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Abstract

Existence and uniqueness of solutions of martingale problems, not only in the class of r.c.l.l. or

continuous process, but also in the class of progressively measurable processes has become important.

In this article we give several examples which show that existence or uniqueness in any one class need

not imply the same in another class. We also give an example of a well-posed martingale problem where

the operator is not a core for the generator of the corresponding Markov process.
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1 Introduction

Beginning with the seminal work of Stroock and Varadhan on multidimensional diffusions, mar-
tingale problems have proved to be an important tool in the construction and analysis of Markov
processes complementing the theory of semi-groups and their generators. Martingale problems
were used to construct and study properties of multidimensional diffusions (Stroock and Varad-
han (1979)), Infinite particle systems and Icing models (Holley and Stroock (1976)), processes
associated with Boltzman equation (Tanaka (1978), Horowitz and Karandikar (1990)). In each
of these cases, the processes were constructed directly on an appropriate path space, either
the space of continuous functions or the space of r.c.l.l. (right continuous with left limits)
functions. Thus the martingale problem was posed on a suitable path space and its existence
and uniqueness was studied.

Martingale problems for general operators were considered in Ethier and Kurtz (1986).
They considered solutions to the martingale problem for an abstract operator A requring only
that the paths are measurable. They showed (Theorem IV.3.6) that if the state space is compact
then under some fairly general conditions (or complete and separable with further conditions
on A) every measurable solution has an r.c.l.l. modification. They used this result repeatedly
to construct r.c.l.l. solutions in specific cases.

In Bhatt and Karandikar (1993a) it was pointed out that when a martingale problem is
well posed in the class of r.c.l.l. processes and, in addition, when uniqueness also holds in the
class of progressively measurable solutions, then there are interesting implications. In particular
the following result is true: Echeverria (1982) proved a criterion for a probability measure to
be invariant for the Markov process arising as a unique solution to a well posed martingale
problem when the state space is a compact (or a locally compact separable) metric space. In
Bhatt and Karandikar (1993a) it was shown that one can do away with the assumption of
compactness (or local compactness) in Echeverria’s result if one assumes that the martingale
problem has a unique solution in the class of all progressivley measureable solutions. Thus it
appears that the role of compactness in Echeverria’s result was to ensure that every solution
has a r.c.l.l. modification in which case well posedness in the class of r.c.l.l. solutions also
implies well-posedness in the class of measurable solutions.

Thus it is important to study measurable solutions of martingale problems. As remarked
in Bhatt and Karandikar (1993a, 1993b), in most cases of interest, where one has well posed-
ness in r.c.l.l. solutions, one can easily prove that indeed uniqueness holds in the class of all
mesurable solutions. This leads us to the following question. Does well-posedness of a mar-
tingale problem in the class of r.c.l.l. solutions imply well-posedness in the class of measurable
solutions? There are related questions such as - Can it happen that well-posedness holds in the
class of mesurable solutions but there does not exist any r.c.l.l. solution?

The interplay of path properties and martingale problems can be seen by the following
simple and well known example: Let A be an operator on C2(IR) with domain consisting of
just two functions f(x) = x and g(x) = x2. Let Af = 0 and Ag = 1. Then the martingale
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problem for A is well posed in the class of processes with continuous paths - Brownian motion
is the only solution by the Levy’s theorem, while there are several solutions if one allows r.c.l.l.
paths - compenseted Poission process with unit intensity is one such process while difference
of two independent Poisson processes with intensity 1

2 is another. The next section has several
examples which throw light on this interplay and which also answer questions raised in the
previous paragraph.

When the martigale problem for an operator A is well posed, then under some general
assumptions, it gives rise to a Markov process whose generator L is an extention of the operator
A. This Markov process is uniquely determined by A and thus A contains all the information
about the process. One may expect that A is in this case a core for L. The example in section
3 shows that this is not true.

2 Examples

To begin with we introduce some terminology to differentiate between the path properties of
the solutions of martingale problems. Let A be an operator on Cb(E) with domain D(A).
Here E denotes the state space and will be assumed to be a complete and separable metric
space. Cb(E) denotes the space of all bounded continuous real valued functions on E. Let
µ ∈ P(E) where P(E) denotes the space of probability measures on E. As usual, δx denotes
the probability measure given by δx(F ) = 1F (x) for any Borel subset of E.

Definition 2.1. An E valued process (Xt)t∈[0,T ] defined on some probability space (Ω,F , P )
is said to be a solution to the G- martingale problem for (A,µ) with respect to a filtration
{Ft : t ∈ [0, T ]} if

(i) X is {Ft} - progressively measurable,
(ii) L(X0) = µ

(iii) E
T∫
0

|Af(Xs)|ds <∞ ∀f ∈ D(A), t ∈ [0, T ]

and
(iv) for every f ∈ D(A)

f(Xt)−
t∫

0

Af(Xs)ds, t ∈ [0, T ]

is a {Ft} - martingale.

Definition 2.2. An E valued process (Xt)t∈[0,T ] defined on some probability space (Ω,F , P )
is said to be a solution to the D - martingale problem for (A,µ) with respect to a filtration
{Ft : t ∈ [0, T ]} if X is a solution to the G - martingale problem for (A,µ) (as in Definition
2.1) and X has r.c.l.l. paths.

Definition 2.3. An E valued process (Xt)t∈[0,T ] defined on some probability space (Ω,F , P )
is said to be a solution to the C - martingale problem for (A,µ) with respect to a filtration
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{Ft : t ∈ [0, T ]} if X is a solution to the G - martingale problem for (A,µ) (as in Definition
2.1) and X has continuous paths.

Definition 2.4. The G martingale problem is said to be well-posed if for all x ∈ E, there exists
a solution to the G martingale problem for (A, δx) and any two solutions have the same finite
dimensional distributions. The well-posedness of the D and C martingale problems is defined
similarly.

In the following examples, E is going to be either (0, 1] or [0, 1) with the topology inherited
from IR. In either case, E becomes a complete separable metric space (for a suitable metric).
Let C1

b (E) denote the class of bounded continuously differentiable functions on E. We will use
the following lemma in the examples below.

Lemma 2.1. Let X be a solution of the martingale problem for A. Suppose that f , f2 belong
to D(A) and that

Af2 − 2f Af = 0. (2.1)

Then

f(X(t)) = f(X(0)) +
∫ t

0
Af(X(s))ds a.s. ∀t (2.2)

Proof. : Let Ũt = f(Xt) and Vt =
∫ t

0 Af(Xs)ds. Then M̃t = Ũt − Vt is a martingale and
in view of (2.1), Ñt = Ũ2

t −
∫ t

0 2ŨsdVs is also a martingale. The martingale M̃ has a r.c.l.l.
modification, which we denote by M . Then Ut = Mt + Vt is a r.c.l.l. modicfication of Ũ and
Nt = U2

t −
∫ t

0 2UsdVs is a martingale (r.c.l.l. modification of Ñ). Using Ito’s formula, one has

M2
t = U2

t + V 2
t − 2UtVt

=
(
Nt + 2

∫ t

0
UsdVs

)
+ V 2

t −
(

2
∫ t

0
UsdVs + 2

∫ t

0
VsdUs

)
= Nt + V 2

t − 2
∫ t

0
VsdUs

= Nt + V 2
t − 2

∫ t

0
VsdVs + 2

∫ t

0
VsdMs

= Nt + 2
∫ t

0
VsdMs + (V 2

t − 2
∫ t

0
VsdVs)

Now Nt and 2
∫ t

0 VsdMs are local martingales. Further, V 2
t − 2

∫ t
0 VsdVs = 0 since V is a

process with absolutely continuous paths. Hence M2
t is a local martinagle. Since f and hence

M is bounded, it follows that M2
t is a martingale. This also implies that Mt − f(X0) and

(Mt − f(X0))2 are martingales with M0 − f(X0) = 0. Hence we get Mt = f(X0) a.s. for all t.
which is same as M̃t = f(X0) a.s. This completes the proof.

It can be easily checked in all the examples given below that D(A) ⊂ Cb(E) is an algebra
that separates points on E. i.e. given two distinct points x, y ∈ E, there exists f ∈ D(A) such
that f(x) 6= f(y). It also does not vanish on E. i.e. Given x ∈ E, there exists f ∈ D(A) such
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that f(x) 6= 0. Further, in all the examples the operator A is the restriction of the derivative
operator to a suitable domain. Using the fact that

(f2)′ = 2f(f ′) for all differentiable functions f,

it follows that Af2 = 2fAf holds for all f ∈ D(A) and hence that (2.2) holds.

Example 2.1. Let E = (0, 1], D(A1) = {f : f ∈ C1
b (E)}. Let A1 be defined on D(A1) by

Af = f ′. Let x ∈ E and let X be a solution to the martingale problem for (A1, δx). Note that
the function f(y) = y belongs to D(A1). Hence using (2.2) for this f we get

Xt = x+ t a.s. ∀t. (2.3)

Since E = (0, 1], it is clear that (2.3) is impossible. Hence, none of the G,D and C martingale
problems for A1 admit any solution.

Example 2.2. Let E = (0, 1], D(A2) = {f : f ∈ C1
b (E), f ′(1) = 0}. Let A2 be defined on

D(A2) by A2f = f ′.
The function f(y) = y is not in D(A2) however, for x ∈ (0, 1) and 0 < ε < 1− x, we can

get a f ∈ D(A2) such that f(y) = y for y ∈ [x, 1− ε] and hence using (2.2) for this f we get

Xt = x+ t a.s. ∀t with 0 < x+ t < 1− ε.

Thus the solution moves to the right with uniform velocity till it reaches 1 and unlike in
example 2.1 it is allowed to stay there since f ′(1) = 0 for all f ∈ D(A2).

Thus X2(t) = [(x + t) ∧ 1] is the only solution of the martingale problem for (A2, δx).
The solution is continuous. Thus the G-martinagle problem, D-martingale problem as well as
C-martinagle problem are all well posed (and any solution is continuous).

Example 2.3. Let E = (0, 1], D(A3) = {f : f ∈ C1
b (E), f ′(1) = 0, and limx→0 f(x) = f(1)}.

Let A3 be defined on D(A3) by A3f = f ′.
Since A3 is a restriction of A2, X2 defined in Example 2.2 above continues to be a solution

of the martingale problem for (A3, δx). In fact it is the only solution with r.c.l.l. paths. The
additional boundary condition on the domain namely limx→0 f(x) = f(1) allows a possible
solution to “jump” once it reaches 1 and move as if it is starting from 0. However, since 0 is
not in E, such a solution cannot be r.c.l.l.

For example, X3 defined by

X3(t) =

(x+ t) (mod 1) if (x+ t) (mod 1) 6= 0

1 if (x+ t) (mod 1) = 0

is also a solution of the martingale problem for (A3, δx). X3 is a left continuous process with
right limits and does not have a r.c.l.l. modification. This process X3 is akin to uniform motion
on a circle.
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In fact we can construct many more solutions to the martingale problem for A3. A
process which moves uniformly (with speed 1) till it reaches 1, stops for an arbitrary amount of
time there and then begins moving (uniformly) as if it is starting from 0 will also be a solution.

Thus uniqueness holds for the martingale problem in the class of r.c.l.l. (and continuous)
solutions but not in the class of all progressively solutions. i.e. The D and the C martingale
problems for A3 are well-posed but the G martingale problem for A3 is not.

Example 2.4. Let E = (0, 1], D(A4) = {f : f ∈ C1
b (E), limx→0 f(x) = f(1)}. Let A4 be

defined on D(A4) by A4f = f ′.
The process X3, defined in Example 2.3 above, is a solution of the martingale problem

for (A4, δx). However, unlike in Example 2.3 the solution cannot stay at 1 since there exist
functions f in D(A4) such that f ′(1) is not equal to zero. Thus X3 is the only solution and
uniqueness holds in the class of all progressively measurable solutions. It is clear that there is
no r.c.l.l. solution of the martingale problem for A4. Thus the G martingale problem for A4 is
well-posed. However, the D and C martingale problems for A4 are not well posed.

Example 2.5. Let E = [0, 1), D(A5) = {f : f ∈ C1
b (E), limx→1 f(x) = f(0)}. Let A5 be

defined on D(A5) by A5f = f ′.
Let X5(t) = (x + t)(mod 1). Arguing as in Example 2.4 it can be seen that X5 is the

unique solution of the martingale problem for (A5, δx) which clearly is r.c.l.l. Thus uniqueness
holds in the class of all r.c.l.l. solutions and also in the class of progressively measurable
solutions but there is no continuous solution of the martingale problem for A5. Thus the G and
D martingale problems for A5 are well-posed but the C martingale problem for A5 is not.

Example 2.6. Let E = [0, 1), D(A6) = {f : f ∈ C1
b (E), limx→1 f(x) = f(0), f ′(0) = 0}. Let

A6 be defined on D(A6) by A6f = f ′.
Then X5 (defined above in Example 2.5) is a r.c.l.l. solution of the martingale problem

for (A6, δx). Once again as in Example 2.3 we can see that there are many other r.c.l.l. solutions
- any process which jumps to 0 as soon as it “reaches” 1, stays at 0 for an arbitrary amount of
time and then starts moving with speed 1 towards 1.

None of the G, D or C martingale problems for A6 are well-posed. The only continuous
solution of the martingale problem is the process constant at 0. No initial distribution, other
than δ0 admits a continuous solution.

The above six examples emphasize the point that the martingale problem may be well-
posed in one class and not well posed in some other class. We summarize all the examples in
Table 2.1.

In examples 2.2, 2.3 and 2.6, there was a point x such that Af(x) = 0 for all f ∈ D(A).
(x=1 for first two and x=0 in the third case). It may appear that perhaps the odd behaviour
regarding the solutions of martingale problems is due to this. However, the following simple
example tells us that that is not so.
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Example Existence Uniqueness
Number C D G C D G

2.1 × × × - - -
2.2 X X X X X X

2.3 X X X X X ×
2.4 × × X - - X

2.5 × X X - X X

2.6 × X X - × ×

Table 2.1: An overview of the examples

Example 2.7. Let E and A3 be as in Example 2.3. Let E′ be any other complete separable
metric space and let A′ be an operator on Cb(E′) such that D(A′) is an algebra which separates
points on E′. Assume that the martingale problem for A′ is well posed in the class of all
progressively measurable processes and that the unique solution Y has continuous paths.

Let F = E × E′. Let an operator B be defined as follows. Let D(B) = the algebra
generated by {f ⊗ g : f ∈ D(A3), g ∈ D(A′}. And for f ⊗ g ∈ D(B), define

B(f ⊗ g)(x, y) = (A3f)(x)g(y) + f(x)(A′g)(y).

B is extended to the entire D(B) by linearity. Note that there is no (x, y) ∈ F such that
B(f̃)(x, y) = 0 for all f̃ ∈ D(B).

It now follows from Theorem IV.10.1 of Ethier and Kurtz (1986) that (X,Z) is a solution
of the martingale problem for B if and only if X and Z are independent, X is a solution of the
martingale problem for A3 and Z is a solution of the martingale problem for A′. In particular, it
follows that (X2, Y ) (defined, say, on the product space) is the unique solution of the martingale
problem for B with continuous paths. However, (X3, Y ) (again defined on the product space)
is also a (non r.c.l.l.) solution of the martingale problem for B. Thus the D and C martingale
problems for B are well posed but the G martingale problem is not.

Similar construction would work for examples 2.2 and 2.6 as well.

3 Well-posedness and Core

As in the previous section let E denote a complete separable metric space and let A be an
operator on Cb(E) with domain D(A). For a subset V of Cb(E), let bp-closure of V be the
smallest set containing V which is closed under bounded pointwise convergence of a sequence
of functions in V . We will denote this set by bp-closure(V ).

In this section we will assume that there exists a countable subset {fn : n ≥ 1} of D(A)
such that

{(f,Af) : f ∈ D(A)} ⊆ bp-closure{(fn, Afn) : n ≥ 1}.
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We also assume that the D martingale problem for A is well posed. We will denote the
distribution of the unique (r.c.l.l.) solution of the martingale problem for (A, δx) by Px (Px is
a probability measure on D([0, T ], E)). In this framework, it follows that

x→ Px(F ) is Borel measurable for all Borel subsets F of D([0, T ], E)).

Further, Tt defined by,

Ttf(x) =
∫
D([0,T ],E)

f(ω(t)) dPx(ω) f ∈ Cb(E)

is a semigroup and its generator L is an extension of A (i.e., domain of L denoted by D(L)
contains D(A) and for f ∈ D(A), Lf = Af). See Chapter 4 in Ethier and Kurtz (1986). See
also Horowitz and Karandikar (1990)

In Bhatt and Karandikar(1993) the following criterion for an invariant measure was
proved. This is an extention of a result due to Echeverria (1982). See also Ethier and Kurtz
(1986). Let D(A) be an algebra that separates points and the G martingale problem for A be
well-posed (in addition to D martingale problem being well-posed). Then for any probability
measure µ ∫

E
(Af)(x)dµ(x) = 0 for all f ∈ D (3.4)

implies that µ is an invariant measure for the semigroup (Tt).
If this result can be extended to signed measures, namely, that for a signed measure µ,

(3.4) implies that (the signed measure) µ is an invariant measure for the semigroup (Tt), then
it would imply that A is a core for L. Our example given below shows that this is not true.

Recall that a restriction B of L to D(B) is said to be a core if

{(f, Lf) : f ∈ D(L)} ⊆ bp-closure{(f,Bf) : f ∈ D(B)}.

Here we would construct an example where the martingale problem is well posed and
(3.4) holds for a signed measure but it is not an invariant measure.

Example 3.1. Let E = (0, 1] × (0, 1]. Define an operator A on E as follows. Let D(A) =
linear span {f ⊗ g : f, g ∈ C1

b ((0, 1]), limx→0 f(x) = limx→0 g(x) = 0, f ′(1) = g′(1) = 0}. And
for f ⊗ g ∈ D(A), define

A(f ⊗ g)(x, y) = f ′(x)g(y) + f(x)g′(y).

Note that D(A) is an algebra that separates points in E and vanishes nowhere. Using
Example 2.2 and Theorem IV.10.1 in Ethier and Kurtz (1986), it follows that the G, D and C
martingale problems for A are well-posed. The unique continuous solution is given by

(X(t), Y (t)) = ([(x+ t) ∧ 1], [(Y (0) + t) ∧ 1]) .

Since the solution will hit (1, 1) with probability 1, and since (1, 1) is an absorbing state,
the only invariant measure for the Markov process is δ1 × δ1.
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Now let µ, ν ∈ P(E) be defined by µ = λ× δ1, ν = δ1× λ where λ denotes the Lebesgue
measure on (0, 1] and δ1 is the Dirac measure at 1. Then note that for f ⊗ g ∈ D(A),

∫
E

A(f ⊗ g)(x, y)µ(dx, dy) = g(1)

1∫
0

f ′(x)λ(dx) + g′(1)

1∫
0

f(x)λ(dx) = f(1)g(1).

Similarly
∫
E A(f ⊗ g)(x, y)ν(dx, dy) = f(1)g(1) for all f ⊗ g ∈ D(A). Recalling that D(A) is

the linear span of functions of the form f ⊗ g, we get∫
AFd(µ− ν) = 0 ∀F ∈ D(A).

However, µ− ν is clearly not an invariant measure for the process (X,Y ). This can be seen as
follows.

Let (Tt)t≥0 defined on Cb(E) be the semigroup corresponding to the Markov process
(X,Y ). Then (Tt)t≥0 is given by

TtF (x, y) = F ((x+ t) ∧ 1, (y + t) ∧ 1).

Then for any f, g ∈ C[(0, 1]],∫
E

(f ⊗ g) d(µ− ν) = [f̃(1)− f̃(0)]g(1)− f(1)[g̃(1)− g̃(0)] (3.5)

where f̃ and g̃ are antiderivatives of f and g respectively. On the other hand, for t = 1,
T1(f ⊗ g)(x, y) ≡ f(1)g(1) which in turn implies that∫

E

T1(f ⊗ g) d(µ− ν) = 0.

Clearly, we can find examples of f, g such that RHS in (3.5) is not zero. Thus µ− ν is not an
invariant measure for Tt.

Thus A is not a core for the generator of (Tt)t≥0.
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