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Abstract

A (symmetric) nested orthogonal array is a symmetric orthogonal array OA(N, k, s, g) which

contains an OA(M,k, r, g) as a subarray, where M < N and r < s. In this communication,

some methods of construction of nested symmetric orthogonal arrays are given. Asymmetric

nested orthogonal arrays are defined and a few methods of their construction are described.
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1. Introduction

A symmetric orthogonal array OA(N, k, s, g) is an N × k matrix with symbols from a finite

set of s ≥ 2 symbols, in which all possible combinations of symbols appear equally often as

rows in every N × g submatrix, 2 ≤ g < k. Orthogonal arrays have been studied extensively

and for a comprehensive account, a reference may be made to Hedayat et al. [3].

A symmetric nested orthogonal array, NOA((N,M), k, (s, r), g), where M < N and r < s,

is an OA(N, k, s, g) which contains an OA(M,k, r, g) as a subarray. Nested orthogonal arrays

are useful in practice for designing an experimental setup consisting of two experiments, the

expensive one of higher accuracy being nested in a larger and relatively less expensive one of

lower accuracy. The higher accuracy experiment can, for instance, correspond to a physical

experiment while the lower accuracy one can be a computer experiment. While some progress

in the modeling and analysis of data from such nested experiments has been made (see e.g.,

Kennedy and O’Hagan [4], Reese et al. [8], Qian et al. [6] and Qian and Wu [7]), relatively less

is known on the designing aspects. Nested orthogonal arrays provide an option for designing

nested experiments.

The question of existence of symmetric nested orthogonal arrays has recently been examined

thoroughly by Mukerjee et al. [5], who also provide some examples of such arrays. However,

the construction of nested orthogonal arrays does not seem to have been studied systematically.

The purpose of this article is to provide some methods of construction of (symmetric) nested
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orthogonal arrays. We also define an asymmetric nested orthogonal array and provide a few

methods of their construction.

2. Construction of symmetric nested orthogonal arrays

Throughout, for a positive integer m, 0m, 1m, Im and Jm will respectively, denote an m×1

null vector, an m × 1 vector of all ones, an identity matrix of order m and an m × m matrix

of all ones. Also, for a prime or a prime power u, GF (u) will denote the Galois field of order

u and a prime over a matrix (or vector) will denote its transpose.

Theorem 1. Let s > 2 be a power of 2. Then the following families of symmetric NOAs exist:

(a) NOA((sg, 2g), g + 1, (s, 2), g), g ≥ 2.

(b) NOA((su, 2u), 2u, (s, 2), 3), where u ≥ 4 is an integer.

(c) NOA((s5, 25), 6, (s, 2), 4).

Furthermore, (i) g + 1 is the maximum number of columns that the arrays in (a) above can

accommodate, (ii) if s = 4 = u, then 2u is the maximum number of columns that the arrays in

(b) above can accommodate and (iii) k = 6 is the maximum number of columns that the arrays

in (c) above can accommodate.

Proof. (a) Let s > 2 be a power of 2 and define the g × (g + 1) matrix A1 = [Ig 1g], where

g ≥ 2 is an integer. Then, it is easily seen that any g × g submatrix of A1 has rank g over

GF (s). It follows then from Bose and Bush [1] that C = B1A1 is a (symmetric) orthogonal

array OA(sg, g + 1, s, g), where B1 is an sg × g matrix having rows as all possible g-plets with

entries from GF (s). The result in (a) follows by noting that there is a 2g × g submatrix of C

with elements 0 and 1. Finally, for a NOA((sg, 2g), k, (s, 2), g) to exist, it is necessary that an

OA(2g, k, 2, g) exists. It is well known that for an OA(2g, k, 2, g), k ≤ 3 if g = 2 and k ≤ g + 1

if g ≥ 3 (see e.g., Theorem 2.19 in Hedayat et al. [3]) and thus, g + 1 is the maximum number

of columns that a nested array in (a) can accommodate for all g ≥ 2 and this upper bound is

attained.

(b) For an integer u ≥ 4, define a u × 2u matrix A2 = [Iu Ju − Iu]. Then, it can be verified

that any u × 3 submatrix of A2 has rank 3 over GF (s). Now, as in the proof of (a) above,

one gets the required nested array by forming the product B2A2, where B2 is a 2u × u matrix

having rows as all possible u-plets with entries from GF (s). The assertion about 2u being the

maximum number of columns for s = 4 = u follows from Theorem 2 of Mukerjee et al. [5].

(c) Let A3 = [I5 a], where a = (1, 0, 1, 1, 1)′ . Then, it can be verified that any 5× 4 submatrix

of A3 has rank 4 over GF (s). As in the proof of part (a), the required nested array is given by

C = B3A3, where B3 is an s5 × 5 matrix having rows as all possible 5-plets with elements from

GF (s). The assertion that k ≤ 6 for the nested arrays in (c) follows from the fact that in an

(ordinary) orthogonal array OA(32, k, 2, 4), k ≤ 6 (Seiden and Zemach [9]). 2
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Theorem 2. If s > 4 is a power of 2, then there exists a symmetric NOA((s2, 42), 3, (s, 4), 2).

Proof. The proof follows essentially on the lines of that of Theorem 1 by considering the matrix

A4 =

[
1 0 1

0 1 1

]
, noting that (i) any 2×2 submatrix of A4 has rank 2 over GF (s), s = 2t, t ≥

3, (ii) there is a 42 × 2 submatrix of B4 with elements 0, 1, x, x + 1 only, where B4 is an s2 × 2

matrix with elements from GF (s) and (iii) the fact that the elements of GF (s) are 0, 1 and all

polynomials (in x) of degree at most t − 1. 2

Theorem 3. If s ≥ 3 is an integer such that both s− 1 and s + 1 are prime powers, then there

is a symmetric NOA((2s2, (s − 1)2), s, (s, s − 1), 2). Furthermore, the number of columns in

such an array is bounded above by s.

Proof. Step 1: Construct an OA((s + 1)2, s + 2, s + 1, 2), say A, by utilizing a complete set of

mutually orthogonal Latin squares of side s + 1 and let the symbols of this array be 0, 1, . . . , s.

Then, it is not hard to see that, upto isomorphism, this array has two rows, (0, 0, . . . , 0) and

(1, 0, 1, 1, . . . 1). In A, replace every 1 by 0, delete the two rows consisting of all zeros and delete

the first two columns to arrive at an (s2 + 2s− 1)× s array, say A1. Note that A1 involves the

s symbols 0, 2, . . . , s.

Step 2: Construct an OA((s − 1)2, s, s − 1, 2) involving s − 1 symbols, 2, . . . , s and call this

array A2.

Step 3: Consider the 2s2 × s matrix B =

[
A1

A2

]
.

Then, arguing as in Hedayat et al. [3, p.243], one can show that B is an OA(2s2, s, s, 2).

Note that our construction of the orthogonal array B is slightly different from that of Hedayat

et al.

The claim in Theorem 3 is now immediate by noting that the orthogonal array A2 is precisely

the smaller array in the nested array. Finally, since in an OA((s− 1)2, k, (s − 1), 2), k ≤ s, the

assertion about the upper bound on the number of columns in the constructed nested array

follows. 2

3. Asymmetric Nested Orthogonal Arrays

So far, we have restricted attention to symmetric nested orthogonal arrays. We now intro-

duce asymmetric nested orthogonal arrays.

Definition. An asymmetric nested orthogonal array, NOA((N,M), k, (s1 × s2 × · · · × sk, r1 ×

r2 × · · · × rk), g), where ri ≤ si, with strict inequality for at least one i, 1 ≤ i ≤ k, and
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M < N , is an asymmetric orthogonal array, OA(N, k, s1 × · · · × sk, g) which contains an

OA(M,k, r1 × · · · × rk, g) as a subarray.

Remark. Note that the above definition does not preclude the possibility of existence of

an asymmetric nested orthogonal array wherein the smaller orthogonal array is a symmetric

orthogonal array, nested within a larger asymmetric orthogonal array. For example, consider

the following array, displayed in transposed form:




0 0 1 0 1 1 0 1 2 2 2 2 3 3 3 3

0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1

0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1

0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1




′

.

The first 8 rows of this array form a (symmetric) orthogonal array OA(8, 4, 2, 3) while all the

16 rows represent an asymmetric orthogonal array OA(16, 4, 4 × 2 × 2 × 2, 3). We continue to

call such arrays also as asymmetric nested orthogonal arrays.

We now describe some methods of construction of asymmetric nested orthogonal arrays.

Theorem 4. The existence of an OA(N, k, 2, 2u), where u ≥ 1 is an integer implies the

existence of an NOA((tN, 2mN), k + 1, (t1 × 2k, (2m)1 × 2k), 2u + 1), where t ≥ 2 is an even

integer and m (1 ≤ m < t) is an integer.

Proof. Let A denote an OA(N, k, 2, 2u), with symbols 0 and 1 (without loss of generality) and

let Ā denote the N × k matrix obtained by interchanging the two symbols in A. Consider the

tN × (k + 1) array B, given by

B =




0′

N 1′

N 21′

N 31′

N . . . (t − 2)1′

N (t − 1)1′

N

A′ Ā′ A′ Ā′ · · · A′ Ā′




′

.

Then, it can easily be verified that B is an OA(tN, k + 1, t1 × 2k, 2u + 1). The array




0′

N 1′

N 21′

N 31′

N . . . (m − 2)1′

N (m − 1)1′

N

A′ Ā′ A′ Ā′ · · · A′ Ā′




′

,

nested within B, is an OA(2mN, k + 1, (2m)1 × 2k, 2u + 1), where m, 1 ≤ m < t, is an integer.

2

Example 1. Considering A to be an OA(4, 3, 2, 2), taking t = 6,m = 2 and following the above

method of construction, one obtains an NOA((24, 16), 4, (6 × 23, 4 × 23), 3) which is displayed
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below in transposed form:




0000 1111 2222 3333 4444 5555

0011 1100 0011 1100 0011 1100

0101 1010 0101 1010 0101 1010

0110 1001 0110 1001 0110 1001




′

.

The first 16 rows of the above array form an asymmetric OA(16, 4, 4× 23, 3) and the full array

is an OA(24, 4, 6 × 23, 3).

Next, consider an asymmetric orthogonal array A = OA(N, k, s1 × s2 × · · · × sk, g), where

g ≥ 2 and suppose t is a positive integer such that s1|t. Write A as

A =

[
a
′

1 a
′

2 · · · a
′

s1

A′

1 A′

2 · · · A′

s1

]′

,

where for 1 ≤ i ≤ s1, ai is an N/s1 × 1 vector with each element equal to i. Clearly, each

Ai (1 ≤ i ≤ s1) is an OA(N/s1, k − 1, s2 × · · · × sk, g − 1). Define u = N/s1, v = t/s1, b =

(0, 1, . . . , t − 1)′ and A∗ = [A′

1

...A′

2

... · · ·
...A′

s1
]′. Consider the matrix B given by

B = [b ⊗ 1u

... 1v ⊗ A∗],

where ⊗ stands for the Kronecker (tensor) product of matrices. Then, one can easily see that

B is an asymmetric nested array NOA((Nt/s1, N), k, (t × s2 × · · · × sk, s1 × s2 × · · · × sk), g),

where the first N rows of B form the smaller array, which is an OA(N, k, s1 × s2 × · · · × sk, g).

We thus have the following result.

Theorem 5. Suppose an orthogonal array OA(N, k, s1×s2×· · ·×sk, g), where g ≥ 2, is avail-

able and suppose t is a positive integer such that s1|t. Then there exists an NOA((Nt/s1, N), k, (t×

s2 × · · · × sk, s1 × s2 × · · · × sk), g).

Example 2. Consider an OA(16, 9, 43 × 26, 2), A, displayed in transposed form below:

A =




0000 1111 2222 3333

0123 0123 0123 0123

2301 3210 0123 1032

0011 1100 1100 0011

1001 0110 1001 0110

0101 0101 1010 1010

1010 0101 0101 1010

1001 1001 0110 0110

1100 0011 1100 0011




′

.
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Using the above (ordinary) orthogonal array, choosing s1 = 4, t = 8 and following the con-

struction described above, we have an NOA((32, 16), 9, (8 × 42 × 26, 43 × 26), 2), shown below

in transposed form:




0000 1111 2222 3333 4444 5555 6666 7777

0123 0123 0123 0123 0123 0123 0123 0123

2301 3210 0123 1032 2301 3210 0123 1032

0011 1100 1100 0011 0011 1100 1100 0011

1001 0110 1001 0110 1001 0110 1001 0110

0101 0101 1010 1010 0101 0101 1010 1010

1010 0101 0101 1010 1010 0101 0101 1010

1001 1001 0110 0110 1001 1001 0110 0110

1100 0011 1100 0011 1100 0011 1100 0011




′

.

The first 16 rows of the above array form an OA(16, 9, 43 × 26, 2) while the full array is an

OA(32, 9, 8 × 42 × 26, 2).

Numerous applications of Theorem 5 can be made to obtain asymmetric nested orthogonal

arrays. For example, let N ≥ 4 and T ≤ N be Hadamard numbers, where a positive integer

u ≥ 2 is called a Hadamard number if a Hadamard matrix of order u exists. Then there exists

an OA(NT,NT − 2T + 1, 4T−1 × 2NT−3T+2, 2) exists (Cheng [2]). Using this orthogonal array,

one gets an NOA((NTS/4, NT ), NT −2T +1, (S×4T−2×2NT−3T+2), 2), where S is a multiple

of 4. Such examples can be multiplied. Details are omitted.

Acknowledgments

This work is supported by the Indian National Science Academy under the Senior Scientist

scheme of the academy. The support is gratefully acknowledged.

References

[1] R. C. Bose, K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statist.

23 (1952), 508–524.

[2] C.-S. Cheng, Some orthogonal main effect plans for asymmetrical factorials, Technometrics

31, 475–477.

[3] A. S. Hedayat, N. J. A. Sloane, J. Stufken, Orthogonal Arrays: Theory and Applications,

Springer, New York, 1999.

[4] M. C. Kennedy, A. O’Hagan, Predicting the output from a computer code when fast

approximations are available, Biometrika 87 (2000), 1–13.

6



[5] R. Mukerjee, P. Z. G. Qian, C. F. J. Wu, On the existence of nested orthogonal arrays,

Discrete Math. 308 (2008), 4635–4642.

[6] Z. Qian, C. Seepersad, R. Joseph, J. Allen, C. F. J. Wu, Building surrogate models with

detailed and approximate simulations, ASME J. Mech. Design 128 (2006), 668–677.

[7] Z. Qian, C. F. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy and

high-accuracy experiments, Technometrics 50 (2008), 192–204.

[8] C. S. Reese, A. G. Wilson, M. Hamada, H. F. Martz, K. J. Ryan, Integrated analysis of

computer and physical experiments, Technometrics 46 (2004), 153–164.

[9] E. Seiden, R. Zemach, On orthogonal arrays, Ann. Math. Statist. 37 (1966), 1355–1370.

7


