
isid/ms/2002/29
November 20, 2002

http://www.isid.ac.in/˜ statmath/eprints

Asymptotic Properties of Sums of Upper
Records

Arup Bose

Sreela Gangopadhyay

Anish Sarkar and

Arindam Sengupta

Indian Statistical Institute, Delhi Centre

7, SJSS Marg, New Delhi–110 016, India



Asymptotic Properties of Sums of Upper Records

Arup Bose∗

Sreela Gangopadhyay†

Indian Statistical Institute, Kolkata

Anish Sarkar‡

Indian Statistical Institute, New Delhi

Arindam Sengupta§

Indian Institute of Technology, Guwahati

Abstract

Arnold [1] raised several questions for upper records, including characterizing all limit
distributions of normalised partial sums of upper records. We provide some answers in the
case when the distribution from which the samples are drawn is bounded above. When
the distribution is not bounded above, we give sufficient conditions on the distribution for
the properly normalized partial sums to converge to a standard normal distribution. We
show that our conditions are general enough so that the examples provided by Arnold are
covered by our results.

Keywords: Sums of records, infinite divisibility, asymptotic distribution.

AMS 2000 Subject Classification: 60E07, 60E10, 62E15, 62E20.

∗Theoretical Statistics and Mathematics Unit, I.S.I., 203 B.T. Road, Kolkata 700108, India

Email: abose@isical.ac.in
†Theoretical Statistics and Mathematics Unit, I.S.I., 203 B.T. Road, Kolkata 700108, India

Email: res9616@isical.ac.in
‡Theoretical Statistics and Mathematics Unit, I.S.I. (Delhi Centre), 7 S.J.S.S. Marg, New Delhi 110016, India

Email: anish@isid.ac.in
§Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India

Email: arindam@iitg.ernet.in

1



1 Introduction

The history of study of asymptotic distributions of running extrema goes back to Gnedenko.
In a similar spirit, Resnick [4] studied the asymptotics of record values and showed that three
different limit distributions of normalised upper records are possible.

Arnold [1] considered the question of weak convergence of the sequence of partial sums of
upper records. He described a few examples and raised the question of classifying all possible
limit distributions.

Suppose X0 is nonnegative and has distribution F . Suppose for any n ≥ 1 the conditional
distribution of Xn given that {Xn−1 = x} is the same as F truncated from above at x; that
is, that of X1 given that X1 ≥ x. Then this sequence is called a sequence of upper records.
Arnold [1] studied the partial sums of upper records and obtained their asymptotic distributions
for some specific cases. We aim to obtain some general results which will in particular cover
Arnold’s examples.

Let {Xn : n ≥ 0} be the upper records of i.i.d. observations from a continuous distribution
function F supported on [0,∞). Define by Tn the sum of first (n+1) records, i.e., Tn =

∑n
i=0Xi.

Arnold [1] proved that

• (Exponential records) If F (x) = 1− exp(−x),

Tn − n2/2√
n3/3

⇒ N(0, 1).

• (Gumbel records) If F (x) = 1− exp(− exp(x)),

Tn − (n+ 1) logn+ n√
2n

⇒ N(0, 1).

• If F (x) = 1− (1− x)γ , for 0 ≤ x ≤ 1,

(n+ 1)− Tn ⇒ Vγ

where Vγ =
∑∞

i=0

∏i
j=0 U

1/γ
j with Uj ’s being a sequence of i.i.d. uniform random vari-

ables.

He raised several questions in the study of partial sums of upper records; for instance of clas-
sifying all limit distributions that arise as the limits of normalised partial sums of upper records.
If X0 is bounded above and its distribution F admits a density, we can give a complete answer
to this question. More specifically, we show that all infinitely divisible distributions satisfying
certain conditions, arise as limit distributions in this case. We derive explicit expressions for
the Laplace transform of the limiting distribution and derive several distributional properties
of the limiting distribution. When X0 is not bounded above, we give sufficient conditions such
that suitably normalized partial sums converge weakly to a standard normal distribution. We
show that the examples worked out by Arnold are special cases of our results (Theorem 3).

In the next section, we deal with the case when the distribution is bounded above and
continuous, while the unbounded case is treated in the last section.

1



2 The Bounded Case

In this section we derive some asymptotic distributions associated with upper records when X0

is bounded above by a constant and its distribution admits a density.
A well established method to study record values is to reduce the analysis to the case of ex-

ponential records by means of a monotone transformation. This is particularly convenient since
the latter records have the same distributions as partial sums of i.i.d. exponential variables.

Let {Yj : j = 0, 1, . . . } be a sequence of i.i.d. exponential random variables with parameter
1. We assume that F is a continuous strictly increasing function on the set [0, sup(supp(F ))]
where sup(supp(F )) := sup{u : u ∈ supp(F )} possibly equals +∞). We define a function
gF : R+ → R+ by

gF (x) = F−1(1− exp(−x)) = F−1(G(x))

where G(x) = 1− exp(−x) is the probability distribution function of the exponential distribu-
tion with parameter 1. Since F is continuous and strictly increasing on the set [0, sup(supp(F ))],
so is F−1 on [0, 1]. Therefore, gF is a continuous strictly increasing function on R+ →
[0, sup(supp(F ))]. Further, gF (0) = 0 and gF (x) ↑ sup(supp(F )).

It was noted by Resnick [4] that the kth upper record from the distribution F can be
represented as

Xk
d= gF (

k∑
j=0

Yj).

Further, this representation holds for all joint distributions of the records, which implies that

Tn =
n∑
k=0

Xk
d=

n∑
k=0

gF (
k∑
j=0

Yj).

For the sake of simplicity, we consider distributions having support [0, 1] to start with. In
this case, we can easily show that Xn ↑ 1 as n→∞.

We define
hF (x) = 1− gF (x),

and for any x ≥ 0,

Rn(x) :=
n∑
k=0

hF (x+
k∑
j=0

Yj)

=
n∑
k=0

(1− gF (x+
k∑
j=0

Yj))

= (n+ 1)−
n∑
k=0

gF (x+
k∑
j=0

Yj).

Clearly, Rn(0) = (n + 1) −
∑n

k=0Xk = (n + 1) − Tn. Notice that x +
∑k

j=0 Yj) has the same
distribution as the kth exponential upper record given that the first exceeds x.

We show that
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Theorem 1 For all continuous distribution functions F with density f on [0, 1] such that∫ 1

0

(1− u)f(u)du
1− F (u)

<∞, (1)

we have,
(n+ 1)− Tn ⇒ VF

where VF is a non-negative random variable whose Laplace transform is given by

φF (−t) = E(exp(−tVF )) = exp
(∫ 1

0

(exp(−tu)− 1)f(1− u)du
1− F (1− u)

)
for all t > 0.

Proof : Let us define, for t > 0,

ψ
(n)
t (x) = E(exp(−tRn(x))) = E(exp(−t

n∑
k=0

hF (x+
k∑
j=0

Yj))).

Since 0 ≤ gF ≤ 1, we have 0 ≤ hF ≤ 1; hence, for every fixed x, ψ(n)
t (x) is decreasing

in n. Therefore, for each fixed x, ψt(x) := limn→∞ ψ
(n)
t (x) exists. Further, we note that

ψt(0) = φF (−t).
To prove the result, it is enough to show that ψt(0), as a function of t > 0, is the Laplace

transform of a non-negative random variable whose distribution is proper; that is, without mass
at infinity. We check that ψt(0) is completely monotone and has the limit 1 as t → 0, which
suffice (by Bondesson [2], page 8 for instance). We obtain an explicit formula for ψt(x) and
show that under the condition (1), ψt(0) indeed satisfies these two conditions.

Now, we have, by conditioning on Y0,

ψ
(n)
t (x)

=
∫ ∞

0
exp(−t hF (x+ u))E

[
exp(−t

n∑
k=1

hF (x+ u+
k∑
j=1

Yj))
]

exp(−u)du

=
∫ ∞

0
exp(−t hF (x+ u))ψ(n−1)

t (x+ u) exp(−u)du

=
1

exp(−x)

∫ ∞
x

exp(−t hF (u))ψ(n−1)
t (u) exp(−u)du. (2)

Letting n→∞ and applying DCT on the right hand side, we have,

exp(−x)ψt(x) =
∫ ∞
x

exp(−t hF (u))ψt(u) exp(−u)du. (3)

Now, we claim that ψt is the largest solution of (3) in [0, 1]. To prove this, note that if η is
any solution of (3) in [0, 1], then we have

ψ
(0)
t (x) =

1
exp(−x)

∫ ∞
x

exp(−thF (u)) exp(−u)du

≥ 1
exp(−x)

∫ ∞
x

exp(−thF (u))η(u) exp(−u)du

= η(x).
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By induction now it follows that ψ(n)
t ≥ η for every n ≥ 0. Thus, ψt ≥ η.

Now, suppose that η is any solution of (3) in [0, 1]. Clearly, the function

x→
∫ ∞
x

exp(−t hF (u))η(u) exp(−u)du

is continuous since the integrands are all bounded. Therefore, η is given by the product of
two continuous functions and hence is continuous. Further, once η is continuous, the integrand
in the integral

∫∞
x exp(−t hF (u))η(u) exp(−u)du is continuous and hence the integral, as a

function of x, is continuously differentiable. Thus, η is given by product of two continuously
differentiable functions; so it is continuously differentiable. Hence, differentiating with respect
to x and simplifying, we have

d

dx
η(x) = η(x)(1− exp(−t hF (x))). (4)

Solving this differential equation, we have,

η(x) = K exp(−
∫ ∞
x

(1− exp(−thF (x))dx)

where K is a constant. Further, it must be the case that 0 ≤ K ≤ 1, since η(x) → K

as x → ∞. Thus, all solutions of the integral equations taking values in [0, 1] are given by
K exp(−

∫∞
x (1 − exp(−thF (x))dx) where 0 ≤ K ≤ 1. Now, since ψt is the largest solution of

the integral equation, we have,

ψt(x) = exp
(
−
∫ ∞
x

(1− exp(−t hF (u)))du
)
. (5)

Putting x = 0, we have φF (−t) = exp(−
∫∞

0 (1− exp(−t hF (u)))du). Further, ψt(0) 6= 0 for
all t > 0 since the integral

∫∞
0 (1− exp(−t hF (u)))du is finite. This is because∫ ∞

0
(1− exp(−t hF (u)))du ≤ t

∫ ∞
0

hF (u)du

= t

∫ ∞
0

(1− F−1(1− exp(−u)))du

= t

∫ 1

0

1− F−1(u)
1− u

du

= t

∫ 1

0

(1− u)f(u)
1− F (u)

du

< ∞.

It is fairly straightforward to show that ψt(0) is completely monotone; that is, (−1)n dn

dtnψt(0) ≥
0. Differentiating under the sign of the integral, we have

d

dt
ψt(0) = −ψt(0)

∫ ∞
0

exp(−t hF (u))hF (u)du.

Note that this is permissible when the integral
∫∞

0 exp(−t hF (u))hF (u)du <∞. Using induc-
tion, one can easily verify that (−1)n dn

dtnψt(0) ≥ 0.
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Finally, we show that ψt(0)→ 1 as t→ 0. Clearly, as t→ 0, we have 1−exp(−t hF (u))→ 0.
For t < 1, we have 1−exp(−t hF (u)) ≤ hF (u) and by the above calculations,

∫∞
0 hF (u)du <∞.

Therefore, by DCT, we obtain ψt(0)→ 1 as t→ 0. This proves the result.

Remark Note that 0 ≤ Xn ≤ 1 for all n ≥ 0. This implies that, (n+1)−Tn =
∑n

j=0(1−Xj) is
a non-decreasing sequence. Therefore,

∑n
j=0(1−Xj) = limn→∞(n+ 1)−Tn converges but may

possibly take value +∞ with positive probability. However, under our assumption (1), since
(n+ 1)− Tn converges weakly to a proper random variable (that is, without mass at infinity),
we have

∞∑
n=0

(1−Xn) d= VF .

Further, the condition
∫ 1

0
1−F−1(u)

1−u du <∞, equivalent to (1) when the density exists, is enough
to guarantee the convergence even when the density may not exist, in which case the Laplace
transform of VF is given by

φF (−t) = exp
(
−
∫ ∞

0
(1− exp(−t hF (u)))du

)
.

Now, if the integral condition in (1) does not hold, that is,∫ 1

0

(1− u)f(u)du
1− F (u)

=∞, (6)

we show that (n+ 1)− Tn →∞ almost surely.

Lemma 1 If (6) holds,
(n+ 1)− Tn →∞ almost surely.

Proof : In view of the above remark, we need to prove that (n+ 1)− Tn ⇒∞. For that, it is
sufficient to show that the only bounded solution admitted by equation (4) is 0. Now, if η is
any solution of (4), we have

d

dx

(
η(x) exp(−

∫ x

0
(1− exp(−t hF (u)))du)

)
= 0.

Suppose that η(0) = K where 0 ≤ K ≤ 1. Then, we have

η(x) = K exp(
∫ x

0
(1− exp(−t hF (u)))du) for x > 0.

Now, we have
∫ x

0 (1− exp(−t hF (u)))du→
∫∞

0 (1− exp(−t hF (u)))du as x→∞. Further,
we have that ∫ ∞

0
(1− exp(−t hF (u)))du

=
∫ 1

0

(1− exp(−t(1− u)))f(u)
1− F (u)

du

≥ Ct

∫ 1

0

(1− u)f(u)
1− F (u)

du

= ∞
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where Ct > 0 is a constant depending only on t. Thus, if K 6= 0, we must have η(x) ↑ ∞ as
x→∞. This completes the proof

This result can easily be generalised to the case when supp(F ) = [0, c] where c 6= 1. Clearly
scaling the distribution by 1/c, we can reduce the situation to a distribution on [0, 1] and apply
the results just proved above. Then, scaling back, we can obtain the following corollary. In
this case too, the existence of the density is only to allow a neat expression for the Laplace
transform.

Corollary 1.1 Suppose that F is a distribution function with density f on [0, c]. Then,

(n+ 1)c− Tn ⇒ VF (c)

if and only if ∫ c

0

(c− u)f(u)du
1− F (u)

<∞, (7)

where VF (c) is a non-negative random variable whose moment generating function is given by

φF (−t) = E(exp(−tVF (c))) = exp
(∫ c

0

(exp(−tu)− 1)f(c− u)du
1− F (c− u)

)
for all t > 0.

More generally, if
∫ c

0
(c−F−1(u)du

1−u < ∞, the limiting distribution exists and its Laplace
transform is given by

φF (−t) = exp
(
−
∫ ∞

0
(1− exp(−t hF (u)))du

)
where hF (u) is now defined as c− gF (u).

3 Properties of the Asymptotic Distribution

In this section, we derive the properties of the asymptotic distribution obtained in the last
section and describe the class of distributions which can originate as the limiting distribution.

Proposition 3.1 If F has support on [0, c] and admits a density f such that∫ c

0
(c− u)f(u)du/F (u) <∞,

then the distribution of VF (c) =
∑∞

n=0(c−Xn) is infinitely divisible.

Proof : Clearly the Laplace transform of the infinite sum can be written as

E(exp(−tVF (c))) = exp
(∫ c

0

(exp(−tu)− 1)gc(u)du
Gc(u)

)
where gc(u) = f(c− u) and Gc(u) =

∫ u
0 gc(v)dv.
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From Bondesson [2], a random variable taking values in R+, is infinitely divisible (i.d.) if
and only if the moment generating function can be expressed as

m(t) = exp
(
−at+

∫
(0,∞)

(exp(−tu)− 1)L(du)
)

where t > 0, a ≥ 0 and L, the Levy measure, is non-negative and satisfies∫
(0,∞)

min(1, u)L(du) <∞.

Setting a = 0 and L(du) = 1(0,c)(u)gc(u)du/Gc(u), the moment generating function of VF (c)
can be written in the above form. Also, we have∫ ∞

0
min(1, u)L(du) ≤

∫ c

0

ugc(u)
Gc(u)

du =
∫ c

0

(c− u)f(u)
F (u)

<∞.

This completes the proof.

Clearly, we have that the Levy measure L admits a density which is given by l(y) =
gc(y)/Gc(y) for 0 ≤ y ≤ c. Now, conversely suppose that we are given any infinitely divisible
distribution on [0,∞) with a Levy measure which admits a density l(y) on [0, c] for some c > 0.
We further assume that the mass of the Levy measure is infinite, i.e.,∫ c

0
l(y)dy =∞. (8)

Further, it must be the case that ∫ c

0
min(1, y)l(y)dy <∞ (9)

We first note that (9) implies
∫ c
x l(y)dy <∞ for all 0 < x < c, for∫ c

0
min(1, y)l(y)dy ≥

∫ c

x
min(1, y)l(y)dy ≥ min(1, x)

∫ c

x
l(y)dy.

Now, define a representation for gc in the following way

gc(x) = l(x) exp
(
−
∫ c

x
l(y)dy

)
(10)

for 0 ≤ x ≤ c. Then we have that,

Gc(x) = exp
(
−
∫ c

x
l(y)dy

)
.

It is clear from the above definition that we have,∫ c

0

(c− u)f(u)
1− F (u)

du <∞

where f(u) = gc(c − u) for 0 ≤ u ≤ c. Therefore, we must have that (n + 1)c − Tn converges
almost surely to a positive random variable K. It is clear that the Laplace transform of K
is same as that of the given infinitely divisible distribution. Therefore, we have the following
characterisation result of all possible limit laws which can arise in this way.
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Theorem 2 For any infinitely divisible random variable K(c) on [0,∞) such that the Levy
measure has a density l(y) on [0, c] such that

∫ c
0 l(y)dy =∞, there exists a distribution F with

density on [0, c] such that

(n+ 1)c− Tn → K almost surely

where Tn is the partial sum of first (n + 1) records from the distribution F . Moreover, the
density of F is given by f(u) = gc(c− u) where gc is given above.

The other natural question that we can ask here is: under what conditions on F will the
distribution of Y belong to specified subclasses of the class of i.d. laws. For a comprehensive
description of interesting subclasses of i.d. laws, see Bondesson ([2]).

The first and relatively simple characterization is for the class L, the class of self decompos-
able laws, consisting of distributions of those random variables X for which for every c ∈ (0, 1],
there exists a random variable εc independent of X such that X d= cX + εc.

Observing that the Levy density of Y is given by gc(y)/Gc(y), we obtain the following:

Proposition 3.2 If the density function f is such that ugc(u)/Gc(u) = uf(c−u)/(1−F (c−u))
is decreasing in u and

∫ c
0 (ugc(u)/Gc(u))du <∞, then VF (c) is self-decomposable.

The proof is straightforward from Bondesson ([2], page 18). Note that the Levy density
l(y) = βy−1 exp(−ty)1{y>0} characterises the Gamma distribution G(β, t) where β, t > 0.
This will arise as the distribution of VF (c) if

F (x) = exp
(
−β
∫ ∞
x

y−1 exp(−ty)dy
)
.

The subclass T2 of i.d. laws comprises of generalized mixtures of exponential distributions
arising as weak limits of mixtures of exponentials. This class is characterised by complete
monotonicity of the Levy density. Using this, VF (c) belongs to T2 if − log(Gc(·)) is completely
monotone.

A subclass of both L and T2 is the class T consisting of Generalized Gamma convolutions
defined as weak limits of finite convolutions of Gamma distributions. By Theorem 3.1.1 of [2],
a distribution G which gives full mass to the set of nonnegative real numbers belongs to the
class T if and only if its Levy density l(·) satisfies

yl(y) =
∫ ∞

0
exp(−yt)U(dt)

for all y > 0, and for some measure U on (0,∞) with
∫ 0

1 | log t|U(dt) <∞ and
∫ 1
∞ t
−1U(dt) <∞.

Equivalently, if yl(y) is completely monotone on (0,∞).
As example of this relation, we may mention the stable distributions when l(y) ∝ yα−1 for

y > 0 where 0 < α < 1. These arise from the case G1(x) = exp(−x−α), x > 0.
When does the distribution of VF (c) admit a density? Using the infinite divisibility, we

may obtain answers to this question.
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Proposition 3.3 The random variable VF (c) is absolutely continuous with respect to the Lebesgue
measure.

Proof : Hudson and Tucker [3] obtained sufficient conditions for an infinitely divisible distribu-
tion to be equivalent to the Lebesgue measure. Using Theorem 1 of Hudson and Tucker [3], it is
enough to verify that the Levy measure is absolutely continuous with respect to the Lebesgue
measure, has infinite mass and finite first moment.

In our case, we have the Levy measure as gc(x)/Gc(x)1(0,c)(x)dx and satisfies the properties
of absolute continuity and the infinite mass (see (8)). Further, we have

∫ c
0 ugc(u)du/Gc(u) ≤

K
∫ c

0 min(1, u)gc(u)du/Gc(u) <∞ where K > 0 is a constant; hence the first moment is finite.
This proves the result.

4 Unbounded Case

In this section, we look at the general case when the support of F is not bounded. From
Resnick [4], it is clear that we need to impose conditions for convergence. We assume that

gF is twice differentiable on R+ (11)

and there exists constants C1 and C2 such that

| g′′F (x) |2≤ C1

(
| g′′F (x1) |2 + | g′′F (x2) |2

)
(12)

whenever 0 < x1 < x < x2 <∞ and for all k ≥ 0,

E
(
| g′′F (

k∑
j=0

Yj) |2
)
≤ C2 | g′′F (k + 1) |2 (13)

where {Yj : j ≥ 0} is a sequence of i.i.d. exponential random variable.
Now, we define an = g′F (n) and bj(n) =

∑n
k=j ak+1 for 0 ≤ j ≤ n and c2

n =
∑n

j=0(bj(n))2.
Further, denote dn =| g′′F (n + 1) | . We impose two technical conditions on the sequences;
namely,

1
cn

n∑
j=0

(j + 1)dj → 0 as n→∞ (14)

and
1
cn

max
0≤j≤n

|bj(n)| → 0 as n→∞. (15)

Under these two technical conditions, we are able to obtain asymptotic normality for the
sequence of partial sums of records.

Theorem 3 For a general distribution F for which the conditions (11), (12), (13), (14)
and (15) are satisfied, ∑n

k=0(Xk − gF (k + 1))
cn

⇒ N(0, 1).
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Proof : We will use the representation of the records in terms of exponential random variables.
Using Taylor Series expansion for gF , we have

n∑
k=0

(Xk − gF (k + 1))

=
n∑
k=0

[
gF (

k∑
j=0

Yj)− gF (k + 1)
]

=
n∑
k=0

g′F (k + 1)
k∑
j=0

(Yj − 1) +
1
2

n∑
k=0

( k∑
j=0

(Yj − 1)
)2
g′′F (S?k)

= Tn + En

where Tn =
∑n

k=0 ak+1
∑k

j=0(Yj − 1) =
∑n

j=0(Yj − 1)
∑n

k=j ak+1 =
∑n

j=0(Yj − 1) bj(n) and
En =

∑n
k=0(

∑k
j=0(Yj − 1))2g′′F (S?k)/2 where S?k is a point in between

∑k
j=0 Yj and k + 1.

First we show that Tn/cn converges to a normal distribution weakly. Indeed, we can derive
the characteristic function of the above sum. For any t ∈ R, we have

E(exp(itTn/cn))

= exp(−it/cn
n∑
j=0

bj(n))
n∏
j=0

E(exp(itbj(n)Yj/cn))

= exp(−it/cn
n∑
j=0

bj(n))
n∏
j=0

1
1− itbj(n)/cn

.

Now, taking logarithm, we have for all t with |t| < cn/maxj |bj(n)|,

| logE(exp(itTn/cn))− t2/2 |

= | −
n∑
j=0

itbj(n)
cn

− t2

2
−

n∑
j=0

log(1− itbj(n)/cn) |

≤ | t |3

3c3
n

n∑
j=0

|bj(n)|3 ≤ | t |3

3c3
n

max
j
|bj(n)|

n∑
j=0

(bj(n))2

=
| t |3

3cn
max
j
|bj(n)|

This implies, by (15), that for all t ∈ R, E(exp(itTn/cn))→ exp(−t2/2) as n→∞.
Now, we are to show that En/cn → 0 in probability. For that, it is enough to show that

E(| En/cn |)→ 0 as n→∞. Clearly,

E(| En/cn |) ≤
n∑
j=0

E
(
(
k∑
j=0

(Yj − 1))2 | g′′F (S?k) |
)
/(2cn).

Now, using Cauchy-Schwartz inequality, we have

E
(
(
k∑
j=0

(Yj − 1))2 | g′′F (S?k) |
)
≤
[
E(

k∑
j=0

(Yj − 1))4
]1/2[

E(g′′F (S?k))2
]1/2

.
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Since, Yj ’s are i.i.d. exponential random variables, it is easy to show that

E(
k∑
j=0

(Yj − 1))4 ≤ C3(k + 1)2 (16)

for some constant C3 > 0. Now, since S?k lies in between (k + 1) and
∑k

j=0 Yj , we have from
condition (12) and (13),

E(g′′F (S?k))2 ≤ C1

[
(g′′F (k + 1))2 + E(g′′F (

k∑
j=0

Yj))2
]

≤ C1

[
(g′′F (k + 1))2 + C2(g′′F (k + 1))2

]
= C1(dk)2(1 + C2). (17)

Thus, we have from (16) and (17),

E(En/cn)

≤ 1
cn

n∑
j=0

(C3(k + 1)2)1/2(C1(1 + C2)d2
k)

1/2

=
(C1C3(1 + C2))1/2

cn

n∑
j=0

(k + 1)dk → 0

as n→∞. This completes the proof.

The conditions imposed on the function gF are reasonably general. We show that two
important functions satisfy them, so that the specific cases considered by Arnold [1] mentioned
at the beginning of Section 1 are included. First, we consider Gumbel records.

Proposition 4.1 The function gF (x) = log(x) satisfies the conditions (11) – (15).

Proof : Clearly g′F (x) = 1/x and g′′F (x) = −1/x2. Thus, an = 1/n and dn = 1/(n + 1)2.
Now, bj(n) =

∑n
k=j ak+1 =

∑n+1
k=j+1 k

−1. Easy calculations imply that c2
n/(2n)→ 1 as n→∞.

Further,

(gF ′′(x))2 =
1
x4
≤ 1
x4

1

+
1
x4

2

= (gF ′′(x1))2 + (gF ′′(x2))2

whenever 0 < x1 < x < x2. Now,

E((gF ′′(
k∑
j=0

Yj))2) =
∫ ∞

0

1
Γ(k + 1)

exp(−x)xk

x4
dx

=
1

k(k − 1)(k − 2)(k − 3)

≤ C4

k4
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for some constant C4 > 0. Finally,

1
cn

n∑
k=0

(k + 1)dk =
1
cn

n∑
k=0

1
k + 1

≤ C5 log n√
n
→ 0

as n → ∞ where C5 > 0 is a constant. Also, it is easy to verify that maxj |bj(n)| = b0(n) =∑n+1
1 k−1 < dlog2 ne+ 1, so that (15) is also satisfied. This completes the proof.

Finally we prove that also the more general class of Weibull distributions containing the
Exponential is covered. In the Proposition below, the choice δ = 1 reduces to the Exponential
case.

Proposition 4.2 The function gF (x) = xδ, where δ > 0, satisfies (11) – (15).

Proof : Here we have g′F (x) = δxδ−1 and g′′F (x) = δ(δ − 1)xδ−2 (which is 0 when δ = 1),
an = δnδ−1 and dn = δ | δ − 1 | (n + 1)δ−2 (with dn = 0 when δ = 1). Now, bj(n) =∑n

k=j ak+1 = δ
∑n+1

k=j+1 k
δ−1. Again, easy calculations show that c2

n/(n + 1)1+2δ → λδ where
λδ = (1− 2/(1 + δ) + 1/(1 + 2δ)).

Now, for δ = 1, the conditions (12) and (13) are trivially satified. For δ 6= 1, we have

(g′′F (x))2 = δ2(δ − 1)2x2δ−2 ≤ δ2(δ − 1)2x2δ−2
1 + δ2(δ − 1)2x2δ−2

2

= (g′′F (x1))2 + (g′′F (x2))2

whenever 0 < x1 < x < x2 <∞. Now,

E(g′′F (
k∑
j=0

Yj))2 = δ2(δ − 1)2Γ((k + 1) + 2(δ − 2))/Γ(k + 1).

As k → ∞, we have Γ((k + 1) + 2(δ − 2))/
(
k2(δ−2)Γ(k + 1)

)
→ 1. Thus, we have, for some

C7 > 0,

E(g′′F (
k∑
j=0

Yj))2 ≤ C7(g′′F (k + 1))2.

When δ = 1, the condition (14) is trivially satisfied. For δ 6= 1,

1
cn

n∑
k=0

(k + 1)dk ≤ C8

nδ+1/2

n∑
k=0

kδ−1

≤ C9n
δ

nδ+1/2
→ 0

as n→∞ where C8 > 0 and C9 > 0 are constants. Finally, maxj |bj(n)| = b0(n) ≤ C10(n+ 1)δ

whence
1
cn

max
j
|bj(n))| ≤ C11

(n+ 1)1/2
→ 0

as n→∞ where C10 > 0 and C11 > 0 are constants. This completes the proof.
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