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Abstract

Life times of load sharing parallel systems have been considered in the

statistical literature at least since Daniels (1945). The main characteristic

of such a two component system is that after the failure of one component

the surviving component has to shoulder extra load and hence is prone to

failure at an earlier time than what is expected under the original model.

In other situations, the failure of one component may release extra re-

sources to the other, thus delaying the system failure. Gross et al (1971)

observed that similar considerations affect the functioning of a two organ

system. In this paper we first consider several observations schemes and

identifiability issues under them. Then we construct a general semipara-

metric bivariate family of distributions which explicitly models this phe-

nomenon through proportional conditional hazards. McCool (2006) has

suggested a test for the hypothesis that the failures take place according

to the original model against the alternative hypothesis that the second

failure takes place earlier than warranted within the Weibull model. We

propose nonparametric tests for the same problem which may be used

for any continuous distribution for the component life times. We obtain

estimates of the power of the test and observe that it is quite high even

for moderately distant alternatives. The tests are applied to several real

data sets to illustrate their use.

Key words: Bivariate distributions, censoring, conditional distribution,

early failures, order statistics, proportional hazards, semiparametric fam-
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ily, sharing resources.

1 Introduction, literature survey and summary

A two component parallel system operates as long as at least one of the

components is functioning. Let us denote the life of the components 1

and 2 by random variables U1 and U2, respectively. Then the life of the

system is given by the random variable Y = max(U1, U2). Because of the

nature of the system, it continues to function even after the failure of one

of the components. However, failure of one component can possibly put

additional load on the surviving component and hence affect its function-

ing and hence the functioning of the system. This may result in stochastic

reduction of the residual life time.

Gross et al (1971) observed that two organ subsystems in human body

typically show this pattern. If one organ fails, the surviving organ is

usually subject to higher failure rate. If a patient gets his kidney removed

due to to some illness, then the second kidney shows a higher failure rate.

However, if a kidney is removed because of an accident, then the second

kidney may not exhibit an increased failure rate. The authors develop a

survival distribution for such two organ systems . They assume that if

one organ fails, then the other organ has a higher failure rate. However,

both failure rates are assumed to be constant in time. The parameters of

the proposed distribution are estimated iteratively.

The earliest work on load sharing models is due to Daniels (1945)and

Rosen (1964). They observed that yarns and cables in a bundle fail only

when the last fibre (or wire) in the bundle breaks. A bundle of fibres

can be considered as a parallel system subject to a constant tensile load.

After one fibre breaks yarn bundles or untwisted cables tend to spread the

stress load uniformly on the remaining unbroken fibres. This is the equal

load share rule under which the load of the failed component is distributed
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equally among the remaining working components.

Coleman (1958) found the mean time to ultimate failure of a bundle

of parallel fibres when the number of fibers becomes large. Birnbaum

and Saunders (1958) derived the lifetime distributions of the materials.

Phoenix (1978) showed that the system failure is asymptotically normally

distributed as the number of components become large. A more general

monotone load sharing rule assumes that the load on any individual com-

ponent is nondecreasing as other items fail.

Apart from textile industry such model arises in manufacturing where

a part can be considered failed only when the entire set of welded joints

that holds the part together fails. However, the failure of one or two joints

can increase the stress on remaining joints.

Kim and Kvam (2004) observed that such models also arise in sam-

pling techniques. Suppose the total resourses allocated toward finding a

finite set of items is fixed. Once one item is detected, resources can be

redistributed to finding remaining items. This is a load sharing model. If

the items are identical then an equal load share rule is the right one for

studying system dependence.

Lynch (1999) characterised some relationships between the failure rate

and the load share rule and Durham and Lynch (2000) studied relation-

ships for some specified load-share rules.

Kim and Kvam (2004) consider a k component parallel system. Ini-

tially the components have identical distribution with constant failure

rate θ. After the failure of the first component the modified failure rate

of k − 1 components changes to γ1θ, for some γ1 > 0, and so on. They

find maximum likelihood estimators of the k parameters θ, γ1, γ2, . . . , γk−1.

They consider the estimation of parameters under monotone load sharing

1 ≤ γ1 ≤ γ2 ≤ . . . ≤ γk−1. They also derived a likelihood ratio test for

testing equality of γ ′s against the alternative that they are monotone.

Kvam and Pena (2005) discuss load sharing models which are special
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cases of dynamic models where performance of the system changes as

components fail or their performance deteriorates. They consider a k-

component parallel system under an equal load share model. When the

first component fails the failure rate of remaining components changes

from r(t) to γ1r(t) and so on. They find an estimator of the component

baseline cumulative hazard function R = −log(1 − F ) and discuss its

asymptotic distribution.

McCool (2006) modelled the time to failure as a two parameter Weibull

distribution. He proposed a test to test the hypothesis that the failure of

the first component in a parallel system shortens the life of the remaining

components of the same system. We look at a similar testing problem

without making any assumption on the distribution of component life-

times.

In all above examples failure of first component adversely affects the

system performance. On the other side the detection of a bug in a software

can help in the detection of other bugs. Once a critical fault in the soft-

ware has been detected it can help in finding other bugs wich had earlier

been undetected. Drummond et al (2000) carried out a study in a verte-

brate species showing that selective deaths due to food shortage result in

surviving offsprings receiving an increased share of an undiminished food

supply. They observed littermates of the domestic rabbit Oryctolagus cu-

niculus and found that after individual pups died, the total daily milk

weight obtained by the litter continued to be same. Hence the surviving

pups consumed more milk and showed greater growth. This necessitates

considering the other one sided test also.

We restrict ourselves to two component systems and study their life-

lengths, identifiablity issues and bounds under various observations schemes

in section 2. In section 3 we propose a conditional failure rate model which

explicitly uses the concept of additional load on the surviving component

after the failure of one. We also discuss the popular Gumbel (1960) and
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Freund (1961) models from this point of view. Section 4 provides a test

for the null hypothesis that the two components fail without any addi-

tional load on the surviving component against the alternative that there

is such an additional load. In section 5 we extend the test to the case of

right censored data. Section 6 includes a simulation study and in section

7 the tests are illustrated on real data. The last section has comments

and conclusions.

2 Bounds under various observation schemes

In this section we look at various sampling schemes that arise with load

sharing and discuss corresponding identifiability issues. If the component

lifelengths are not identifiable, we propose bounds which can be estimated

from the corresponding data.

2.1 Components are independent and identically distributed -

observe both order statistics

Suppose that the component lifetimes U1, U2 are continuous, positive val-

ued, independent random variables with a common distribution function

F (x), survival function F̄ (x), density function f(x), failure rate function

rF (x) = f(x)
F̄ (x)

. Suppose that the lifetime of the component which fails first

is given by X = min(U1, U2) and the lifetime of the component which fails

second, which is the same as the system lifelength, is Y = max(U1, U2).

Because U1, U2 are i.i.d random variables, it is easy to see that the joint

density of the two ordered failure times X, Y is given by

g(x, y) = 2 f(x)f(y), 0 < x < y < ∞,

= 0, otherwise.
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The marginal distribution of the minimum X and the maximum Y , re-

spectively are given by

G(x) = 1 − (1 − F (x))2, H(x) = [F (x)]2,

and the density functions by

g(x) = 2f(x)(1− F (x), h(x) = 2f(x)F (x).

Hence the marginal distribution of U1 can be identified from the dis-

tribution of either of the order statistics .

2.2 Components are dependent - observe order statistics

Next suppose that the component lifetimes are no longer independent, as

in the case of a pair of lungs or a pair of kidneys. Let the joint distribution

function of component lifelengths (U1, U2) be given by F (x, y) and joint

pdf by f(x, y). Its joint survival is given by

F̄ (x, y) = 1 − F1(x) − F2(y) + F (x, y). (1)

As before X = min(U1, U2) and Y = max(U1, U2)

Then, the joint distribution function of (X, Y ) is given by

G(x, y) = F (x, y) + F (y, x) − F (min(x, y), min(x, y)), 0 < x < y < ∞.

(2)

And the joint density function of (X, Y ) is given by

g(x, y) = f(x, y) + f(y, x), 0 < x < y < ∞. (3)

We have identifiability only along the diagonal (x, x) .

Then the survival function of the first failure X is given by

Ḡ(x) = P [X > x] = P [U1, U2 > x] = F̄ (x, x) = 1−F1(x)−F2(x)+F (x, x).

(4)
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The distribution function of the system lifelength Y is given by

H(x) = P [U1, U2 ≤ x] = F (x, x). (5)

Let g(x) and h(x) be the corresponding density functions.

When the component lifetimes are not independent, we cannot iden-

tify the joint distribution F (x, y) from the joint distribution of the order

statistics (X, Y ). However, we have the following bounds.

Theorem 1:

G(min(x, y), min(x, y)) ≤ F (x, y) ≤ G(min(x, y), max(x, y)) ∀x, y (6)

Proof : We can write

F (x, y) = G(x, y)P (X1 ≤ X2) + G(y, x)P (X2 ≤ X1).

Therefore

min{G(x, y), G(y, x)} ≤ F (x, y) ≤ max{G(x, y), G(y, x)}.

Separately considering x < y and y < x leads to the inequality given

above.

Note that if F (x, y) is exchangeable then F (x, y) = F (y, x),

F (x, y) =
1

2
[G(x, y) + G(min(x, y), min(x, y)),

and

f(x, y) =
1

2
g(x, y).

Thus, when F (x, y) is exchangeable, then it is identifiable on the basis of

joint distribution G(x, y), not otherwise. Independence of U1, U2 is neither

sufficient nor necessary for identifiability.

2.3 Components are dependent - observe the maximum and its

identifier

The third possible sampling scheme is the following. Suppose that the

system life Y and the label of the component whose failure coincided with
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the system failure are observable. That is, we observe (Y, δ), where δ = 1

if Y = U1 and δ = 2 if Y = U2. Basu and Ghosh (1981) called it the

complementary risks data and discussed identifiability issues associated

with it. The joint distribution function of (Y, δ), is given by the following

pair of sub-distribution functions H(t, 1) = P (Y ≤ t, δ = 1) and H(t, 2) =

P (Y ≤ t, δ = 2). The joint distribution of (U1, U2) given by F (x, y) is

not identifiable under this sampling scheme. However we note that the

following bounds hold.

H(min(x, y), 1) + H(min(x, y), 2) ≤ F (x, y) ≤ H(x, 1) + H(y, 2). (7)

In case only the maximum Y is available and the markers given by δ are

not known, then we have

H(min(x, y)) ≤ F (x, y) ≤ H(max(x, y)). (8)

These results are analogous to those obtained by Peterson (1976) for

series systems. Using the bounds in (6), (7) and (8) one can obtain conser-

vative confidence bounds for F (x, y) following the approach in Deshpande

and Karia (1995). As suggested by them one needs to obtain the lower

confidence limit (band) for the lower bound and upper confidence limit

(band) for the upper bound. These limits (bands) can be based on con-

sistent estimators of the respective bounds together with the asymptotic

distributions of these estimators. The bivariate and the univariate empir-

ical distribution function may be used as an estimators for G(x, y) and

H(x), respectively and the empirical sub-distribution functions for H(x, 1)

and H(y, 2).

3 A Model for load sharing

X, Y are the minimum and the maximum of U1, U2 which are i.i.d with

distribution function F (x). One can obtain the conditional density of Y
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given X = x as

hY |X=x(y) = f(y)/[1− F (x)], 0 < x < y < ∞.

Therefore, the joint density of X and Y can be equivalently defined by

the pair consisting of the marginal density of X and conditional density

of Y given X, that is, by

{2f(x)(1− F (x)), f(y)/[1− F (x)] }.

Then the failure rate of the conditional distribution of Y given X is

rY |X=x(y) =
f(y)

(1 − F (x))

1 − F (x)

1 − F (y)
=

f(y)

1 − F (y)
= rF (y), 0 < x < y < ∞.

That is if we have a parallel system based on two independent and

identically distributed components, then the failure rate of the system

given the failure of the first component is the same as the failure rate of

the original component. That is, the system failure rate is not affected by

the failure of the first component.

Next consider the experimental situation where initially the compo-

nents are independent and identically distributed but the first failure shifts

the load to the surviving components. In such a case we expect that the

conditional failure rate gets affected and we suggest a proportional hazards

model as follows

r∆,Y |X=x(y) = ∆rF (y), 0 < x < y < ∞, ∆ ≥ 1. (9)

∆ = 1 gives the independence of component lives and the fact that

the first failure shifts an extra load on the surviving component can be

modeled by taking ∆ > 1.

Under this set up, the pair of marginal density functions of X and the

conditional density of Y given X = x is

{2f(x)(1− F (x)), ∆f(y)
(1− F (y))∆−1

(1 − F (x))∆
}, 0 < x < y < ∞, 1 ≤ ∆ < ∞,
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and the joint density function of the ordered component lives is

g∆(x, y) = 2∆f(x)f(y)
(1− F (y))∆−1

(1− F (x))∆−1
, 0 < x < y < ∞, 1 ≤ ∆ < ∞.

(10)

h∆(y) =
2∆f(y)[F̄ (y)∆−1 − F̄ (y)]

2 − ∆
, ∆ 6= 2

−4F̄ (y)logF̄ (y)f(y), ∆ = 2, y > 0.

It is interesting to note that the unordered random variables corresponding

to the joint density function g∆(x, y) are neither independent nor identi-

cally distributed.

As an illustration suppose that U1, U2 are i.i.d exponential random

variables with failure rate λ. Then the joint density function of X, Y

under the proposed model is given by

g∆(x, y) = 2∆λ2exp− [λ(x + y)]exp− [λ(∆− 1)(y − x)], 0 < x < y < ∞.

(11)

The marginal density of the first component X and the system failure

time Y is

g(x) = 2exp − [2x], x > 0,

h(y) =
2λ∆[exp − [λ∆y] − exp − [2λy]]

2 − ∆
, ∆ 6= 2

4λ2yexp − [2λy], ∆ = 2, y > 0.

The conditional density of Y given X = x is

hY |X=x(y) = ∆exp − [∆(y − x)], 0 < x < y < ∞.

(10) gives us a new bivariate model which brings in the effect of load

sharing. One could possibly obtain more models by starting with i.i.d

Weibull and other distributions for the U1, U2. Further we may bring in

the effect of loadsharing by a nonproportional conditional hazard rate as

well. This opens up a rich class of bivariate models.
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As mentioned earlier the original lifetimes U1, U2 could be dependent.

We would like to compare the joint density of the minimum and maximum

proposed in (10) with those arising in the case when the original lifetimes

follow bivariate distribution due to Gumbel (1960) and Freund (1961).

We look at the conditional distributions and the conditional failure rates.

The conditional density function of Y given X = x is

h(Y |X=x)(y) =
g(x, y)

g(x)
=

f(x, y) + f(y, x)

−d/dx(F̄ (x, x))
, x < y. (12)

Its conditional distribution function is

H(Y |X=x)(y) =

∫ y
x g(x, u)du

g(x)
, x < y. (13)

The conditional survival function is

Ḡ(Y |X=x)(y) = 1 −
∫ y
x g(x, u)du

g(x)
, x < y. (14)

So that the conditional failure rate of the system given the first failure is

rY |X(y) =
f(x, y) + f(y, x)

g(x) − ∫ y
x [f(x, u) + f(u, x)]du

, x < y. (15)

And the system failure rate is

rY (x) =
d/dx(F (x, x))

1 − F (x, x)
, x > 0. (16)

Now we work out these expressions for Gumbel’s bivariate exponential

given below.

F (x, y) = 1 − e−x − e−y + e−x−y−δxy, x, y > 0, 0 ≤ δ ≤ 1.

Note that U1 and U2 are independent if δ = 0. That essentially reduces

to the case of i.i.d. exponentials random variables discussed earlier.

f(x, y) = [(1 + δy)(1 + δy) − δ]e−x−y−δxy, x, y > 0, 0 ≤ δ ≤ 1.

(17)
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Hence the joint pdf of (X, Y ) is given by

g(x, y) = 2f(x, y), x < y.

Survival function and density function of the time to first failure X is

Ḡ(x) = e−2x−δx2

,

g(x) = (2 + 2δx)e−2x−δx2

.

(18)

Notice that the time to first failure has the linear failure rate.

And the distribution function and density function of the system failure

Y is

H(x) = 1 − 2e−x + e−2x−δx2

,

and

h(x) = 2e−x − (2 + 2δx)e−2x−δx2

, x > 0.

The conditional density and distribution of Y given X = x are given as

follows

hY |X=x(y) =
[(1 + δy)(1 + δy) − δ]e−x−y−δxy]

(1 + δx)e−2x−δx2
, x < y,

HY |X=x(y) =
e−x−y−δxy − e−2x−δx2 − δye−x−y−δxy + δxe−2x−δx2

2(1 + δx)e−2x−δx2
, x < y.

And the conditional failure rate of Y given X = x for x < y is

rY |X=x(y) =
[(1 + δy)(1 + δy) − δ]e−x−y−δxy]

2(1 + δx)e−2x−δx2 − e−x−y−δxy + e−2x−δx2 + δye−x−y−δxy − δxe−2x−δx2
.

Finally the failure rate of Y is

rY (x) =
2e−x − (2 + 2δx)e−2x−δx2

2e−x − e−2x−δx2
, x > 0.

Note that U1, U2 have failure rate 1.

As another example we consider Freund’s distribution. The motivation

of the model was to start with independent exponentials and consider the
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modifications in case there is load sharing. Note that the authors were

not looking at the joint distribution of the minimum and the maximum

which is of interest to us. The joint density function of U1, U2 is given by

f(x, y) =






αβ ′exp[−β ′y − (α + β − β ′)x] 0 < x < y

βα′exp[−α′x − (α + β − α′)y] 0 < y < x.

Then, the distribution of the system failure X is given by

F (x, x) =
α

α + β − β ′ (1 − exp[−β ′x]) +
β

α + β − α′ (1 − exp[−α′x])

− αβ ′

(α + β)(α + β − β ′)
(1 − exp[−(α + β)x])

− βα′

(α + β)(α + β − α′)
(1 − exp[−(α + β)x]).

The density of the maximum is

gY (x) =
αβ ′

α + β − β ′exp[−β ′x] +
βα′

α + β − α′exp[−α′x], x > 0.

And the density of the minimum is

gx(x) = (α + β)exp[−(α + β)x], x > 0.

Hence the minimum is exponential with failure rate α + β.

The joint density of the two order staistics (X, Y ) is given by

g(x, y) = αβ ′exp[−β ′y−(α+β−β ′)x]+βα′exp[−α′y−(α+β−α′)x], 0 < x < y.

After simple but lengthy calculations, the conditional failure rate of

the maximum, given X = x is

rY |X=x(y) =
αβ ′exp[−β ′(y − x)] + βα′exp − [α′(y − x)]

αexp[−β ′(y − x)] + βexp[−α′(y − x)]
, x < y.

Since we are looking at the case when U1, U2 are identically distributed

but are not independent, we take α = β, α′ = β ′. It is interesting to

note that under this assumption, rY |X=x(y) = α′. This is not equal to the

failure rate of any component of the system.
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Hence if the component lifelengths are identical, the conditional fail-

ure rate of the system given the first failure is a constant. That is, the

conditional distribution of Y |X = x is exponential with failure rate α′.

Observe that in this case the distribution of the minimum is exponential

with failure rate 2α.

In none of these cases can we write r∆,Y |X(y) = ∆rF (y), 0 < x <

y < ∞, ∆ ≥ 1. Hence the joint density function of the order statistics

given by (10) appears to be a more meaningful way of looking at load

sharing instead of the joint distribution of order staistics arising out of

Gumbel and bivariate distributions since it takes care of the load sharing

mechanism and proposes a way to deal with it.

It is interesting to observe the following special case. Suppose UI , U2 are

independent but not identically distributed with density functions f1(x)

and f2(x), respectively.

Then joint density of of minimum and maximum is

g(x, y) = f1(x)f2(y) + f1(y)f2(x), x < y. (19)

The density of the minimum X is

g(x) = f1(x)F̄2(x) + F̄1(x)f2(x), x > 0. (20)

Hence conditional failure rate of maximum given minimum is

rY |X=x(y) =
f1(x)f2(y) + f1(y)f2(x)

f1(x)F̄2(y) + F̄1(y)f2(x)
, x < y. (21)

Suppose U1 has exponential distribution with failure rate 1 and U2 has

exponential with failure rate λ > 1 . Then conditional failure rate of

maximum given minimum is

rY |X=x(y) =
λe−xe−λy + λe−λxe−y

e−xe−λy + λe−λxe−y
, x < y. (22)

Then for λ > 1 we have

1 ≤ rY |X=x(y) ≤ λ. (23)
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In general one can show that if rU1
(y) ≤ rU2

(y), then

rU1
(y) =

f1(y)

F̄1(y)
≤ rY |X=x(y) ≤ f2(y)

F̄2(y)
= rU2

(y). (24)

4 A Test

Our next question is whether the first failure affects the failure of the

system or not. Hence we wish to test the null hypothesis H0 that the

first failure does not affect the system lifelength against the alternative

H1 that the first failure stochastically reduces the system lifelength. Or

equivalently, one may say that under H0 first and second failure times are

from the order statistics distribution based on i.i.d random variables and

under H1 the second failure occurs earlier than what is predicted by the

order statistics distribution based on i.i.d random variables. Thus under

the alternative the distribution function of system life Y given X = x is

decreasing in x.

Suppose the data consists of n independent pairs of ordered compo-

nent lifetimes (Xi, Yi), i = 1, 2, ..., n. Trivially, Xi < Yi, i = 1, 2, . . . , n.

Consider the following U-statistics

U(X1, Y1, . . . , Xn, Yn) =
1

(
n
2

)
∑

i<j

1

2
[h(Xi, Yj) + h(Xj, Yi)]. (25)

where h(Xi, Yj) = I(Xi < Yj). Then, it is easy to see that E(U) =
∫∞
0 G(x)dH(x). Under H0 it is equal to 5

6 and under the model (10), it is

less than 5
6 for ∆ > 1, leading to consistency of the tests. Under H0, we

have

V ar(U) =
1

9n(n − 1)
+

4(n − 2)

90 n(n − 1).

¿From the limiting theorem of U-statistics (Serfling (1980)) it follows

that √
(n)(U − 5/6)

√
2/45

d→ N(0, 1).
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Small values of the statistic are significant. It is interesting to note

that under the set up when component lifetimes are independent, the null

mean and variance are distribution free.

Let Rj be the rank of Yj in the combined arrangement of all the mini-

mum and maximum. Then, we can express the U-statistics as function of

the ranks as follows,

n

2


U =

1

2

n∑

j=1

Rj −
n(n + 3)

4
. (26)

5 The Censored Case

In almost all survival studies complete data is not available due to presence

of a censoring mechanism. However the censoring can occur in several

ways. The monitoring starts after the first failure has already occured

(that is, one kidney has already failed). Here the minimum X is left

censored by the age at which the monitoring begins and the maximum is

observed without censoring. It is also possible that the first failure X is

observed but the maximum is right censored by death due to other causes.

In the extreme case it is possible that the minimum X is left censored and

the maximum Y is right censored. We will only look at the right censoring

case.

5.1 Right Censoring

Suppose that U1 and U2 are independent and identically distributed ran-

dom variables. Let C, with distribution function KR(t), denote the ran-

dom variable which censors Y . It acts independent of the pair (X, Y ).

Based on a random sample from this set up we consider a kernel

hC(Xi, Yi, Xj, Yj) =
1

2
[I(Xi < min(Yj, Cj)) + I(Xj < min(Yi, Ci))]. (27)

Let UCR be the U-statistic estimator of the kernel hC(Xi, Yi, Xj, Yj).
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Assume that the distribution of CR satisfies the Koziol-Green model

with KR(x) = [F (x)]θ θ 6= 2.

Note that θ = 2 gives the distribution function of Y , for θ > 2, we have

KR(x) > H(x), that is, the censoring random variable is stochastically

smaller than Y and this indicates heavy censoring. The reverse is true if

θ < 2.

Under this set up we have

E[UC] =
∫ ∞

0
(1 − F 2(x))(1− F θ(x))2F̄ (x)f(x)dx

= 2[
5

12
− 1

θ + 1
+

1

θ + 2
+

1

θ + 3
− 1

θ + 4
]. (28)

E(UC) depends on unknown θ. However, note that P [Y < C] = θ
θ+2. One

can easily replace the unknown θ by its consistent estimator 2A
1−A

, where A

is the proportion of Y observations that are uncensored. Let us call this

Ê(UC].

The asymptotic variance of UC is a lengthy (there are around 50 terms)

expression involving θ and hence is not being reported. It can be estimated

consistently by replacing θ by its consisitent estimator.

We can also estimate the asymptotic variance σ2
C as follows.

σ2
C =

1

4
[E[H̄(X)K̄(X)]2 + E[G(min(Y, C))]2

+2E[(H̄(X)K̄(X))G(min(Y, C))]]− E2[UC]. (29)

Then

E[H̄(X)K̄(X)]2 =
∫

H̄2(x)K̄2(x)dG(x)

= P (Min(Y2, C2) > X1, Min(Y3, C3) > X1) (A1 say),

(30)

E[G(min(Y, C))]2 =
∫

G2(min(y, c))dH(y)dK(c)

= P [X2 < min(Y1, C1), X3 < min(Y1, C1)] (A2 say),

(31)
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E[H̄(X)K̄(X)G(min(Y, C))]

=
∫

H̄(x)K̄(x)G(min(y, c))g(x, y)k(c)dxdydc

= P [Min(Y2, C2) > X1, X3 < min(Y1, C1), Y1 > X1] (A3 say).

(32)

Probability expressions given in A1, A2, A3 can be estimated unbiasedly

by respective indicator functions. One can look at symmetric versions of

these indicator functions and define corresponding U-statistics. Thus, we

have U-statistics estimator for the asymptotic variance. Using the results

of U-statistics we have
√

n(UC−Ê(UC ]
2σ̂C

has limiting normal distribution.

6 Simulations

We carried out a simulation study to look at the power of the test and also

the level attained. First we draw random samples of X, Y with sample

size n = 50, 100, 200 from the joint pdf given by (10). Let F (x) = 1−e−x.

The procedure was repeated 1000 times. Table 1 gives the power. The

values below the line look at ∆ < 1 and hence the rejection was for

large values. This essentially takes care of the case when the system

performance improves after first failure.

¿From Table 1 we see that the distribution is slightly skew for small

sample values since the expectation of the statistic is 5/6 under the null

hypothesis, while the range is [0,1]. This results in slow convergence to

.05, the asymptotic level for the case ∆ = 1. Otherwise the power inreases

with increase in sample size and as ∆ moves away from 1.

Next we drew random samples from i.i.d exponentials with sample size

n = 50, 100, 200. Under the alternative the components continue to be

independent but not identically distributed. In this case if we are looking

for departures from the i.i.d. structure, E(U) > 5/6. Hence we reject for

large values. Table 2 reports the power when the experiment is repeated

1000 times.
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When λ1 = λ2, both components are independent and identically dis-

tributed and hence components are i.i.d. Otherwise they are independent

but not identically distributed. For all sample sizes the exact level at-

tained is close to .05. Unequal vaues of λ denote departure from i.i.d. set

up. The higher the difference between the two values of λ, the higher is

the power. Similarly, the power increases with the increase in sample size.

Finally, we generate random samples from bivariate Gumbel distribu-

tion (1960). The joint survival distribution of the components is given

by

F̄ (x, y) = exp[−λ1x − λ2y − λ3xy], x, y > 0, (33)

λ1, λ2 > 0, 0 < λ3 < λ1λ2. When λ3 = 0, the components are indepen-

dent and and have exponenential marginals. When λ1 = λ2, the two

components are identically distributed . Hence the case λ1 = λ2, λ3 = 0

correspond to the i.i.d set up and all other values indicate departure from

the i.i.d set up. Here again the rejection is for large values of the statistic.

Table 1: Power when sample from joint distribution of X, Y
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n ∆ power

50 1.0 0.061

100 1.0 0.052

200 1.0 0.044

50 1.10 0.098

100 1.10 0.119

200 1.10 0.192

50 1.20 0.191

100 1.20 0.251

200 1.20 0.395

50 1.30 0.267

100 1.30 0.412

200 1.30 0.619

50 1.40 0.391

100 1.40 0.573

200 1.40 0.830

50 1.50 0.466

100 1.50 0.733

200 1.50 0.929

50 0.90 0.118

100 0.90 0.124

200 0.90 0.184

50 0.80 0.193

200 0.80 0.507

50 0.70 0.348

100 0.70 0.562

200 0.70 0.830

100 0.60 0.821

200 0.60 0.967

50 0.50 0.768

100 0.50 0.954

200 0.50 1.00020



Table 2: Power when sample from independent exponentials

n λ1 λ2 power

50 1 1 0.049

100 1 1 0.044

200 1 1 0.049

50 1 2 0.133

100 1 2 0.182

200 1 2 0.311

50 1 3 0.359

100 1 3 0.583

200 1 3 0.860

50 1 4 0.626

100 1 4 0.875

200 1 4 0.990

50 2 4 0.133

100 2 4 0.182

200 2 4 0.311

50 4 2 0.140

100 4 2 0.191

200 4 2 0.306

50 3 1 0.349

100 3 1 0.721

100 3 1 0.830

Table 3: Power when sample from bivariate Gumbel
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n λ1 λ2 λ3 power

50 1 1 0 0.049

100 1 1 0 0.055

200 1 1 0 0.048

50 1 2 0 0.146

100 1 2 0 0.197

200 1 2 0 0.305

50 1 1 0 1 0.104

100 1 1 0.1 0.150

200 1 1 0.1 0.217

50 1 2 0.1 0.189

100 1 2 0.1 0.325

200 1 2 0.1 0.503

50 1 1 0.2 0.209

100 1 1 0.2 0.303

200 1 1 0.2 0.502

50 1 2 0.2 0.251

100 1 2 0.2 0.437

200 1 2 0.2 0.720

7 Examples

The following situations are examples of load sharing in biological and

other disciplines.

Example 1: Mantel, Bohidar and Ciminera (1977) report data on 50

male and 50 female litters, each of three rats. One rat in each litter was

drug-treated and the other two served as control animals. The records

are either on the week of tumor appearance or the week of death. To

test whether the death of a littermate affects the lifetime of the surviving

22



animal, we use the test in Section 4 for the two control animals. We delete

the litters with tumor deaths and also the litters in which both the con-

trol animals were sacrificed or died at the end of 104 weeks, the time at

which the study was ended. Thus we have 48 male litters and 22 female

litters. The values of the test statistic for the male litters is 0.044, and for

the female litters is 2.504. In case of the male litters, the null hypothesis

H0 that the first death does not affect the second death is not rejected

, whereas in case of the female litters, it is rejected even at 1% level of

significance in favor of H ′
1 : death of a littermate increases the residual

life of the surviving mate.

The above example indicates that in litter-matched case control sudies,

the lifetimes of the littermates may have to be treated as bivariate data

as in Hougaard (2000).

Example 2: We consider data from an article of Kvam and Peña

(2003) on three star players in a basketball team. The data are from

the Basketball Association franchise Boston Celtics obtined during the

second half of the 2001-2002 season. The data, given in Table 4, consist

of the game times for each player’s second personal foul for the games

in the season in which all three players started the game and committed

at least two fouls by the end. Kvam and Peña conjecture that once a

player commits two fouls (and is likely to be out of the game for a period

of time), the foul rate of the other star players will change. Either the

foul rate might decrease if all the players decide to play conservatively or

might increase if the other star players have to shoulder the responsibility

on defense and thus are more prone to foul. They consider that the three

star players compose a system and define a component failure as the event

when a player commits two fouls. Thus the failure time of a player is same

as the time-until-second-foul for the player.
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Here we consider that the system comprises of two star players and

obtain the value of the test statistic of Section 4 for the three possible

combinations.

The value of the test statistic for players I and II is -0.332 and for

players II and III, the value is 0.299. Thus in both these cases there is

no significant evidence against H0 at 1% level of significance. Whereas

for players I and III, the value of the test statistic is -1.461 , which is

significant only at 10% level in favour of H1. We may conclude that

two fouls of players I and III affect each other moderately and after one

commits two fouls the other player is quite likely to commit his second

foul sooner than he would have committed otherwise.

Example 3: For the ball bearings data given in McCool (2006), the

value of the test statistic is -2.324. Thus we reject H0 in favour of H1 :

failure of one ball bearing increases the load on the other ball bearings.

However the data are available for six systems only.

Table 4: Time until second personal foul in 28 basketball games
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Game Player Player Player Game Player Player Player

I II III I II III

1 21.02 30.22 43.43 15 42.06 23.21 45.36

2 24.25 45.54 17.19 16 28.51 33.59 16.2

3 6.555 19.47 23.28 17 34.56 32.53 40.44

4 15.35 16.37 25.4 18 40.33 15.35 28.33

5 39.08 30.32 43.53 19 27.56 46.21 28.05

6 16.2 4.16 39.52 20 9.54 36.21 28.12

7 34.59 46.44 16.33 21 27.09 11.11 23.33

8 19.1 38.4 20.17 22 40.36 33.21 17.04

9 28.22 37.43 25.41 23 41.44 36.28 19.13

10 32 45.52 39.11 24 32.23 8.17 41.27

11 11.25 19.09 11.59 25 7.53 37.31 13.43

12 17.39 25.43 22.51 26 28.34 35.58 41.48

13 28.47 31.15 2.41 27 26.32 28.02 29.33

14 23.42 31.28 40.03 28 30.47 40.4 42.13

8 Conclusions

Model proposed in (10) incorporates the changes in the performance of a

two component system due to the failure of the first component. These

models, for various choices of F , give us families of bivariate distributions

which incorporate load sharing ideas better than the existing bivariate

models as those due to Gumbel and Freund. One could also look at

nonproportional models. We are looking at nonparametric estimation of

the hazard rates of the proposed model in the presence of covariates.

On failure of one component, the surviving component may either have

to undergo extra stress, leading to stochastically shorter residual lifetimes,

or have access to extra resources, leading to longer residual lifetimes than

what is warranted under independence. The extra load on the surviving
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components is observed in most mechanical systems and also in organic

systems such as the two kidneys. On the other hand if two foraging ani-

mals have access to a fixed stock of food, then the death of one will make

all the remaining food available to the surviving animal therby reducing

the load.

Besides one could look at testing problem in context of a k component

system where the failure of a subset of size k1 (say) random units affects

the lifetime of remaining (k − k1) units. Then there is the possibility of

constructing Kolmogrov-Smirnov type tests in these situations. All these

problems are being considered and further work will be reported when

completed.

References

Basu, A. P. and Ghosh, J. K. (1980). Identifiability of distribu-

tions under competing risks and complementary risks model.

Comm. Statist. A-Theory Methods 9 , 1515–1525.

Birnbaum, Z. W. and Saunders, S. C. (1958) A statistical model

for life-length of materials. J. Amer. Statist. Assoc. 53,

151-160.

Coleman, B.D. (1958). Statistics and time dependence of math-

ematical breakdowns in fibres. J. Applied Physics 29, 968-

983.

Daniels, H. E. (1945). The statistical theory of the strength of

bundles of threads. I. Proc. R. Soc. Lond. A 183, 404-435.

Deshpande J. V. and Karia S. (1995). Confidence bounds for

the joint survival function in the dependent competing risks

setup. Commun. Statist. - Theory Meth. 24, 2315-2327.

Drummond, H., Vazquez, E., Sanchez-Colon, S., Martinez-Gomez,

M. and Hudson, R. (2000). Competition for milk in the

26



domestic rabbit: survivors benefit from littermate deaths.

Ethology 106, 511-526.

Durham, S. D.and Lynch, J. D.(2000). A threshold representa-

tion for the strength distribution of a complex load sharing

system. J. Statist. Plann. Inference 83 , 25-46.

Freund, J. E. (1961). A bivariate extension of the exponential

distribution. J. Am. Statist. Assoc. 56, 971-977.

Gross, A.J., Clark, V.A. and Liu, V. (1971). Estimation of sur-

vival parameters when one of two organs must function for

survival. Biometrics 27, 369-377.

Gumbel, J. E. (1960). Bivariate exponential distributions. J.

Amer. Statist. Assoc. 55, 698-707.

Hougaard, P. (2000). Analysis of Multivariate Survival Data.

Springer. Kim, H. and Kvam, P. H. (2004). Reliability es-

timation based on system data with an unknown load share

rule. ⁀Lifetime Data Anal. 10 , 83-94.

Kvam, P.H. and Pena, E.A. (2003). Estimating load sharing

properties in a dynamic reliability system.

www.stat.sc.edu/ pena/TechReports/KvamPena2003.pdf.

Kvam, P.H. and Pena, E.A. (2005). Estimating load sharing

properties in a dynamic reliability system. J. Amer. Statist.

Assoc. 100, 263-272.

Lynch, J. D.(1999) . On the joint distribution of component fail-

ures for monotone load-sharing systems. J. Statist. Plann.

Inference 78 78, 13-21.

Mantel N., Bohidar, N. R. and Ciminera J. L. (1977). Mantel-

Haenszel analysesf litter-matched time to response data, with

modifications for recovery of interlitter information. Cancer

Res. 37, 3863-3868.

27



McCool, J. I. ( 2006). Testing for dependency of failure times in

life testing. Technometrics 48, 41-48.

Peterson, A. V. (1976). Bounds for the joint distribution func-

tion with fixed sub-distribution functions:Application to com-

peting risks. Proceedings of the National Academy of Science,

USA 73, 11-13.

Phoenix, S. L. (1978). The asymptotic time to failure of a me-

chanical system of parallel members. Siam J. Appl. Math.

34, 227-246.

Rosen, B.W. (1964). Tensile failure of fibrous composites. AIAA

J. 2, 1985-1991.

Serfling, R. J. (1980). Approximation theorems of mathematical

statistics. John Wiley, New York.

28


