
isid/ms/2008/05

July 18, 2008

http://www.isid.ac.in/̃statmath/eprints

On Stein’s Identity and Its Application

Sudheesh Kumar Kattumannil

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India





ON STEIN’S IDENTITY AND ITS APPLICATION

Sudheesh Kumar Kattumannil∗,†

* Indian Statistical Institute, Delhi Centre,

New Delhi, India.

Abstract. Stein’s identity and its role in inference procedures have been discussed widely

in literature. We extend the identity to a general framework using an absolutely continuous

function g(x) that characterizes the probability distributions. It is shown that some of the

identities available in the literature are special cases of the proposed one. Further, we also

discuss various applications of the proposed identity.
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1. Introduction

Charles Stein (1973) introduced a natural identity for a random variable whose distribution

belongs to an exponential family. As a special case, if X ∼ N(µ, σ2) and c(x) is a differentiable

function satisfying E(c′(X)) < ∞, then

E(c(X)(X − µ)) = σ2E(c′(X)).

This has come to be known in literature as Stein’s identity or Stein’s lemma. And it has been

widely exploited since; it is discussed with some members of certain families of distributions

(see Arnold et al. (2001), Landsman (2006), Brown et al. (2006) and Landsman and Neslehova

(2008)).

Inspired from Stein, Hudson (1978) obtained an identity for the exponential family of distri-

butions and studied its uses in multi parameter estimation. Prakasa Rao (1979) characterized

the exponential family of distributions using the identity given by Hudson (1978), and then
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2 ON STEIN’S IDENTITY

used the characterization results to establish some limit theorems. Arnold et al. (2001) in-

troduced a multivariate version of Stein’s identity and then applied the results for deriving

consistent moment based estimates of parameters. They also considered the estimation of pa-

rameters in bivariate settings where the conditional distributions belong to exponential family.

Nicoleris and Sagris (2002) examined the prediction of a random function of a parameter by

means of Stein’s identity. Landsman (2006) generalized the Stein’s identity to the case of

elliptical class of distributions. The results were illustrated through multivariate generalized

Student-t distribution. Brown et al. (2006) derived an expectation identity using the heat

equation and then showed that the identity is equivalent to Stein’s identity. They pointed out

series of applications to the area of probability and statistics. The ongoing interest in dealing

with Stein’s identity and its applications in different dimensions inspired us to generalize it

to the distributions belong to a wider class of continuous probability distributions satisfying

specific conditions. Then we look for some applications that were not considered by the earlier

researchers in this context.

The rest of the paper is organized as follows. In Section 2 we derive the generalized Stein’s

identity and then deduce the identity given by Hudson (1978) as a special case. Also we obtain

the exact expression for the proposed identity for the distributions belong to Pearson family

and generalized Pearson family. In Section 3 we discuss various applications of the proposed

identity.

2. Generalized Stein’s Identity

Associated with an absolutely continuous random variable X with support −∞ ≤< a < X <

b ≤ ∞ , let f(x), F (x) be the distribution function and density function respectively. Also let

h(x) be a Borel measurable function of the random variable X such that E(h2(X)) < ∞ and

E(h(X)) = E(X) = µ.

Defining A to be the class of all absolutely continues function with derivatives c′(x) defined on

the range of X we present the following theorem as a generalization of the Stein’s identity.
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Theorem 1. Let X be an absolutely continuous random variable with support −∞ ≤ a <

X < b ≤ ∞. If the density function f(x) satisfies the differential equation

f ′(x)/f(x) = −g′(x)/g(x) + (µ − h(x)/g(x), (2.1)

for some function g(x), then for any c(x) in A satisfying E|c(X)h(X)| < ∞, E(c2(X)) < ∞,

E|g(X)c′(X)| < ∞, we have the following identity

E(c(X)(h(X) − µ)) = E(c′(X)g(X)), (2.2)

provided limx→bg(x)f(x) = 0.

Proof: Consider

E(c(X)(h(X) − µ)) =

∫ b

a

c(x)(h(x) − µ)f(x)d(x)

=

∫ b

a

(h(x) − µ)(c(x) − c(a))f(x)d(x)

=

∫ b

a

(h(x) − µ)(

∫ x

a

c′(t)d(t))f(x)d(x).

Applying Fubini’s Theorem

E(c(X)(h(X) − µ)) =

∫ b

a

c′(t)(

∫ b

t

(h(x) − µ)f(x)d(x))d(t). (2.3)

Now, the equation (2.1) can be written as

g(x)f ′(x) = −g′(x)f(x) + (µ − h(x)f(x).

Integrating with respect to x from t to ∞ and basis of the assumption limx→bg(x)f(x) = 0

−g(t)f(t) −
∫ b

t

g′(x)f(x)d(x) = −
∫ b

t

g′(x)f(x)d(x) +

∫ b

t

(µ − h(x)f(x)d(x),

which simplifies to ∫ b

t

(h(x) − µ)f(x)d(x) = g(t)f(t). (2.4)



4 ON STEIN’S IDENTITY

Substituting (2.4) in (2.3)

E(c(X)(h(X) − µ)) =

∫ b

a

c′(t)g(t)f(t)d(t).

= E(c′(X)g(X)).

Hence the proof is completed.

Remark 1. The differential equation (2.1) can be written as

d log f(x)/dx + d log g(x)/d(x) = (µ − h(x))/g(x).

Integrating with respect to x from t to b and assuming limx→bg(x)f(x) = 0

log f(t) + log g(t) =

∫ b

t

((µ − h(x)/g(x))d(x),

which gives

f(t) = [g(t)]−1 exp(

∫ b

t

((µ − h(x)/g(x))d(x)),

Hence, for a given h(x) the value of g(x) uniquely determines the distribution of X.

Remark 2. When the distribution of X belongs to exponential family, the identity (2.2) reduces

to the moment identity given by Hudson (1978).

The statement made in the Remark 2.2 is reflected upon in the following theorem.

Theorem 2. Suppose that the distribution of X belongs to the exponential family with prob-

ability density

f(x) = exp{θx − ϕ(θ)}k(x),−∞ ≤ x ≤ ∞

Let

t(x) = −k′(x)/k(x),

then for any absolutely continuous function c(x) on R

E(c(X)(t(X) − θ)) = E(c′(X)). (2.5)
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Proof: Consider

d log f(x)/dx = θ + k′(x)/k(x),

which can be written as

f ′(x) = (θ − t(x))f(x).

Integrating with respect to x from −∞ to t and assuming limx→−∞f(x) = 0

f(t) =

∫
∞

−∞

(θ − t(x))f(x)d(x). (2.6)

By simple algebra, we can show that the differential equation (2.1) takes the form

∫ x

−∞

(µ − h(x))f(x)d(x) = f(t)g(t),

and comparing with (2.6) we get

h(x) = t(x) − θ + µ and g(x) = 1.

For the above choice of h(x) and g(x) the identity (2.2) reduces to (2.5).

For modelling and inference purposes, considering families of distributions is more desirable

since it enables the results to be deduced for individual distributions. Thus we derive the

exact expression for the identity (2.2) for some well-known families like Pearson family and

generalized Pearson family. And then give some examples to check the validity of the results.

Theorem 3. Suppose that the distribution of X belongs to the Pearson family specified by

f ′(x)/f(x) = −(x + d)/(a0 + a1x + a2x
2),−∞ ≤ x ≤ ∞,

then

E(c(X)(X − µ)) = E(c′(X)(b0 + b1X + b2X
2)). (2.7)

with bi = ai/(1 − 2a2), a2 6= 1/2, ai ∈ R, i = 0, 1, 2.

Proof: Nair and Sankaran (1991) showed that the random variable X belongs to the Pearson

family if and only if

E(X|X > x) = µ + (b0 + b1x + b2x
2)k(x).
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where k(x) = f(x)/(1 − F (x)) and bi’s are as stated in the theorem. The above identity can

be written as

∫
∞

x

(x − µ)f(x)d(x) = (b0 + b1x + b2x
2)f(x).

Choosing h(x) = x and comparing with (2.4) we get g(x) = (b0 +b1x+b2x
2). Then the identity

(2.2) deduces to (2.7).

Remark 3. The normal random variable with mean µ and variance σ2 belongs to the Pearson

family with a0 = σ2,a1 = a2 = 0, hence the identity (2.7) reduces to

E(c(X)(X − µ)) = σ2E(c′(X)),

which is the well known Stein’s identity.

Remark 4. By successive application of (2.2) we can arrive at the following results

(1) E(c(X)(h(X) − µ)2) = E(c′′(X)g2(X) + c′(X)g′(X)g(X) + c(X)h′(X)g(X))

(2) E(c(X)(h(X) − µ)4) = E(civ(X)g4(X) + 6c′′′(X)g′(X)g3(X) + 6c′′(X)h′(X)g3(X)

+4c′′(X)g′′(X)g3(X) + 7c′′(X)(g′(X))2g2(X) + 8c′(X)h′′(X)g3(X)

+14c′(X)h′(X)g′(X)g2(X) + c′(X)g′′′(X)g3(X) + 4c′(X)g′′(X)g′(X)g2(X)

+c′(X)(g′(X))3g(X) + 3c(X)h′′′(X)g3(X) + 9c(X)h′′(X)g′(X)g2(X)

+3c(X)(h′(X))2g2(X) + 3c(X)h′(X)g′′(X)g2(X) + 3c(X)h′(X)(g′(X))2g(X))

When X ∼ N(µ, 1) we have g(x) = 1 with h(x) = x so that h′(x) = 1, h′′(x) = 0, g′′′(x) =

g′′(x) = g′(x) = 0 and the above results reduces to the Lemma 4 of Stien (1981).

In an effort to improve the richness in members of the Pearson family and there by extend the

domain of application, Sindhu (2003) has replaced the linear term in the differential equation

stated in Theorem 3 by a quadratic, obtaining

f ′(x)/f(x) = (b0 + b1x + b2x
2)/(a0 + a1x + a2x

2). (2.8)

Besides containing all the members of the Pearson family (corresponding to b2 = 0),this ex-

tended Pearson system consists of many new members like the Inverse Gaussian, Random Walk,

Maxwell and Rayleigh distributions. And the next theorem is concerned about the generalized

Pearson family.
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Theorem 4. Let X be the random variable belongs to the generalized Pearson family specified

by (2.8), then

E(c(X)(pX2 + qX + r)) = −E(c′(X)(a2X
2 + a1X + a0)). (2.9)

with p = b2, q = b1 + 2a2 and r = b0 + a1.

Proof: The generalized Pearson family is characterized by the property (See Sankaran et

al. (2003))

E((b2X
2 + (b1 + 2a2)X + b0 + a1 + µ)|X > x) = µ − (a2x

2 + a1x + a0)k(x),

this gives

∫
∞

x

(b2x
2 + (b1 + 2a2)x + b0 + a1)f(x)d(x) = −(a2x

2 + a1x + a0)f(x).

Taking h(x) = px2 + qx+ r +µ, and comparing with the identity (2.4) we get g(x) = −(a2x
2 +

a1x + a1). Substituting the values of h(x) and g(x) in (2.2) the identity (2.9) follows.

Example 1. The Rayleigh distribution with probability density function

f(x) = 2λx exp(−λx2),

belongs to the family specified by (2.8) and we find g(x) = −x with h(x) = −2λx2 + 2 + µ .

And the identity (2.9) takes the form

2E(c(X)(1 − λX2)) = E(Xc′(X))

Example 2. For the inverse Gaussian distribution with probability density function

f(x) =
√

λ/2πx3 exp(−λ(x − α)2/2xα2)

we have g(x) = −2α2x2 with h(x) = −λx2 + α2x + λα2 + µ. And the moment identity (2.9)

becomes

E(c(X)(λα2 + α2X − λX2)) = 2α2E(X2c′(X)).

So far we have specialized Theorem 1 to some families of distributions that include many of

the continuous distributions used in common. However there are some important distributions

like the Weibull, Burr that are not members of these families, and at the same time quite useful
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in lifetime analysis. Our general framework in the Theorem 1 permits us to include them also

with appropriate choice of h(x) = x in each case as illustrated in the following example.

Example 3. For the Weibull distribution with probability density function

f(x) = (α/β)(α/β)α−1 exp(−(x/β)α), x > 0, α, β > 0

we have h(x) = xα + µ − βα and g(x) = α−1xβα. And the identity (2.2) will takes the form

E(c(X)(Xα − βα)) = α−1βαE(Xc′(X)).

3. Applications

Most of the researchers discussed the Stein’s identity in connection with estimation problems

in the classical as well as in the Bayesian setup (see Stein (1981), Arnold et al. (2001), Nicoleris

and Sagris (2002), Landsman (2006), Brown et al (2006), Landsman and Neslehova (2008)).

Their views can be easily extended to the case where the probability distributions satisfy the

differential equation (2.1). In this section we discuss the application of the identity (2.2) in

economics problem.

(a) Lorenz curve and Gini index

The Lorenz curve and Gini index is extensively used in studying income inequalities and the

related characterization problems. We suggest an alternate form for the same using the identity

(2.2). The proposed form is very useful when finding these quantities for specified probability

distributions. We also deduce the alternate form given by Tziafetas (1989). Here we confined

the support of X to (0,∞).

Definition 1. Lorenz curve for an absolutely continuous positive random variable X is defined

as the graph of the ratio

L(F (x)) = E(X|X ≤ x)F (x)/E(X) (3.1)

to F (x) . If X represents the annual income L(p)(p = F (x)) is the proportion of total income

that accrues to individual having the lowest income.

Definition 2. Gini index denoted by c(x) is defined as (Tse (2006))

c(x) = 2

∫
1

0

(p − L(p))d(p) = 1 − 2

∫
1

0

L(p)d(p) (3.2)
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The following theorem suggests an alternate form for Lorenz curve and Gini index.

Theorem 5. Suppose that the random variable X belongs to the class of distributions specified

by the differential equation (2.1), then

(i) Lorenz curve is given by

L(F (x)) = F (x) − µ−1f(x)g(x)

(ii) Gini index is given by

c(x) = 2E(f(X)g(X))/E(X) (3.3)

Proof:(i) Choosing h(x) = x, the identity (2.4) reduces to the form

E(X|X ≤ x)F (x) = µF (x) − f(x)g(x)

Substituting in equation (3.1) we have the alternate form given in the theorem.

(ii) By definition

c(x) = 1 − 2

∫
1

0

L(p)d(p), p = F (x)

Consider ∫
1

0

L(F (x))d(F (x)) =

∫
1

0

(E(X|X ≤ x)F (x)/E(X))d(F (x))

= (1/µ)

∫
1

0

(

∫ x

0

tf(t)d(t))d(F (x)).

Changing Riemann- Stieltjes integral to Riemann integral

∫
∞

0

L(F (x))d(F (x)) = (1/µ)

∫
∞

0

(

∫ x

0

tf(t)d(t))f(x)d(x).

Applying Fubini’s Theorem

∫
1

0

L(F (x))d(F (x)) = (1/µ)

∫
∞

0

(

∫
∞

t

f(x)d(x))tf(t)d(t).

= (1/µ)

∫
∞

0

(1 − F (t))tf(t)d(t)

= 1 − (1/µ)E(XF (X))

= 1/2 − (1/µ)E((X − µ)F (X)),



10 ON STEIN’S IDENTITY

since E(F (X)) = 1/2. Using identity (2.2) the above equation can be written as

∫
1

0

L(F (x))d(F (x)) = 1/2 − (1/µ)E(f(X)g(X)).

Substituting in equation (3.2) we get the alternate form (3.3).

Example 4. Consider the beta distribution with probability density function

f(x) = (1/B(p, q))xp−1(1 − x)q−1, 0 < x < 1.

Here g(x) = x(1 − x)/(p + q). Consider

E(f(X)g(X)) = (1/B2(p, q)(p + q))

∫
1

0

xp−1(1 − x)q−1xp−1(1 − x)q−1x(1 − x)d(x).

= B(2p, 2q)/B2(p, q)(p + q).

Hence the Gini index is given by

c(x) = 2B(2p, 2q)/B2(p, q)p.

The expression (3.3) can be used even when the support of X is (−∞,∞).

Example 5. Consider the Normal distribution with probability density function

f(x) = (1/
√

2πσ) exp(−(x − µ)2/2σ2),−∞ < x < ∞.

Here g(x) = σ2 and

c(x) = 2E(f(X)g(X))/E(X) = (2σ2/µ)E(f(X)) = σ/µ
√

π

Remark 5. The Example 4 and Example 5 are discussed by Tziafetas (1989) and McDonald

(1978) respectively and our proof is much easier.

Remark 6. The proof for the alternate form of gini index given by Tziafetas (1989)

c(x) = 2Cov(X,F (X))/E(X)

is straightforward when we use generalize Stein’s identity. By definition

Cov(X,F (X)) = E((X − µ)F (X))

= E(f(X)g(X))(using(2.2))
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(b) Expression for covariance between sample mean and sample variance

The joint distribution of (X,S2) is quiet complicated for many probability distributions and

hence finding the covariance between sample mean (X) and sample variance (S2) is a tedious

job. Here we obtain a simple expression for the same by means of the identity (2.2). Zhang

(2007) discussed about an identity connecting covariance between sample mean and sample

variance and third central moment and it is given by

Cov(X,S2) = E(X − µ)3/n

Applying the identity (2.2) successively we get

Cov(X,S2) = E(g(X)g′(X))/n

The above identity suggests an easy way to find the covariance between sample mean and

sample variance for the probability distributions satisfying the differential equation (2.1).

Remark 7. For the normal random variable described in Remark 3 g(x) = σ2 and g′(x) = 0,

we obtain Cov(X,S2) = 0 , a well known result available in the literature.
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