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Abstract: In this paper we introduce a class of tests for testing independence of failure
time and cause of failure for competing risks data. A class of tests using martingale
approach is derived. We, then develop a test statistic using likelihood ratio procedure.
Asymptotic distributions of the proposed test statistics are derived. The procedures are
illustrated using a real life example. A simulation study is carried out to assess the power
of the tests.
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1. Introduction

In medical studies or in the analysis of industrial data, failure of individuals or units may
be attributable to more than one cause or factor. Competing risks models are usually
employed to analyze such situations. Two frame works are often used to deal with

competing risks settings in which a non negative failure time variable 7" and a cause of



failure J {1, 2,~-~J<} can be observed for an individual. One approach is to use cause

specific hazard (/ i ( ! )) formulations, where

P{T<t+DrJ =T 1
Dr

I;(1) =limg, Jj=12,k. (1)

An alternative approach is to compare cumulative incidence functions ( F; ( t )) where

Fi(t)=P(T tJ=j) j=12..k (2)

The analysis of competing risks data using (1) and (2) is extensively discussed in
literature. Crowder (2001), Kalbfleisch and Prentice (2002) and Lawless (2003) provide
reviews on this topic.

In many applications within the competing risks setting, it is of interest to test equality of
cumulative incidence functions (cause specific hazard rates). Aly et.al (1994) and
Dykstra et.al (1995) have proposed distribution free tests for testing the equality of cause
specific hazard rates against ordered alternatives. Sun and Tiwari (1998) considered the
problem of testing the equality of two cumulative incidence functions. Carrirer and
Kochar (2000) developed a distribution free test for the problem of testing equality of 7
distribution functions when the failure times are continuous. Later, Kulathinal and
Gasbarra (2002) considered the problem of testing the equality of cause specific hazard
rates corresponding to 7 competing risks in kK groups. El- Barami and Kochar (2002)
considered the same problem with discrete failure times using likelihood ratio test
procedure. El Barami et.al (2006) developed likelihood ratio test for and against ordering
of the cumulative incidence functions. For various other tests, one can refer to Kochar
(1995), Lam (1998) and Alvarez-Andrade (2007).

The problem of identifiability in modeling the competing risks data in terms of latent
failure times is well known (Tsiatis (1978), Crowder (2001)). This problem does not arise
if the modeling of the competing risks data is done in terms of cause specific hazard rates

or cause specific distribution functions. The nature of dependence between T and J is
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crucial and useful in such modeling. If Tand J are independent, then the bivariate
competing risks data reduces to two sets of data on independent variables. This motivated
researchers to develop tests for independence between 7 and J. A class of restricted
tests for testing independence between 7 and J for competing risks data was derived by
Dykstra. et.al (1998). Dewan et.al (2004) developed test procedure for testing
independence against lack of independence and specific alternatives viz. positive
dependence (PQD and RTI) via conditional probabilities. Testing independence between
T and J when causes of failure are missing was discussed by Dewan and Kulathinal
(2007). All theses tests were based on U-statistics. In this paper, we develop a general
class of tests for testing independence between 7 and J against the alternative that they
are not independent. We use two approaches viz. martingale approach and likelihood
ratio approach.

The rest of the paper is organized as follows. In Section 2, we develop a test statistic
using martingale approach and discuss its limiting distribution. In Section 3, we derive a
test statistic using likelihood ratio procedure and work out its asymptotic distribution.
The methods are illustrated using a real data due to Hoel (1972) in Section 4. In Section
5, we carry out a simulation study to assess the performance of the tests. Finally, Section
6 provides major conclusions of the study.

2. Martingale Approach

This approach is based on cause specific hazard rates which are fundamental quantities in
competing risks data as they can be estimated on the basis of failure time and cause of

failure.

Suppose that there are " individuals under study. Let N j(l ) denote the number of

transitions from alive to death due to cause J during the time interval(O, l] , for

J=L12,...,k  We now consider the situation where the failure time 7 is right censored by

the wvariable Z. In practice one could observe, Y =min(T,~,Z,~) and



d; =1(Y,~ Z,J, = j)on n individuals, where J; is observed if ¥; =7; and I1(.) is the
usual indicator function for J=L2,..k and i=L2,..,n. 1In this situation

N (t)= 1(Y, t.d;=1) and Y(r)= (Y, >1), is the number of individuals who
i=1 i=1
have survived beyond 7.

The history of the entire process up to time ! is represented by F,, where F, represent

the S -field generated by the counting process { N; ( t ) ,J=1,2,...k| . The cause specific
hazard process is given by Y(7)/ () for j=12....k and r O . The cause specific

cumulative hazard rates L ; ( t ) are defined as

t
L(e)=1,(s)ds j=12,...k.
0
We assume that the k failure causes are mutually exclusive and exhaustive so that an

individual can have at most one realized lifetime (identifiable cause). Then the overall

cumulative hazard rate L (f ) 1s obtained as

j=l
Under the assumption of independence between 7 andJ, / j(f ) can be written as

k
I,(t)=p;l (1) where P;=P(J=j) for j=L2...k and I(1)= [,(1).
1

Now we test the null hypothesis
H: /j(f)=Pj/(l) J=12,...k and forall ? 3)
against

H,: /j(l) Pj/ (I) for at least one J and for some? . “4)



The construction of the test statistic is based on the simple idea of comparing the

estimates of both sides of (3) The Nelson-Aalen estimator (Anderson et. al. (1993)) of

Lj(t) and L (1) are given by

- _lc(u)de(u)
b= = 5)
and
~ ’c(u)dN(u)
Lit)= ——————, 6
(1) () (6)
k
whereC(M)=I{Y(M)>O} and dN (u) = de(”).
j=l
The probabilities P can be written as
t
p;=F;(t)= S(u)dL ;(u), (7)

0

where S(7) =P(T >1) is the survivor function of 7' and t = SUP{ t:F(1) 1} . Thus the

estimator of P; can be obtained as
p;=F;(t)= S(u)al (u), )

where 5'(1) is the well known Kaplan-Meier estimator of S(f). Note that P j 18

independent of  and in the uncensored set up, P; is nothing but the proportion of
failures due to the cause /. Consider a measure of departure from the null hypothesis as

follows

z,(1) = w;(u){dL (u)- p,dC (u)]

©)



where Wj(t) is a locally bounded predictable weight process. By the Doob-Meyer

decomposition, we have

M;(t)=N;(t)- 1 ;{u)Y(u)du j=12,.k, (10)
0

are zero mean martingales with respect to the increasing family of S -fields { F..t 0} .

Now (9) can be written as

Z,(1) = clu)w,(u) 2L

0

- p; (11

where M(I) = Mj(t) )
j=
Defining
c(t) wj(t) =k(t)Y(t) J=12,..k, (12)

(11) becomes

Z,(1)= klu)ld - p,*aN(u)] j=1,2,.k, (13)

where K ( t ) is a locally bounded predictable process, and d =1 ( J=] ) . We note that

k

Z; ( 4 ) =0 Further, Z; ’s are local square integrable martingales. Under Hy, it can be
j=l

shown from Anderson et.al (1993) that Z (t) = Zl(f) ----- Zk(t) is asymptotically

distributed as a k variate normal with mean vector 0 and a covariance matrix

consistently estimated by W( t ) —{ Wi ( t )I , where
W, (1) = k*(u)(D,,- B,)pdN(u) (14)

where D, is the Kronecker delta. Thus a test statistic is given by

c2=z"(t)w(t)z(t) (15)

oo



where W (t ) is the generalized inverse of W (t) . If we delete the last row and last

column of W (1) . to give say, W, (1) , and let Z,(t) = z,(1)....Z,_ (1) T, (15) can be
alternatively given as,

" Z,(t) (16)
where W, (t )" is the ordinary inverse of W(t) . UnderHy, c? is asymptotically

distributed as chi-square with k- 1 degrees of freedom (see Anderson et al. (1993)).

The efficiency of the procedure obviously depends on the choice of the weight function

Wi ( t ) . Possible choices for weight function in (11) are

a) k() =S8()
b) k(1) =5>(1)
o) k(=Y (1) (1)
and
d) k@t)=Y/1)
When k(7) =Y (1), we get

Z;{ )= v(u)aN,(u)- Y(u)dN(u).
0 0
Thus, (13) is the generalization of the Wilcoxon and Kruskal-Wallis tests to right
censored data due to Gehan (1965) and Breslow (1970).

The efficiency of these tests obviously depends on the choice of weight function. A

possible approach to find the value of k( ! ) that minimizes the mean squared error of the

test statistics. However, the exact mean squared error of the test statistic is not available.
In practice, we can choose an optimal weight function using bootstrap procedure, which
will be discussed in Section 4.

3. Likelihood Ratio Test



Let N'(1) :I(Nl ()., N (f)) it Ft..] be a k-variate counting process with intensity

process / . ( / 1*,..., / Z ) . Then the likelihood L based on a sample is given by (Anderson

et al. (1993))

L= P ™Y exp - 17 (d)dr (17)

where . ¢ represents the product integral.

Since/;(l‘) =] j ( t) Y( I) , under Hy , the likelihood (17) becomes

k an (1) Lok

0= (/(Z)Y(t)pj) oexp - 1 (e)y(e)ar (18)

t F o j=1 0 Jj=1

Thus, we can obtain the likelihood ratio test statistic for testing (3) as

0= (19)

where IAj(t ) P ; and /A(t ) are the maximum likelihood estimates of / j(t ) ,P; and / (t ) .
In the following, we can establish that the asymptotic distribution of -210gQis a chi-
square distribution with k - 1 degrees of freedom.

From (19), we can have that,

t k

-2logQ =2 . (loglAj(t) - log(ﬁle(t)))de(t)
) (10g /", (1) - 10g B, (1))] £, (1) (1) d 20)

By Taylor’s series expansion, (20) can be written as
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A ~ 2
t ok tok (] (¢ -ﬁf t
2logQ=2  (I(1)- b, (1)]¥(t)dr+ i A/l ) y(d)di+o L
0 j=1 0 j=l Ij(t) n
(2D
k A
Under H, (rj(t)‘ij(f))Y(t)=0 and thus (21) can be asymptotically written
j=1
as

~2logQ = A Y (1) dr (22)
0 Jj=l1 pjl (t)

To find the asymptotic distribution of -210gQ, we write 108 L in the Taylor’s series

expansion around IA]‘ (t) and P jIA(t ) , those provide

~ log L
[£,0)-1,10)] @0, (23)
i
and
I log L
(1) 1;(1)) @D, -5 (24)
o
*log L
where D) and D, are respectively, the inverse of E - —()2 evaluated at | ; (1 ) and
J
I(t)p j. From (23) and (24) , it follows that
A logL
1,011,114 @i - b, 22 o5
J
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log L
Since I.(t) is asymptotically normally distributed with mean zero and variance
J

b=t jl(()g)lg ad  (F10-5,0 (0] Nop- D)D), where
jt

(D-D)21)=(pf'l(t)_lf(t))2

b v(dp, ()

For large 7, it follows from (25) that,

(DAI_ DAz)\/E N(O,l) (26)

. Under H,, this is asymptotically equal to

e 708111
“ i )‘. Thus, w/Y(t)( ’ d ) “ N(0.1) and hence Q" =-2logQ follows

chi-square distribution with k - 1 degrees of freedom.

4. Data Analysis

The two classes of tests are applied to a competing risks data given in Hoel (1972). The
data are obtained from a laboratory experiment on RFM strain male mice, which had
received a radiation dose of 300 rads at ages of 5 to 6 weeks and were kept in a
conventional germ-free environment. There are three causes of death viz. Thymic
lymphoma, reticulam cell sarcoma and other causes. The data were studied by different
authors including Aly.et.al (1994), Kocher et.al (2002) and Dewan et.al (2004). The
estimates of cumulative hazard rate functions due to the three different causes are given

in Figure 1.
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(“Figure 1 here”)

Figure 1 shows that, the estimates of cause specific cumulative hazard rate functions due
to ‘other causes’ yields high values comparing to the same from thymic lymphoma and
reticulum cell sarcoma at later ages.

To apply the test procedure (15), we consider different weight functions, (a)-(d) given in
Section 2 .Test statistics on theses cases were calculated along with their P -values. Let
0,,0,,0;,0, and Q represent the test statistics obtained using weight functions
(a),(b),(c),(d) and the likelihood ratio test respectively. Table 1 provides the values of the
test statistics along with their P -values

Then we consider the ‘other causes’ as censored variables and analyse the same data as a
two risks problem. The estimates of the cause specific hazard rate functions for two types
of cancer - thymic lymphoma and reticulum cell sarcoma, when considering ‘other
causes’ as censored variables are given in Figure 2.

(“Figure 2 here”)

Figure 2 shows that, the estimates of cause specific cumulative hazard rate function due
to reticulum cell sarcoma possess high values comparing to the same from thymic
lymphoma at later ages. The values of test statistics along with their P-values are given in
Table 1. From Table 1, it follows that, the test statistic values for all the four weight
functions (a)-(d) are highly significant irrespective of the presence of censoring.
Likelihood ratio test statistic is highly significant in both censored and uncensored set up.
Thus the failure time and the cause of failure can safely be assumed to be not
independent for Hoel’s data set.

(“Table 1 here™)

To find the optimal K (1) , we use the bootstrap procedure. We choose optimal k(1) , as the
value of k(1) , which minimizes the bootstrap mean square error estimate for the

proposed test statistics. The bootstrap technique for determining optimal k(1) is applied
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to the real data given above. The bootstrap estimates of the absolute value of the biases
and the mean square errors of test statistics 0,,0,, O3 and 94, computed from the real
data based on 250 bootstrap samples of size 181 are given in Table 2.

(“Table 2 here™)

From Table 2, it is clear that, the estimates of the mean square error based on the

bootstrap samples yields the lowest value for the statistic ¥4 in both uncensored and

censored set up. Thus we can conclude that the weight function corresponding to Oy,

that is, k(t)=Y(t), is the optimal choice of weight function and provides the best
conclusion, if mean squared error is the optimality criterion. Thus, we can conclude that
time of failure and causes of failure are not independent for the above failure time data

5. Simulation Study

We carry out a simulation study to assess the performance of test statistics. In martingale
approach, the four different weight functions (a)-(d) described in Section 2 are
considered. We consider two causes of failure. Lifetimes are generated from exponential
distribution with two different parameters. We consider both no censoring and 20%

censoring situations. In the censored situation, observations are censored by uniform

random variable over (O,a) , where dis chosen in such a way that 20% of the
observations are censored. We generate random sample of size 77 = 50,100 and 250 from
exponential distributions with hazard rate 2 and hazard rate 8 with proportions 0.2 and
0.8 respectively. Empirical type I error of the test is calculated by generating 1000 such
random samples. Empirical power of the test is also calculated in a similar fashion, by
generating lifetimes from exponential distributions with hazard rate 2 and 8 proportions

0.8 and 0.2 respectively.
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To assess the performance of the likelihood ratio test, random samples of size 72 = 50,100
and 250 are generated 1000 times. The exponential distribution with same parameters
and proportions described above is used for computing empirical type I error and power.
Tables 3 and 4 provide the empirical type I error and power, in percent, for different test
statistics developed using martingale approach. Table 5 presents the empirical type I
error and power of the likelihood ratio test.

(“Table 3 here”)

From Table 3, it is clear that all the four test statistics have type I error is close to the
chosen level for all values of 7. For larger sample size, censoring seems to increase the
type I error marginally.

(“Table 4 here”)

Table 4 shows that all the four test statistics have good power in general. As sample size
increases, the power of all the four statistics increases, especially for O, . However, O,
and Oz behaves in similar fashion in most of the simulations, essentially because of the
choice of weight functions. The presence of censoring does not provide much difference
to the power of the tests.

(“Table 5 here™)

The results of simulation study using likelihood ratio test show that the test has good
power

6. Conclusion

In this paper, we proposed a class of tests for testing independence of failure time and
cause of failure in competing risks set up. A class of tests using martingale approach and
a test statistic using likelihood ratio method are derived. The nature of dependence
between time of failure 7 and cause of failure J is crucial and useful if the modeling is

done in terms of cause specific hazard rates. The performance of the martingale approach
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obviously depends on the choice of weight function. In practice, one can choose the
optimum weight function using bootstrap procedure. The tests are applied to a set of
mortality data available in Hoel (1972) and the test statistics suggested that the time of
failure and cause of failure are not independent for this data. A simulation study is carried
out to assess the empirical type I error and power of the proposed tests. The results of
simulation also confirm the adequacy of the proposed techniques in distinguishing
between the null and the alternative hypothesis.

The optimal choice of k (1) , depends on the underlying distribution, which is difficult to
determine analytically. More simulation studies are required to investigate this aspect,
which will be presented in a separate paper. We are also looking into the extension of

these techniques to the case when some of the causes of failure are unknown.
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Table 1 Test statistic values using different weight functions and Likelihood ratio test

statistic
Test Test statistic value Test statistic value
o for 3 causes P value for 2 causes P value
statistic
( uncensored data) (censored data)
) 13.348 <0.01 18.799 <0.01
0, 26.206 <0.01 32.811 <0.01
0; 26.08 <0.01 38.597 <0.01
o, 13.223 <0.01 27.411 <0.01
Q* 162.597 <0.01 64.339 <0.01

Table 2 Bootstrap estimates of absolute value of the biases and mean square error of test

statistics 01,0, 05 and O, based on 250 bootstrap samples.

Test statistic Bias and MS_E without Bias and
CCENSOTng MSE with censoring
0, 0.50059 0.97267 1.1213 2.3693
0, 0.52775 0.908 0.37406 1.2235
0, 0.44099 0.84408 1.07 2.4634
0, 0.15795 0.70372 0.27757 0.83607
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Table 3 Empirical type I error (%) of different test statistics

n Significance Test statistic No Censoring 20% Censoring
level (%)
50 5 0, 4.4 4.4
50 5 0> 52 5.1
50 5 0; 4.9 4.9
50 5 04 5.1 5.6
50 1 0, 1.0 1.2
50 1 0> 1.4 1.5
50 1 0; 0.9 0.9
50 1 0. 1.1 5.7
100 5 0, 4.3 4.1
100 5 0> 5.2 5.1
100 5 0; 4.8 4.2
100 5 04 5.0 5.0
100 1 0 1.1 1.0
100 1 0> 1.3 1.3
100 1 0; 0.9 0.8
100 1 04 1.4 4.1
250 5 0, 3.8 4.1
250 5 0> 5.1 52
250 5 0; 4.8 54
250 5 0. 4.8 4.9
250 1 0, 0.9 1.2
250 1 0> 0.8 1.5
250 1 0; 1.2 1.6
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250 1 o 1.4 1.8

Table 4 Empirical type power (%) of different test statistics

n Significance Test statistic No Censoring 20% Censoring
level (%)
50 5 0, 50.0 48.9
50 5 0> 51.0 51.9
50 5 oF 52.8 44.6
50 5 oF 23.9 344
50 1 0, 12.4 10.2
50 1 0> 40.1 57.6
50 1 0; 44.1 42.8
50 1 04 14.1 18.9
100 5 0, 70.5 78.3
100 5 0: 76.4 98.2
100 5 0; 79.2 81.4
100 5 Q4 43.0 44.1
100 1 0 16.5 21.1
100 1 0> 66.8 93.2
100 1 oF 68.1 58.5
100 1 0, 284 30.9
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97.4
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77.2
87.8
90.1
90.6

Table 5 Empirical type I error and power (%) of the likelihood ratio test statistic

n Significance No Censoring 20% Censoring
level (%)
Empirical Empirical
Empirical
type I error power type I error power

50 5 5.5 95.9 52 84.8
100 5 4.3 97.1 5.0 96.1
250 5 4.0 99.3 39 95.8
50 1 1.0 77.8 1.0 71.2
100 1 0.8 88.5 0.7 60.6
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250 1 0.6 98.1 0.6 87.1
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