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Abstract

In this paper we propose a modified Newton-Raphson method to obtain super efficient

frequency estimators of sinusoidal signals in presence of stationary noise. It is observed that

if we start from an initial estimator with convergence rate Op(n
−1) and use the Newton-

Raphson algorithm with proper step factor modification, then it produces super efficient

frequency estimator in the sense it has asymptotic variance which is lower than the asymp-

totic variance of the least squares estimator. The proposed frequency estimator is consistent

and have the optimum rate of convergence, namely Op(n
−

3

2 ), which is same as the least

squares estimator. Monte Carlo simulations are performed to observe the performances of

the proposed estimator for different sample sizes and for different models. The results are
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quite satisfactory. One real data set has been analyzed for illustrative purpose.
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1 Introduction

In this paper we consider the problem of estimating the unknown parameters of the following

sinusoidal signals observed in presence of stationary noise. The model can be described as

follows;

y(t) = A cos(ωt) + B sin(ωt) + Z(t); t = 1, . . . , n. (1)

Here A, B are unknown amplitudes and ω is known as the frequency. The amplitudes are

unknown and they belong to (−∞,∞) and the frequency ω is also unknown and it lies in

(0, π). The additive noise {Z(t)} is a sequence of stationary random variables with mean zero

and finite variance and it satisfies the following Assumption 1.

Assumption 1: The random variable {Z(t)} has the following linear structure

Z(t) =

∞∑

k=−∞

a(k)e(t − k), (2)

where {e(t)} is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero and finite variance σ2. The real valued sequence {a(t)} satisfies the following

condition
∞∑

k=−∞

|a(k)| < ∞. (3)
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The main problem is to estimate the unknown amplitudes and frequency, given a sample of

size n, namely {y(1), . . . , y(n)}. It is known, see Walker [16], that if the frequency (non-linear

parameter) is estimated with the convergence rate Op(n
−

3

2 ), here Op(n
−δ) means nδOp(n

−δ)

is bounded in probability, then the amplitudes (linear parameters) can be estimated efficiently

with the convergence rate Op(n
−

1

2 ). In this paper we mainly address the efficient frequency

estimator, which has the rate of convergence Op(n
−

3

2 ) but it has the asymptotic variance smaller

than the asymptotic variance of the least squares estimator (LSE), so we call it as super efficient

frequency estimator.

This is an important, age old and well known to be a difficult problem. This particular

model or some of its generalizations have been used in more or less all areas of science and

engineering. Fisher first discussed this problem in 1929, see Fisher [5]. Since then several

articles have been published establishing the theoretical properties and developing different

numerical algorithms, see for example Hannan [6], Walker [16], Bai et al. [2], Smyth [13], the

list of references by Stoica [15], Bai et al. [1], Nandi and Kundu [8], Song and Li [14] for some

recent developments.

There are two important aspects of this problem. The first one is the properties of the LSEs

of the unknown parameters. Interestingly, unlike other non-linear regression model, the rate of

convergence of the LSE of the frequency is Op(n
−

3

2 ), but the rate of convergence of the LSEs

of the amplitudes is Op(n
−

1

2 ), see for example Hannan [6] or Walker [16]. The periodogram

maximizers without the restriction on the Fourier frequencies (ω is Fourier frequency if ω = 2πk
n

,

for some integer k in (1, 2, . . . , [
N

2
])) also provide the optimum convergence rate Op(n

−
3

2 ).

Moreover, it is known that the LSE of the frequency and the periodogram maximizer are

asymptotically equivalent.

The second important aspect of this particular problem is to find the LSEs of the unknown

parameters. It is known, see Rice and Rosenblatt [11], that the least squares surface is highly

non-linear. The period of y(t) becomes small as n becomes large and hence the oscillation of the
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sum of the residual squares increases. Thus there will be too many local minimizers. Therefore,

very good (close enough to the true values) initial estimates are needed for any iterative process

to converge. Moreover, the periodogram maximizer over Fourier frequencies does not work very

well as the convergence rate is only Op(n
−1), see Rice and Rosenblatt [11], whereas the initial

estimate with convergence rate Op(n
−1−δ) (δ > 0) is needed for most of the iterative process

to work satisfactorily. It is well known, see Smyth [13], that the standard Newton-Raphson

algorithm can not be used in this case, because often it does not converge or it may converge

to a local optimum rather than the global optimum. Several techniques are available in the

literature for example Pisarenko [9], Chan et al. [4] which attempt to find computationally

efficient algorithm for estimating the frequency, but these procedures produce estimates having

convergence rate Op(n
−

1

2 ). Recently, Bai et al. [1], see also Nandi and Kundu [8], proposed

an efficient estimation procedure of the frequency, which has the optimum convergence rate

Op(n
−

3

2 ) and it convergences within a fixed number of iterations.

The main aim of this paper is to provide a modified Newton-Raphson algorithm for esti-

mating the unknown frequency with the optimum rate of convergence. It is known that the

LSE of the frequency can be obtained by maximizing a quadratic form involving the data (see

Sec. 2.1) and the unknown frequency. We use the Newton-Raphson algorithm with a step

factor modification. Although, in general the Newton-Raphson algorithm does not work well

for this problem, but with the step factor modification it works very well. It is observed that if

we start the iterative process from an estimator which has the convergence rate Op(n
−1), then

it produces super efficient frequency estimator, with the convergence rate Op(n
−

3

2 ) and having

smaller asymptotic variance than the LSE. The results can be easily extended to the multiple

sinusoids using sequential estimation method.

The rest of the paper is organized as follows. In section 2, we briefly describe the least

squares and approximate least squares procedures for estimating the frequency. In Section 3,

we provide the proposed modified Newton-Raphson algorithm. In Section 4, we consider the
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case when more than one frequency is present. Simulation results are presented in Section 5.

For illustrative purpose, one data set has been analyzed in Section 6, and finally we conclude

the paper in Section 7. All the necessary proofs are presented in the Appendix.

2 Estimating the Unknown Parameters

In the literature there are two well known methods available for estimating the unknown fre-

quency of the model (1). One is the standard least squares method and the other is the

periodogram maximizer or known as the approximate least squares method. We will briefly

describe them here for further development.

2.1 Least Squares Method

The LSEs of A, B and ω can be obtained by minimizing

Q(A,B, ω) =

n∑

t=1

(y(t) − A cos(ωt) − B sin(ωt))2 (4)

with respect to A, B and ω. We do it in two stages, first we minimize with respect to (w.r.t.)

A and B for fixed ω and then minimize w.r.t. ω. If we use the following notation

X =




cos(ω) sin(ω)

...
...

cos(nω) sin(nω)




, Y = (y(1), . . . , y(n))T , (5)

then minimizing Q(A,B, ω) w.r.t. A, B and ω boils down to maximize R(ω) w.r.t. ω, where

R(ω) = Y T X(XT X)−1XT Y. (6)

The matrix X depends on ω, but we do not make it explicit unless necessary. If ω̂, maximizes

(6), then the estimators of A and B can be obtained using the separable regression technique
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of Richards [12] as

(Â B̂)T = (X(ω̂)T X(ω̂))−1X(ω̂)T Y. (7)

Most of the numerically efficient algorithms, for example the methods proposed by Bresler and

Macovski [3], Kumaresan et al.[7], and Smyth [13] attempt to maximize (6), which naturally

saves computational times as the optimization takes place in one dimension.

2.2 Approximate Least Squares Method

The approximate LSE of the frequency can be obtained by maximizing the periodogram func-

tion I(ω), w.r.t. ω ∈ (0, π), when I(ω) is defined as follows;

I(ω) =

∣∣∣∣∣
1

n

n∑

t=1

y(t)e−iωt

∣∣∣∣∣

2

. (8)

Once the periodogram maximizer or the approximate LSE of ω, say ̂̂ω is obtained, the estimators

of the amplitudes can easily be obtained as before. It is known that, see Hannan [6], Walker

[16] that both ω̂ and ̂̂ω are consistent estimators of ω and they are asymptotically equivalent,

with the following asymptotic distributions;

n
3

2 (ω̂ − ω)
d

−→ N (0,
24σ2c

A2 + B2
), (9)

n
3

2 (̂̂ω − ω)
d

−→ N (0,
24σ2c

A2 + B2
), (10)

where

c =

∣∣∣∣∣

∞∑

k=−∞

a(k)eikω

∣∣∣∣∣

2

=

∣∣∣∣∣

∞∑

k=−∞

a(k) cos(kω)

∣∣∣∣∣

2

+

∣∣∣∣∣

∞∑

k=−∞

a(k) sin(kω)

∣∣∣∣∣

2

, (11)

‘
d

−→’ means convergence in distribution and N (a, b) means normal distribution with mean a

and variance b. In next section, we modify the Newton-Rhapson Algorithm using the set-up of

this section.
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3 Modified Newton-Raphson Algorithm

Our aim is to maximize R(ω) w.r.t. ω and we propose the modified Newton-Raphson algorithm

as follows. If ω̂0 is an initial estimate of ω, then the next iterate ω̂1 is obtained as

ω̂1 = ω̂0 −
1

4
×

R′(ω̂0)

R′′(ω̂0)
, (12)

similarly, ω̂2 can be obtained from ω̂1 by replacing ω̂0 with ω̂1 in (12). Here R′(ω̂0) and

R′′(ω̂0) are the first and second derivatives of R(ω) respectively, evaluated as ω = ω̂0. Note

that the iterative process proposed in (12) is the Newton-Raphson algorithm with the step

factor modification
1

4
. The standard Newton-Raphson algorithm in this case is same as (12),

without the factor
1

4
. So we update the estimator with four times smaller step factor. It is

well known that the standard Newton-Raphson algorithm does not work well for this model.

Most of the times it does not even converge. Interestingly, with the step factor modification

1

4
, the algorithm works very well and it produces super efficient frequency estimator. We shall

see in section 5, that this modification prevents the procedure to converge to a local maxima

or diverge. The reason to choose the factor
1

4
will be clear from Theorem 1 whose proof is

provided in the Appendix.

Theorem 1. Suppose ω̂0 is an estimate of ω and ω̂0 − ω = Op(n
−1−δ), where δ ∈

(
0,

1

2

]
. If

ω̂ = ω̂0 −
1

4
×

R′(ω̂0)

R′′(ω̂0)
, (13)

then

(a) ω̂ − ω = Op(n
−1−3δ) if δ ≤ 1

6

(b) n
3

2 (ω̂ − ω)
d

−→ N

(
0,

6σ2c

A2 + B2

)
if δ > 1

6 ,

here c is same as defined in (11).
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Implementation: We start the process with an initial estimator with the convergence rate

Op(n
−1) and a fraction of the available data points. Note that getting an initial estimator of

the frequency with the convergence rate Op(n
−1) is not difficult. For example, the argument

maximum of the periodogram function I(ω) as defined in (8) or the function R(ω) as defined

in (6), over Fourier frequencies will produce an initial estimator with the required convergence

rate.

Now based on part (a) of Theorem 1, and using similar ideas as of Bai et al. [1] or Nandi

and Kundu [8], from an estimator with the convergence rate Op(n
−1), it is possible to get an

estimator with the convergence rate Op(n
−1−δ) for δ >

1

6
. Therefore, using part (b) of Theorem

1, it follows that the iterative process (12) will produce frequency estimate whose asymptotic

variance is lower than the asymptotic variance of the least squares estimate.

We propose the following algorithm. Find the argument maximum of R(ω) at the Fourier

frequency which has the convergence rate Op(n
−1). Suppose it is ω̂0. Take n1 = n

6

7 , and

consider

ω̂1 = ω̂0 −
1

4
×

R′(ω̂0)

R′′(ω̂0)
.

Here R′(ω̂0) and R′′(ω̂0) are computed based on sample size n1. Since, ω̂0 − ω = Op(n
−1) and

n1 = n
6

7 , therefore, n−1 = n
−

7

6

1 = n
−1− 1

6

1 and ω̂0 − ω = Op(n
−1− 1

6

1 ). Now based on the result

(a) of Theorem 1, we have

ω̂1 − ω = Op(n
−1− 1

2

1 ) = Op(n
−

3

2
×

6

7 ) = Op(n
−

9

7 ) = Op(n
−1− 2

7 ).

Since
2

7
>

1

6
, therefore, we will be able to apply part (b) of Theorem 1 repeatedly to produce

super efficient frequency estimator. That is, using the same sample size n, repeat

ω̂k+1 = ω̂k −
1

4
×

R′(ω̂k)

R′′(ω̂k)
.

with k = 1, 2, . . . until a suitable stopping criterion is satisfied.

Remark 1. In equation (7), let us write (Â, B̂)T = (A(ω̂), B(ω̂))T . Now expanding A(ω̂) at
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ω0 by Taylor series, we have

A(ω̂) − A(ω0) = (ω̂ − ω0)A′(ω̄) + o(n2),

where A′(ω̄) is the first derivative of A(ω) at ω̄, ω̄ is a point between ω̂ and ω0. Here ω̂ can

be either the least squares estimator or the estimator obtained by modified Newton Raphson

method. Now comparing the variances (asymptotic) of the two estimators of ω, it is clear that

the asymptotic variance of the corresponding estimator of A is four times less than that of the

LSE. The same is true for the estimator of B.

Remark 2. It is well-known that the Newton-Raphson algorithm in its original form does not

work well for sinusoidal model. But interestingly, with the step factor modification, it not only

provides estimator with the same rate of convergence as the LSE but has asymptotic variance

less than that of the LSE.

Remark 3. The frequency parameter of the sinusoidal model with stationary error has the

Cramer-Rao Lower Bound (CRLB) as 24σ2c
A2+B2 . In this paper, we propose an estimator obtained

iteratively which has the asymptotic variance lower than the CRLB.

So we think that the novelty of this work lies on the fact that it modifies the Newton-

Raphson method in such a way that it produces super-efficient estimator in case of sinusoidal

model, usually which may not even converge.

4 Multiple Sinusoids

In this section we consider estimating the unknown parameters for multiple sinusoidal model,

which is the usual case in practice. We consider the following model;

y(t) =

p∑

j=1

[Aj cos(ωjt) + Bj sin(ωjt)] + Z(t); t = 1, . . . , n. (14)
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Here Aj’s and Bj ’s are unknown amplitudes, can take any arbitrary real value and ωj’s are

unknown frequencies and ∈ (0, π). It is assumed that ωj’s are distinct and the number of com-

ponents p is known in advance. The error random variable Z(t) satisfies the same assumption

as before. For identifiably purposes, it is assumed that

A2
1 + B2

1 ≥ . . . ≥ A2
p + B2

p , (15)

moreover if for any 1 ≤ k ≤ p − 1, A2
k + B2

k = A2
k+1 + B2

k+1, then it is assumed ωk > ωk+1.

In this section also we mainly consider the estimation of the unknown frequencies ω1, . . . , ωp

from the given sample {y(1), . . . , y(n)}, because once we have estimates of the frequencies,

the estimates of the amplitudes can be obtained using the separable regression technique of

Richards [12] as before. We use the sequential estimation procedure to estimate the unknown

parameters if more than one frequency is present. The procedure can be described as follows.

If ω̂0 is the maximizer of R(ω) over Fourier frequencies, then estimate ω1 by ω̂1 using the

algorithm described in the previous section. It can be shown that

n
3

2 (ω̂1 − ω1)
d

−→ N

(
0,

6σ2c

A2
1 + B2

1

)
.

Now using (7) estimate Â1 and B̂1 replacing ω̂ by ω̂1. Now consider the following modified

data taking out the effect of the frequency ω1 as follows;

ỹ(t) = y(t) − Â1 cos(ω̂1t) − B̂1 sin(ω̂1t), t = 1, . . . , n. (16)

Now applying the same procedure on the modified data {ỹ(1), . . . , ỹ(n)} we estimate ω2. Re-

peating the procedure p times we can obtain super efficient estimates of the frequencies. The

method automatically gives an estimate of the number of component, p. If we repeat the above

procedure say q times and we are left with a pure random sequence, then q is an estimate of p.

This has been considered in Data Analysis section to analyze one real dataset.
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5 Numerical Experiment

In this section, we present some experimental results to observe how the proposed algorithm

performs for different sample sizes and for different models. We use the random deviate gen-

erator RAN2 of Press et al. [10]. All the programs are written in FORTRAN and they can be

obtained from the corresponding author on request. We consider the following two models;

• Model 1: y(t) = 2 cos(0.5t +
π

4
) + Z(t).

• Model 2: y(t) = 2 cos(1.5t +
π

3
) + 2 cos(0.5t +

π

4
) + Z(t).

The error random variable Z(t) is an autoregressive process on order one, of the form

Z(t) = .5 Z(t − 1) + e(t),

where {e(t)} is a sequence of i.i.d. Gaussian random variables with mean zero and variance

σ2. We consider different sample sizes and different error variances, namely n = 100, 200, 300,

400, 500, 1000 and σ = 0.25, 0.50, 0.75, 1.00, 1.50.

In each case we generate the sample from the given model and compute the initial estimate

from R(ω) as discussed in section 3. We compute the final estimate ω̂ for Model 1, using

the iterative process proposed in (12). We stop the iterative process if the absolute difference

between the consecutive iterates is less than
σ2

n3
. It is observed that in most of the cases, the

iteration converges within 8-10 iterations. In case on Model 2, we repeat the process again after

removing the effect of the first frequency to estimate the parameters of second component. We

replicate the process 1000 times and compute the average estimates (AEs) and their mean

squared errors (MSEs). For comparison purposes we report the asymptotic variances of the

least squares estimators (ASV) as given in (9) as well as the proposed asymptotic variance

(ASVP) as provided in part (b) of Theorem 1. We report results for frequencies of both the

models considered here. The results for Model 1 are reported in Tables 2 and for Model 2 in
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Tables 3 and 4. Following remark 1, we expect that the MSEs of Â and B̂ may be smaller than

the corresponding CRLBs. So we have reported the results of A in case of Model 1 in Table 5.

Similar trend has been observed in other cases, so they are not reported here.

Some of the points are quite clear from Tables 2-5. It is observed that as the sample size

increases or the variance decreases the MSEs and the biases decrease for different parameter

estimators of both the models. It verifies the consistency properties of the proposed estimates.

Moreover, the MSEs of the proposed estimates are usually smaller than the asymptotic vari-

ances of the LSEs and we expect them that way following Theorem 1. This is observed in case

of frequencies as well as the linear parameters (Remark 1) . So the improvement is achiev-

able in practice. Since the implementation of the proposed iterative procedure is quite simple,

therefore, it can be used quite effectively for data analysis purpose.

6 Data Analysis

In this section we use the multiple sinusoidal model to study a periodic data. The data represent

the rainfall of the homogeneous Indian monthly rainfall data. The data were collected from

the website (http://www.tropmet.res.in/) of the Indian Institute of Tropical Meteorology and

presented in Fig. 1. The original data set contains 1608 data points. To understand how good

the fit is we have considered a subset of 200 data points to demonstrate. Actual fitting was

done for the whole data set. The initial estimates are obtained by maximizing the function

R(ω) over the Fourier frequencies. After obtaining the estimate of ω1, we use the proposed

method and obtain the final estimate of ω1. The stopping criterion used here is same as the

one considered in simulation study. We stop the iterative process if the absolute difference

between two iterates is less n−3 which is approximately 2.5 × 10−10 for the given sample size.

Then calculate the corresponding amplitudes and remove the effect of ω1 from y(t). Let us

denote the resulting modified y(t) as ỹ(t) (as in equation (16)). Now assuming ỹ(t) as the data,
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Table 1: Parameter estimates of the homogeneous Indian rainfall data

A B ω

-0.773770034 -0.810867786 0.523574177

0.0699929297 -0.207292303 1.57058741

0.0497323982 0.091640681 2.09340777

0.0248339158 0.640113711 1.04710327

0.00398120238 -0.107113108 2.61765981

we repeat the same procedure and subsequently, maximizing R(ω) step by step, we estimate

all the frequencies present in the data and continue the process till all significant periodic

components are estimated and a pure random quantity is left. We observe that there are

five significant frequencies present. The random part can be approximated as a stationary

process which is according to the model assumption. The data were mean-corrected and scaled

by the square root of the estimated variance to estimate the parameters. Then the above

stopping criterion has been used. The corresponding estimates are present in Table 1. The

fitted values are calculated considering the scale and the mean and are given in Fig. 2. For

better understanding and comparison, we have plotted the observed values also in the same

Figure. The fitted values match quite well with the observed y(t).

7 Conclusions

In this paper we have considered the estimation of the unknown parameters of a classical model,

namely the sum of sinusoidal model. We have mainly discussed the effective estimation of the

unknown frequencies. Although, it has been criticized heavily in the literature against the use of

Newton-Raphson method for computing the least squares estimators of the unknown frequencies
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Figure 1: Homogeneous Indian Monthly Rainfall Data.
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Figure 2: Fitted and Original Homogeneous Monthly Rainfall Data.
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of this model, but in this paper it is observed that if we use the Newton-Raphson method with

proper step factor modification, the method works very well. Theoretically it is observed that

the asymptotic variance of the proposed frequency estimator is smaller than the asymptotic

variance of the corresponding LSE. The method can be easily used for multiple sinusoids

also and it does not require higher dimensional optimization. It is observed in the numerical

experiments that the MSEs of the proposed estimators are often less than the asymptotic

variance of the LSEs. Since the iteration converges very quickly, it can be used quite effectively

for on line implementation purpose.

Appendix

To prove this result, we use the following notation;

D = diag{1, 2, . . . , n}, E =

[
0 1

−1 0

]
,

.

X=
d

dω
X = DXE,

..

X=
d2

dω2
= −D2X.

Note that EE = −I, EET = I = ET E and

d

dω
(XT X)−1 = −(XT X)−1[ẊT X + XT Ẋ ](XT X)−1.

Now we will compute R′(ω) and R′′(ω).

1

2
R′(ω) = Y T Ẋ(XT X)−1XT Y − Y T X(XT X)−1ẊT X(XT X)−1XT Y.

Similarly,

1

2
R′′(ω) = Y T Ẍ(XT X)−1XT Y − Y T Ẋ(XT X)−1(ẊT X + XT Ẋ)(XT X)−1XT Y

+ Y T Ẋ(XT X)−1ẊT Y − Y T Ẋ(XT X)−1ẊT X(XT X)−1XT Y

+ Y T X(XT X)−1(ẊT X + XT Ẋ)(XT X)−1ẊT X(XT X)−1XT Y

− Y T X(XT X)−1(ẌT X)(XT X)−1XT Y − Y T X(XT X)−1(ẊT Ẋ)(XT X)−1XT Y

+ Y T X(XT X)−1ẊT X(XT X)−1(ẊT X + XT Ẋ)(XT X)−1XT Y

− Y T X(XT X)−1ẊT X(XT X)−1ẊT Y.
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Now we should like to approximate
1

n3
R′′(ω̃) for large n. We are assuming that ω̃ − ω =

Op(n
−1−δ), therefore, for large n, (

1

n
X(ω̃)T X(ω̃))−1 = 2 I + Op(

1

n
). Therefore, for large n,

1

2n3
R′′(ω̃) =

2

n4
Y T ẌXT Y −

4

n5
Y T Ẋ(ẊT X + XT Ẋ)XT Y +

2

n4
Y T ẊẊT Y

−
4

n5
Y T ẊẊT XXT Y +

8

n6
Y T X(ẊT X + XT Ẋ)ẊT XXT Y

−
4

n5
Y T XẌT XXT Y −

4

n5
Y T XẊT ẊXT Y +

8

n6
Y T XẊT X(ẊT X + XT Ẋ)XT Y

−
4

n5
Y T XẊT XẊT Y + Op(

1

n
).

Substituting Ẋ and Ẍ in terms of D and X, we obtain

1

2n3
R′′(ω̃) = −

2

n4
Y T D2XXT Y −

4

n5
Y T DXE(ET XT DX + XT DXE)XT Y

+
2

n4
Y T DXEET XT DY −

4

n5
Y T DXEET XT DXXT Y

+
8

n6
Y T X(ET XT DX + XT DXE)ET XT DXXT Y +

4

n5
Y T XXT D2XXT Y

−
4

n5
Y T XET XT D2XEXT Y +

8

n6
Y T XET XT DX(ET XT DX + XT DXE)XT Y

−
4

n5
Y T XET XT DXET XT DY + Op(

1

n
).

We will be using the following facts for 0 < ω < π,

n∑

t=1

t cos2(ωt) =
n2

4
+ O(n),

n∑

t=1

t sin2(ωt) =
n2

4
+ O(n).

n∑

t=1

cos2(ωt) =
n

2
+ o(n),

n∑

t=1

sin2(ωt) =
n

2
+ o(n).

n∑

t=1

t2 cos2(ωt) =
n3

6
+ O(n2),

n∑

t=1

t2 sin2(ωt) =
n3

6
+ O(n2).

and

1

n2
Y T DX =

1

4
(A B)+Op(

1

n
),

1

n3
Y T D2X =

1

6
(A B)+Op(

1

n
),

1

n3
XT D2X =

1

6
I +Op(

1

n
)

1

n
XT Y =

1

2
(A B)T + Op(

1

n
),

1

n2
XT DX =

1

4
I + Op(

1

n
) EE = −I,EET = I,

Therefore,

1

2n3
R′′(ω̃) = (A2+B2)

[
−

1

6
− 0 +

1

8
−

1

8
+ 0 +

1

6
−

1

6
+ 0 +

1

8

]
+Op(

1

n
) = −

1

24
(A2+B2)+Op(

1

n
)
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Now we will consider the two terms of the numerator separately. First consider

1

n3
Y T X(XT X)−1ẊT X(XT X)−1XT Y . Note that

1

n3
Y T X(XT X)−1ẊT X(XT X)−1XT Y =

1

n3
Y T X(XT X)−1ET XT DX(XT X)−1XT Y

=
1

n3
Y T X(2I + Op(

1

n
))ET (

1

4
I + Op(

1

n
))(2I + Op(

1

n
))XT Y

=
1

n3
Y T XET XT Y + Op(

1

n
) = Op(

1

n
).

Note that
1

n3
Y T Ẋ(XT X)−1XT Y =

2

n4
Y T DXEXT Y . Now we consider Y T DXEXT Y .

Y T DX(ω̃)EXT (ω̃)Y =

(
n∑

t=1

y(t)t cos(ω̃t)

)(
n∑

t=1

y(t) sin(ω̃t)

)

−

(
n∑

t=1

y(t)t sin(ω̃t)

)(
n∑

t=1

y(t) cos(ω̃t)

)

If δ ∈

(
0,

1

2

]
, then along the same line as Bai et al. [1] (see also Nandi and Kundu [8]), it

can be shown that,

n∑

t=1

y(t) cos(ω̃t) =
n

2

(
A + Op(n

−δ)
)

,

n∑

t=1

y(t) sin(ω̃t) =
n

2

(
B + Op(n

−δ)
)

.

Now if we consider;

n∑

t=1

y(t)te−iω̃t =

n∑

t=1

(A cos(ωt) + B sin(ωt) + X(t)) te−iω̃t

=
1

2
(A − iB)

n∑

t=1

t ei(ω−ω̃)t +
1

2
(A + iB)

n∑

t=1

t e−i(ω+ω̃)t +
n∑

t=1

X(t)te−iω̃t

It has been shown in Bai et al. [1] that

n∑

t=1

t e−i(ω+ω̃)t = Op(n),

and

n∑

t=1

t ei(ω−ω̃)t =

n∑

t=1

t + i(ω − ω̃)

n∑

t=1

t2 −
1

2
(ω − ω̃)2

n∑

t=1

t3 −
1

6
i(ω − ω̃)3

n∑

t=1

t4+

1

24
(ω − ω̃)4

n∑

t=1

t5ei(ω−ω∗)t
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Note that

1

24
(ω − ω̃)4

n∑

t=1

t5ei(ω−ω∗)t = Op(n
2−4δ).

Choose L large enough such that Lδ > 1 and using the Taylor series expansion of e−iω̃t we

obtain,

n∑

t=1

X(t)te−iω̃t =

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)te−iω̃t

=
∞∑

k=−∞

a(k)
n∑

t=1

e(t − k)te−iωt +
∞∑

k=−∞

a(k)
L−1∑

l=1

(−i(ω̃ − ω))l

l!

n∑

t=1

e(t − k)tl+1e−iωt

+
∞∑

k=−∞

a(k)
θ(n(ω̃ − ω))L

L!

n∑

t=1

t|e(t − k)| (here |θ| < 1)

=

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)te−iωt +

L−1∑

l=1

Op(n
−(1+δ)l)Op(n

l+ 3

2 ) +

∞∑

k=−∞

a(k)Op(n
5

2
−Lδ)

=

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)te−iωt + Op(n
5

2
−Lδ)

Therefore,

n∑

t=1

y(t)t cos(ω̃t) =
1

2

[
A

(
n∑

t=1

t −
1

2
(ω − ω̃)2

n∑

t=1

t3

)
+ B

(
n∑

t=1

(ω − ω̃)t2 −
1

6
(ω − ω̃)3

n∑

t=1

t4

)]

+
∞∑

k=−∞

a(k)
n∑

t=1

e(t − k)t cos(ωt) + Op(n
5

2
−Lδ) + Op(n) + Op(n

2−4δ).

Similarly,

n∑

t=1

y(t)t sin(ω̃t) =
1

2

[
B

(
n∑

t=1

t −
1

2
(ω − ω̃)2

n∑

t=1

t3

)
− A

(
n∑

t=1

(ω − ω̃)t2 −
1

6
(ω − ω̃)3

n∑

t=1

t4

)]

+

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)t sin(ωt) + Op(n
5

2
−Lδ) + Op(n) + Op(n

2−4δ).
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Therefore,

ω̂ = ω̃ −
1

4

R′(ω̃)

R′′(ω̃)

= ω̃ −
1

4

1
2n3 R′(ω̃)

− 1
24(A2 + B2) + Op(

1
n
)

= ω̃ −
1

4

2
n4 Y T DXEXT Y

− 1
24(A2 + B2) + Op(

1
n
)

= ω̃ + 12
1
n4 Y T DXEXT Y

(A2 + B2) + Op(
1
n
)

= ω̃ + 12
1

4n3 (A2 + B2)
{
(ω − ω̃)

∑n
t=1 t2 − 1

6(ω − ω̃)3
∑n

t=1 t4
}

(A2 + B2) + Op(
1
n
)

+
6

(A2 + B2)n3 + Op(
1
n
)

[
B

∞∑

k=−∞

a(k)
n∑

t=1

e(t − k)t cos(ωt) + A

∞∑

k=−∞

a(k)
n∑

t=1

e(t − k)t sin(ωt)

]

+ Op(n
−

1

2
−Lδ) + Op(n

−2) + Op(n
−1−4δ)

= ω + (ω − ω̃)Op(n
−2δ)

+
6

(A2 + B2)n3 + Op(
1
n
)

[
B

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)t cos(ωt) + A

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)t sin(ωt)

]

+ Op(n
−

1

2
−Lδ) + Op(n

−2) + Op(n
−1−4δ)

Therefore, if δ ≤
1

6
, then clearly ω̂ − ω = Op(n

−1−3δ), and if δ > 1
6 , then

n
3

2 (ω̂ − ω)
d
=

6n−
3

2

(A2 + B2)

[
B

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)t cos(ωt) + A

∞∑

k=−∞

a(k)

n∑

t=1

e(t − k)t sin(ωt)

]

=
6n−

3

2

(A2 + B2)

[
B

n∑

t=1

X(t)e(t − k)t cos(ωt) + A

n∑

t=1

X(t)e(t − k)t sin(ωt)

]

d
−→ N

(
0,

6σ2c

A2 + B2

)
.
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Table 2: Model 1: The average estimates (AEs), the mean squared errors (MSEs), the asymptotic variances of the LSE (ASVs) and the

asymptotic variances of the modified Newton-Raphson method (ASVPs) of ω̂, are reported.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ = .25

AE .499987 .499995 .499998 .499999 .499999 0.500000

MSE 6.93174e-7 9.04893e-8 2.61876e-8 1.13173e-8 5.75471e-9 5.27773e-10

ASV 1.07958e-6 1.34947e-7 3.99844e-8 1.68684e-8 8.63662e-9 1.07958e-9

ASVP 2.69894e-7 3.37368e-8 9.99609e-9 4.21710e-9 2.15916e-9 2.69894e-10

σ = .50

AE .499964 .499988 0.499997 .499998 .499997 .500000

MSE 2.78071e-6 3.62227e-7 1.04880e-7 4.52979e-8 2.30361e-8 2.11131e-9

ASV 4.31831e-6 5.39789e-7 1.59937e-7 6.74736e-8 3.45465e-8 4.31831e-9

ASVP 1.07958e-6 1.34947e-7 3.99844e-8 1.68684e-8 8.63662e-9 1.07958e-9

σ = .75

AE .499930 .499980 .499995 .499996 .499996 .500000

MSE 6.30149e-6 8.17229e-7 2.36489e-7 1.02050e-7 5.19003e-8 4.75294e-9

ASV 9.71620e-6 1.21452e-6 3.59859e-7 1.51816e-7 7.77296e-8 9.71620e-9

ASVP 2.42905e-6 3.03631e-7 8.99648e-8 3.79539e-8 1.94324e-8 2.42905e-9

σ = 1.0

AE .499885 .499971 .499993 .499994 .499994 .499999

MSE 1.13361e-5 1.45972e-6 4.21734e-7 1.81773e-7 9.24465e-8 8.45772e-9

ASV 1.72732e-5 2.15916e-6 6.39750e-7 2.69894e-7 1.38186e-7 1.72732e-8

ASVP 4.31831e-6 5.39789e-7 1.59937e-7 6.74736e-8 3.45465e-8 4.31831e-9

σ = 1.5

AE .499761 .499948 .499989 .499989 .499990 .499999

MSE 2.65572e-5 3.33704e-6 9.57806e-7 4.11432e-7 2.09206e-7 1.90909e-8

ASV 3.88648e-5 4.85810e-6 1.43944e-6 6.07262e-7 3.10918e-7 3.88648e-8

ASVP 9.71620e-6 1.21452e-6 3.59859e-7 1.51816e-7 7.77296e-8 9.71620e-9
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Table 3: Model 2: The average estimates (AEs), the mean squared errors (MSEs), the asymptotic variances of the LSE (ASVs) and the

asymptotic variances of the modified Newton-Raphson method (ASVPs) of ω̂1, are reported.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ = .25

AE 1.500656 1.500252 1.500099 1.500019 1.499985 1.500000

MSE 6.95725-7 9.87144e-8 1.87342e-8 4.21747e-9 2.28201e-9 2.46321e-10

ASV 6.25727e-7 7.82159-8 2.31751e-8 9.77699e-9 5.00582e-9 6.25727e-10

ASVP 1.56432e-7 1.95540e-8 5.79377e-9 2.44425e-9 1.25145e-9 1.56432e-10

σ = .50

AE 1.500648 1.500253 1.500100 1.500019 1.499985 1.500000

MSE 1.48463e-6 2.05632e-7 4.56039e-8 1.57820e-8 8.46078e-9 9.85326e-10

ASV 2.50291e-6 3.12864e-7 9.27003e-8 3.91079e-8 2.00232e-8 2.50291e-9

ASVP 6.25727e-7 7.82159e-8 2.31751e-8 9.77699e-9 5.00582e-9 6.25727e-10

σ = .75

AE 1.500639 1.500254 1.500100 1.500019 1.499985 1.500000

MSE 2.81215e-6 3.83646e-7 9.03823e-8 3.50692e-8 1.87605e-8 2.21783e-9

ASV 5.63154e-6 7.03943e-7 2.08576e-7 8.79929e-8 4.50524e-8 5.63154e-9

ASVP 1.40789e-6 1.75986e-7 5.21439e-8 2.19982e-8 1.12631e-8 1.40789e-9

σ = 1.0

AE 1.500628 1.500254 1.500101 1.500018 1.499985 1.500000

MSE 4.68938e-6 6.33231e-7 1.53175e-7 6.21053e-8 3.31897e-8 3.94492e-9

ASV 1.00116e-5 1.25145e-6 3.70801e-7 1.56432e-7 8.00931e-8 1.00116e-8

ASVP 2.50291e-6 3.12864e-7 9.27003e-8 3.91079e-8 2.00233e-8 2.50291e-9

σ = 1.5

AE 1.500601 1.500255 1.500102 1.500018 1.499984 1.500000

MSE 1.01610e-5 1.35033e-6 3.33528e-7 1.39621e-7 7.44919e-8 8.88922e-9

ASV 2.25262e-5 2.81577e-6 8.34303e-7 3.51972e-7 1.80209e-7 2.25262e-8

ASVP 5.63154e-6 7.03943e-7 2.08576e-7 8.79929e-8 4.50524e-8 5.63154e-9
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Table 4: Model 2: The average estimates (AEs), the mean squared errors (MSEs), the asymptotic variances of the LSE (ASVs) and the

asymptotic variances of the modified Newton-Raphson method (ASVPs) of ω̂2, are reported.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ = .25

AE .500001 .499998 0.499999 .499999 .499999 .500000

MSE 6.94534e-7 9.04881e-8 2.62034e-8 1.13147e-8 5.75764e-9 5.27798e-10

ASV 1.07958e-6 1.34947e-7 3.99844e-8 1.68684e-8 8.63662e-9 1.07958e-9

ASVP 2.69894e-7 3.37368e-8 9.99609e-9 4.21710e-9 2.15916e-9 2.69894e-10

σ = .50

AE .499976 .499991 0.499997 .499998 .499997 .500000

MSE 2.78543e-6 3.62252e-7 1.04944e-7 4.52863e-8 2.30464e-8 2.11141e-9

ASV 4.31831e-6 5.39789e-7 1.59937e-7 6.74736e-8 3.45465e-8 4.31831e-9

ASVP 1.07958e-6 1.34947e-7 3.99844e-8 1.68684e-8 8.63662e-9 1.07958e-9

σ = .75

AE .499940 .499983 .499995 .499996 .499996 .500000

MSE 6.31046e-6 8.17308e-7 2.36631e-7 1.02023e-7 5.19224e-8 4.75317e-9

ASV 9.71620e-6 1.21452e-6 3.59859e-7 1.51816e-7 7.77296e-8 9.71620e-9

ASVP 2.42905e-6 3.03631e-7 8.99648e-8 3.79539e-8 1.94324e-8 2.42905e-9

σ = 1.0

AE .499892 .499974 .499993 .499994 .499994 .499999

MSE 1.13484e-5 1.45986e-6 4.21975e-7 1.81723e-7 9.24846e-8 8.45813e-9

ASV 1.72732e-5 2.15916e-6 6.39750e-7 2.69894e-7 1.38186e-7 1.72732e-8

ASVP 4.31831e-6 5.39789e-7 1.59937e-7 6.74736e-8 3.45465e-8 4.31831e-9

σ = 1.5

AE .499761 .499950 .499990 .499988 .499990 .499999

MSE 2.65636e-5 3.33721e-6 9.58283e-7 4.11319e-7 2.09287e-7 1.90919e-8

ASV 3.88648e-5 4.85810e-6 1.43944e-6 6.07262e-7 3.10918e-7 3.88648e-8

ASVP 9.71620e-6 1.21452e-6 3.59859e-7 1.51816e-7 7.77296e-8 9.71620e-9
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Table 5: Model 1: The average estimates (AEs), the mean squared errors (MSEs), the asymptotic variances of the LSE (ASVs) and the

asymptotic variances of the modified Newton-Raphson method (ASVPs) of Â are reported.

N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

σ = .25

AE 1.412549 1.413092 1.413487 1.413667 1.413661 1.414106

MSE 6.12535e-3 2.84327e-3 1.61372e-3 1.13530e-3 8.45459e-4 3.56515e-4

ASV 8.99648e-3 4.49824e-3 2.99883e-3 2.24912e-3 1.79930e-3 8.99648e-4

ASVP 2.24912e-3 1.12456e-3 7.49707e-4 5.62280e-4 4.49824e-4 2.24912e-4

σ = .50

AE 1.409042 1.410975 1.412144 1.412514 1.412689 1.413845

MSE 2.45701e-2 1.14039e-2 6.46766e-3 4.55338e-3 3.38801e-3 1.42687e-3

ASV 3.59859e-2 1.79930e-2 1.19953e-2 8.99648e-3 7.19718e-3 3.59859e-3

ASVP 8.99648e-3 4.49824e-3 2.99883e-3 2.24912e-3 1.79930e-3 8.99648e-4

σ = .75

AE 1.403658 1.407859 1.410182 1.410756 1.411298 1.413430

MSE 5.55551e-2 2.57668e-2 1.45985e-2 1.02875e-2 7.64361e-3 3.21326e-3

ASV 8.09683e-2 4.04842e-2 2.69894e-2 2.02421e-2 1.61937e-2 8.09683e-3

ASVP 2.02421e-2 1.01210e-2 6.74736e-3 5.06052e-3 4.04842e-3 2.02421e-3

σ = 1.0

AE 1.396328 1.403726 1.407597 1.408392 1.409486 1.412864

MSE 9.94778e-2 4.60689e-2 2.60666e-2 1.83907e-2 1.36374e-2 5.71919e-2

ASV .143944 7.19718e-2 4.79812e-2 3.59859e-2 2.87887e-2 1.43944e-2

ASVP 3.59859e-2 1.79930e-2 1.19953e-2 8.99648e-3 7.19718e-3 3.59859e-3

σ = 1.5

AE 1.375450 1.392299 1.400515 1.401840 1.404590 1.411270

MSE .228936 .105319 5.93737e-2 4.20142e-2 3.09841e-2 1.29102e-2

ASV .323873 .161937 .107958 8.09683e-2 6.47747e-2 3.23873e-2

ASVP 8.09683e-2 4.04842e-2 2.69894e-2 2.02421e-2 1.61937e-2 8.09683e-3
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