
T

The same remains true if the set T' is replaced by R whenever f has compact support f € F,

and K is a bounded symmetric density function with compact support.

Lemma 5.8 : For nonnegative numbers u, v, w, z, we have

() — w2 < o = ol (5.39
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where 9 is as defined in (5.8).

Theorem 5.9 : Let {X,,} be a sequence of stationary associated random variables with f as
the density function of X; . Let f € F have compact support. Let f,(x) be the kernel type
density estimator given by (5.1). Let the conditions (5.2), (5.5) and (5.21) hold. Then

Vdn,
nh?

n

E/ (@) — F(@)|dz = J(n, hn) + o(h2 + (nhy)~12) + o( Y22, (5.34)

where

T(n, ) = Ooa\/_Vnh \/75“0" (5.35)

where ¢(|al|),« and (3 are as defined in (5.8) and (5.9).

Proof : First suppose that f € F and f has compact support in a bounded interval T'. Take
T so large that for every x in the support of f , the interval [x — a,z + a] is contained in T,
where a is a number sufficiently large so that K}, (u) = 0 for all n and all |u| > a.

Take ()
Sn(z
u=200 0 = By (@)
_ @ f (x) _ /8 2| el
w=— ;2= Shal ()]
vnhy, 2

in Lemma 5.8.

From Lemmas 5.5 and 5.7, we get that
/ |v — z|dz = o(h2) (5.36)
T

and

=

/T lu — w]dz = o(nhy)"3). (5.37)

Combining it with Lemma 5.3, we get
| B(Ufaa) = F@) D = T (0, )
< | [ Blfale) - s@de — [ 20y,

n Sp(x)
+ \/ 5nl®) BN g, )

sn ()
K**  B2d, ) ,
< i + 2t + o(hZ) + o((nhy)

=

) (5.38)

where J(n, hy) = [pwip(z/w)dx

This proves the result.
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