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1 Introduction

Operator theorists, physicists, engineers and statisticians have long been interested in

various averaging operations (means) on positive definite matrices. When just two ma-

trices are involved the theory is very well developed. See the foundational work of Kubo

and Ando [10], and the recent exposition in Chapter 4 of [4].

Particularly intriguing has been the notion of geometric mean. For two positive

definite matrices A and B this is given by an explicit formula

A# 1
2
B = A

1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 (1)

credited to Pusz and Woronowicz [14]. For more than two matrices an appropriate

definition of a geometric mean with some natural properties remained elusive for long.

Progress was made recently by making a connection with differential geometry.

The space P consisting of positive definite matrices (of a fixed size d) is endowed with

a Riemannian metric δ2 defined as

δ2(A,B) =

[
d∑
j=1

log2 λj(A
−1B)

] 1
2

, (2)

where λj(X) denote the eigenvalues of X. Any two points A,B of P can be joined by a

unique geodesic, for which a natural parametrisation is given by

A#tB = A
1
2 (A−

1
2BA−

1
2 )tA

1
2 , 0 ≤ t ≤ 1. (3)

The geometric mean (1) is evidently the midpoint of this geodesic.

With this understanding it is natural to think that the geometric mean of m positive

definite matrices A1, . . . , Am should be defined as the “centre” of the convex set spanned

by these m points in the metric space (P, δ2). The right candidate for this would seem

to be the barycentre G(A1, . . . , Am) defined as

G(A1, . . . , Am) = argmin
X

m∑
j=1

1

m
δ2

2(X,Aj), (4)

the unique point X0 in P at which the sum in (4) is minimised. Geometric properties

of the space P as the Riemannian symmetric space GL(n)/U(n) have been studied for

long. It is a classical theorem of E. Cartan (see [2] p.234, [8] p.66, [9]) that the minimiser

in (4) exists and is unique. M. Moakher [13] proposed (4) as the right candidate for
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the geometric mean, and obtained many of its interesting properties, including a useful

characterisation of G as the unique solution in P for the equation

m∑
j=1

log(X−1Aj) = 0. (5)

The same definition for the geometric mean was also proposed by Bhatia and Holbrook

[5]. In this paper and the exposé [6] they further highlighted the geometric aspects

of the problem. Among other things, they pointed out that another definition of the

geometric mean proposed a little earlier by Ando, Li and Mathias [1] had a nice geometric

interpretation. This definition, in terms of the limit of an interactive process, leads to a

“centre” of the convex set spanned by A1, . . . , Am which is not always the same as the

barycentre.

Important in operator theory, though ignored by geometers, is the order relation on

P. We say that A ≤ B, if for all vectors x we have the inequality 〈Ax, x〉 ≤ 〈Bx, x〉
between inner products. Among the several conditions that a mean is expected to ful-

fill is monotonicity with respect to this order. For G this means that we must have

G(A1, . . . , Am) ≤ G(B1, . . . , Bm) whenever Aj ≤ Bj for 1 ≤ j ≤ m. The two-variable

mean (1) does satisfy this condition. While several facts about G(A1, . . . , Am) were

proved in [4], [5], [13], it is only recently that Lawson and Lim [11] have succeeded in

establishing this crucial monotonicity property for the case m ≥ 3.

To prove their theorem, Lawson and Lim have borrowed tools from an unexpected

source–the work of Sturm [16] on probability measures on metric spaces of nonpositive

curvature. It is known that (P, δ2) is such a space. The principal goal of this paper is

to give a vastly simplified proof. We use no measure theory, just some simple counting

arguments and basic inequalities for the metric δ2. In addition to this we obtain some

more mean-like properties of G(A1, . . . , Am).

Ando, Li and Mathias [1] listed ten properties that a geometric mean of m matrices

should satisfy, and showed that their mean possesses all of them. For the barycentre mean

G, many of these properties had been established earlier. With the work of Lawson and

Lim [11] it is now known that G too has all the ten properties. Other notions of geometric

mean with all the ten properties have been proposed recently [7]. The barycentre mean

has been used in diverse applications such as elasticity, signal processing, medical imaging

and computer vision. See [11] for some references.

Chapters 4 and 6 of [4] provide a convenient summary of basic results on matrix

means. Other facts about matrix analysis that we use can be found in [3].
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2 Some inequalities

For the convenience of the reader, we collect some fundamental inequalities that we need

for our proofs.

It is a fundamental fact of Loewner’s theory [3, Chapter V] that for 0 ≤ t ≤ 1,

the function A 7−→ At is operator monotone. Consequently, A#tB as defined in (3) is

monotone in B. Since A#tB = B#1−tA, it is monotone in A as well. So we have the

following well-known result.

Proposition 2.1 Let A1 ≤ B1 and A2 ≤ B2. Then for all 0 ≤ t ≤ 1 we have

A1#tA2 ≤ B1#tB2.

Let H be the real linear space consisting of all Hermitian matrices (of size d) with

the Euclidean norm

||T ||2 = (trT ∗T )
1
2 =

(∑
i,j

|tij|2
) 1

2

(6)

A fundamental inequality, from which several facts about the metric δ2 can be derived, is

the exponential metric increasing property (EMI in brief). This says that the exponential

map exp from (H, ||·||2) onto (P, δ2) increases distances in general, and preserves distances

along rays through the origin. More precisely:

Proposition 2.2 (EMI) For all S, T in H we have

δ2(eS, eT ) ≥ ||S − T ||2.

The two sides are equal when S and T commute. In particular, this is so if S = αT for

some real number α.

See [4, pp.203-204]. As a corollary, we see that if {An} is a sequence in P such that

δ2(An, A) −→ 0, then ||An − A||2 −→ 0. Using this one can see the following:

Proposition 2.3 Let {An} and {Bn} be two sequences in P, such that An ≤ Bn for all

n. Suppose δ2(An, A) −→ 0 and δ2(Bn, B) −→ 0. Then A ≤ B.

A consequence of the EMI is the following.

Proposition 2.4 For all A,B,C in P and for 0 ≤ t ≤ 1 we have

δ2
2(C,A#tB) ≤ (1− t)δ2

2(C,A) + tδ2
2(C,B)− t(1− t)δ2

2(A,B). (7)

The special case t = 1
2

of (7) is called the semiparallelogram law. See [4, p.207] for a

simple proof. Using the special case we can prove (7) inductively for all dyadic rationals

t in [0, 1], and then by continuity extend it to all t.
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Let a1, . . . , am be elements of a Hilbert space H and let g = 1
m

(a1 + · · ·+ am). Then

for all z ∈ H we have

||z − g||2 =
m∑
j=1

1

m
[ ||z − aj||2 − ||g − aj||2 ]. (8)

This can be easily seen by reducing the general case to the special one with a1 + a2 +

· · ·+ am = 0.

In the space (P, δ2) the equality (8) is replaced by an inequality:

Theorem 2.5 (Variance Inequality) Let A1, A2, . . . , Am be any elements of P and let

G = G(A1, . . . , Am). Then for all Z ∈ P we have

δ2
2(Z,G) ≤

m∑
j=1

1

m
[δ2

2(Z,Aj)− δ2
2(G,Aj)]. (9)

Proof For every nonsingular matrix X, the map ΓX , defined on P as ΓX(A) = X∗AX,

is an isometry for the metric δ2. See [4,p.202]. Use this fact with X = G−
1
2 to see that

it suffices to prove (9) in the special situation when G = I. In this case the desired

inequality (9) becomes

δ2
2(Z, I) ≤

m∑
j=1

1

m
[δ2

2(Z,Aj)− δ2
2(I, Aj)]. (10)

We have remarked that G is the unique positive definite solution of the equation (5).

When G = I this reduces to
m∑
j=1

log(Aj) = 0.

Now, log(Aj) are points in the Hilbert space (H, || · ||2), and their sum is 0. So from (8)

we get

|| logZ||22 =
m∑
j=1

1

m
[ || logZ − logAj||22 − || logAj||22 ]. (11)

Using Proposition 2.2 (EMI) we see that

|| logZ||2 = δ2(Z, I), || logAj||2 = δ2(Aj, I),

and

|| logZ − logAj||2 ≤ δ2(Z,Aj).
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So the inequality (10) follows from (11). 2

A more general version of the inequality (9) with integrals in place of sums is Propo-

sition 4.4 of Sturm [16]. The discrete version is adequate for our purpose. The role of

EMI is clearly brought out in our proof.

3 Monotonicity of the geometric mean

Let A1, . . . , Am be elements of P, let G = G(A1, . . . , Am), and

α =
m∑
j=1

1

m
δ2

2(G,Aj). (12)

For n ≥ 1 let Jn be the set of all ordered n-tuples (j1, j2, . . . , jn), with jk ∈ {1, 2, . . . ,m}.
This is a set with mn elements. For each element of this set we define a “mean”

Mn(j1, . . . , jn) of the given matrices A1, . . . , Am by the following inductive procedure:

M1(j) = Aj, for all j ∈ J1;

Mn+1(j1, . . . , jn, k) =Mn(j1, . . . , jn)# 1
n+1

Ak,

for all (j1, . . . , jn) in Jn and k in J1. The heart of our proof is in the following estimate.

Theorem 3.1 For every n we have

1

mn

∑
(j1,...,jn)∈Jn

δ2
2(G,Mn(j1, . . . , jn)) ≤ 1

n
α. (13)

Proof We prove this by induction on n. When n = 1, the two sides of (13) are equal.

Assuming that (13) is true for n, we will show that it is true for n+ 1. We have

m∑
k=1

δ2
2(G,Mn+1(j1, . . . , jn, k)) =

m∑
k=1

δ2
2(G,Mn(j1, . . . , jn)# 1

n+1
Ak). (14)

Using Proposition 2.4 we see that the right hand side of (14) is less than or equal to

m∑
k=1

[
n

n+ 1
δ2

2(G,Mn(j1, . . . , jn)) +
1

n+ 1
δ2

2(G,Ak)−
n

(n+ 1)2
δ2

2(Mn(j1, . . . , jn), Ak)

]

=
mn

n+ 1
δ2

2(G,Mn(j1, . . . , jn)) +
m

n+ 1
α− n

(n+ 1)2

m∑
k=1

δ2
2(Mn(j1, . . . , jn), Ak). (15)
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By the Variance Inequality (9) we have

mδ2
2(Mn(j1, . . . , jn), G) +

m∑
k=1

δ2
2(G,Ak) ≤

m∑
k=1

δ2
2(Mn(j1, . . . , jn), Ak). (16)

From (14), (15) and (16) we obtain

1

m

m∑
k=1

δ2
2(G,Mn+1(j1, . . . , jn, k)) ≤ n

n+ 1
δ2

2(G,Mn(j1, . . . , jn)) +
1

n+ 1
α

− n

(n+ 1)2
[δ2

2(G,Mn(j1, . . . , jn)) + α]

=
n2

(n+ 1)2
δ2

2(G,Mn(j1, . . . , jn)) +
1

(n+ 1)2
α.

(17)

Sum up the two sides of (17) over (j1, . . . , jn) ∈ Jn, divide by mn, and use the induction

hypothesis. This shows that

1

mn+1

∑
(j1,j2,...,jn+1)∈Jn+1

δ2
2(G,Mn+1(j1, j2, . . . , jn+1)) ≤ n2

(n+ 1)2

α

n
+

1

(n+ 1)2
α =

α

n+ 1
.

This shows that the inequality (13) is valid for all n. 2

Now we are in a position to give our proof of the following theorem first proved by

Lawson and Lim.

Theorem 3.2 Let A1, . . . , Am and A′1, . . . , A
′
m be positive definite matrices such that

Aj ≤ A′j for 1 ≤ j ≤ m. Then

G(A1, . . . , Am) ≤ G(A′1, . . . , A
′
m). (18)

Proof Let us denote by G and G′ the two sides of (18), by α and α′ the sums in (12)

corresponding to the m-tuples (A1, . . . , Am) and (A′1, . . . , A
′
m), and by Mn and M′

n the

“means” defined before Theorem 3.1.

Let ε be any given positive number, and choose a positive integer n such that α
n
<

ε2

4
and α′

n
< ε2

4
. Let In be the subset of Jn such that δ2(G,Mn(j1, . . . , jn)) > ε if

(j1, . . . , jn) ∈ In. From the inequality (13) we can conclude that the cardinality of

the set In cannot be bigger than one fourth of the cardinality of Jn. By the same

reasoning, the cardinality of the subset I ′n consisting of indices (j1, . . . , jn) for which

δ2(G′,M′
n(j1, . . . , jn)) > ε cannot be bigger than one fourth of the cardinality of Jn.

This shows that the intersection of the two sets

C1 = {(j1, . . . , jn) ∈ Jn : δ2(G,Mn(j1, . . . , jn)) < ε}
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and

C2 = {(j1, . . . , jn) ∈ Jn : δ2(G′,M′
n(j1, . . . , jn)) < ε}

contains at least one element. (In fact it contains at least mn

2
elements.)

So let (j∗1 , . . . , j
∗
n) ∈ C1 ∩ C2. Using Proposition 2.1 we see that

Mn(j∗1 , . . . , j
∗
n) ≤M′

n(j∗1 , . . . , j
∗
n).

For ε = 1
k
, choose n and (j∗1 , . . . , j

∗
n) as described above and let Dk = Mn(j∗1 , . . . , j

∗
n)

and D′k =M′
n(j∗1 , . . . , j

∗
n). Then we have

δ2(G,Dk) ≤
1

k
, δ2(G′, D′k) ≤

1

k
, and Dk ≤ D′k.

Using Proposition 2.3 we conclude that G ≤ G′. 2

Remark In essence we have proved and used a weak law of large numbers in this

special situation. Sturm [16] proves a weak law and a strong law in a more general

set up of probability measures on metric spaces of nonpositive curvature. Lawson and

Lim [11] derive Theorem 3.2 from this more difficult strong law. We have avoided the

complications of both the strong law and of measures.

Let us note here that our arguments give simplifications of the proofs of two other

important properties of the geometric mean. The first is joint concavity. This says that

for any two m-tuples (A1, . . . , Am) and (A′1, . . . , A
′
m) of positive definite matrices, we

have for all 0 ≤ t ≤ 1

(1− t)G(A1, . . . , An) + tG(A′1, . . . , A
′
n) ≤ G((1− t)A1 + tA′1, . . . , (1− t)An + tA′n). (19)

This concavity property is known to hold for the function f(A,B) = A#sB for each

0 ≤ s ≤ 1. From there it is carried over to the means Mn(A1, . . . , Am) and then to

G(A1, . . . , Am). The argument is similar to the one we have used in Theorem 3.2.

The second property is continuity. This follows from the interesting inequality given

in the next result first proved in [11].

Theorem 3.3 For all A1, . . . , Am and A′1, . . . , A
′
m in P

δ2(G(A1, . . . , Am), G(A′1, . . . , A
′
m)) ≤

m∑
j=1

1

m
δ2(Aj, A

′
j). (20)

Proof We will use the following well-known convexity property of the metric: for any

four points A1, A2, B1, B2 in P we have for all 0 ≤ t ≤ 1

δ2(A1#tA2, B1#tB2) ≤ (1− t)δ2(A1, B1) + tδ2(A2, B2). (21)
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See Corollary 6.1.11 [4]. Let Mn and M′
n be the “means” defined at the beginning of

the proof of Theorem 3.2. Then for each (j1, . . . , jn) ∈ Jn we have, using (21) repeatedly,

δ2(Mn(j1, . . . , jn),M′
n(j1, . . . , jn))

≤ n− 1

n
δ2(Mn−1(j1, . . . , jn−1),M′

n−1(j1, . . . , jn−1)) +
1

n
δ2(Ajn , A

′
jn)

≤ n− 2

n
δ2(Mn−2(j1, . . . , jn−2),M′

n−2(j1, . . . , jn−2)) +
1

n
δ2(Ajn−1 , A

′
jn−1

) +
1

n
δ2(Ajn , A

′
jn)

≤ . . . . . .

≤ 1

n

n∑
k=1

δ2(Ajk , A
′
jk

).

Now we will show that given an ε, for large n, there are lots of choices of (j1, . . . , jn)

for which the last sum is smaller than 1
m

∑m
k=1 δ2(Ak, A

′
k) + ε. With this aim, let

θ =
m∑
j=1

1

m
δ2(Aj, A

′
j)

and

γ =
m∑
j=1

1

m

(
δ2(Aj, A

′
j)− θ

)2
.

It can be shown that

1

mn

∑
(j1,...,jn)∈Jn

( 1

n

n∑
k=1

δ2(Ajk , A
′
jk

)− θ
)2

≤ 1

n
γ.

The steps are similar to (and far simpler than) the proof of (13). Then, given an ε, we

can choose n such that γ
n
≤ ε2

4
, and then for this choice the set

C3 =
{

(j1, . . . , jn) ∈ Jn :
∣∣∣ 1
n

n∑
k=1

δ2(Ajk , A
′
jk

)− θ
∣∣∣ < ε

}
contains at least 3

4
mn elements.

Let C1 and C2 be the sets defined in the proof of Theorem 3.3. We have shown that

we can choose n such that cardinality of each of C1, C2 and C3 is at least 3
4
mn. Thus

C1 ∩ C2 ∩ C3

9



is non-empty (its cardinality is at least 1
4
mn). Let (j∗1 , . . . , j

∗
n) be a common element in C1,

C2 and C3 and letMn =Mn(j∗1 , . . . , j
∗
n), M ′

n =M′
n(j∗1 , . . . , j

∗
n) and θn = 1

n

∑n
k=1 δ2(Aj∗k , A

′
j∗k

).

Then for this choice of n and (j∗1 , . . . , j
∗
n), we have seen that

δ2(G(A1, . . . , Am),Mn) ≤ ε,

δ2(G(A′1, . . . , A
′
m),M ′

n) ≤ ε,

and

|θn − θ| ≤ ε.

Thus we conclude

δ2(G(A1, . . . , Am), G(A′1, . . . , A
′
m)) ≤ θ + 3ε.

Since ε is arbitrary, this completes the proof of (20). 2

The inequalities (19) and (20) have been proved by Lawson and Lim [11], using the

full force of Sturm’s theorems. For the proof of (20) they make use of the Wasserstein

distance between probability measures. Our proofs are much simpler.

4 More properties of the geometric mean

The geometric mean (4) enjoys several other properties. Some of them are shown in this

section.

Theorem 4.1 Let Φ be a positive unital linear map from the matrix algebra M(d) to

M(k). Then for all positive definite matrices A1, . . . , Am in M(d) we have

Φ(G(A1, . . . , Am)) ≤ G(Φ(A1), . . . ,Φ(Am)). (22)

Proof It is well known that the two variable mean (1) has this property. See Theorem

4.1.5 in [4]. From this the property is inherited by the “mean” (3); i.e., for all 0 ≤
t ≤ 1 we have Φ(A#tB) ≤ Φ(A)#tΦ(B). Now let Mn(j1, . . . , jn) be the “means”

constructed from A1, . . . , Am in Section 3, and let MΦ
n (j1, . . . , jn) be the corresponding

objects obtained by replacing A1, . . . , Am with Φ(A1), . . . ,Φ(Am). Then we have

Φ(Mn(j1, . . . , jn)) ≤MΦ
n (j1, . . . , jn)

for all (j1, . . . , jn) ∈ Jn. From this we obtain the inequality (22) by the argument used

in the proof of Theorem 3.2. 2

10



Applying this to the positive linear functional φ(A) = 〈Ax, x〉, where x is a unit

vector in Cd, we obtain the following result proved by Yamazaki [17].

Corollary 4.2 For all positive definite A1, . . . , Am and all vectors x, we have

〈G(A1, . . . , Am)x, x〉 ≤

(
m∏
j=1

〈Ajx, x〉

) 1
m

. (23)

Let ||A|| = sup||x||=1 ||Ax|| be the usual operator norm on M(d). Then from (23) we

obtain:

Theorem 4.3 For all positive definite matrices A1, . . . , Am we have

||G(A1, . . . , Am)|| ≤
m∏
j=1

||Aj||
1
m (24)

Let 1 ≤ k ≤ d and let Λk(T ) denote the kth antisymmetric tensor power of a d × d
matrix T . If A and B are positive definite matrices, then for all 0 ≤ t ≤ 1 we have

Λk(A#tB) = Λk(A)#tΛ
k(B). (25)

Once again, using the by now familiar argument, we can deduce the following:

Theorem 4.4 For all 1 ≤ k ≤ d, and for all d× d positive definite matrices, we have

ΛkG(A1, . . . , Am) = G(ΛkA1, . . . ,Λ
kAm). (26)

As a corollary we have the following result proved by Yamazaki [17].

Corollary 4.5 We have

det G(A1, . . . , Am) =

(
m∏
j=1

det Aj

) 1
m

(27)

Let λ1(T ) ≥ λ2(T ) ≥ . . . ≥ λN(T ) be the eigenvalues of an N × N positive definite

matrix T . The inequality (24) says that

λ1(G(A1, . . . , Am)) ≤
m∏
j=1

λ
1
m
1 (Aj). (28)

Using the fact

λ1(ΛkT ) =
k∏
i=1

λi(T ),

11



we obtain from (26) the inequality

k∏
i=1

λi(G(A1, . . . , Am)) ≤
m∏
j=1

k∏
i=1

λ
1
m
i (Aj), (29)

for all k = 1, 2, . . . , d. When k = d, this is an equality. Relations (28) and (27) are

special cases of this for k = d and k = 1, respectively.

Interchange the order of the products in (29), and then use a standard result from

the theory of majorisation [3,p.42] to obtain

k∑
i=1

λi(G(A1, . . . , Am)) ≤
k∑
i=1

m∏
j=1

λ
1
m
i (Aj). (30)

Now recall Hölder’s inequality for any array. If aij, 1 ≤ i ≤ k, 1 ≤ j ≤ m, is an array of

positive numbers, then

k∑
i=1

(
m∏
j=1

aij

) 1
m

≤
m∏
j=1

(
k∑
i=1

aij

) 1
m

. (31)

See [15,p.152]. Using this we obtain from (30)

k∑
i=1

λi(G(A1, . . . , Am)) ≤
m∏
j=1

[
k∑
i=1

λi(Aj)

] 1
m

. (32)

Now recall that the Ky Fan k-norm of a matrix T is defined as ||T ||k = s1(T ) + · · ·+
sk(T ), the sum of the top k singular values of T . Thus (32) can be stated in another

way as

||G(A1, . . . , Am)||k ≤
m∏
j=1

||Aj||
1
m
k , 1 ≤ k ≤ d. (33)

As is well-known, the Ky Fan norms play a very special role in the theory of majori-

sation [3]. Using a theorem of Li and Mathias [12] we obtain from (33):

Theorem 4.6 Let A1, . . . , Am be positive definite matrices. Then for every unitarily

invariant norm ||| · ||| we have

|||G(A1, . . . , Am)||| ≤
m∏
j=1

|||Aj|||
1
m . (34)

Theorem 4.3 is a special case of this. Among unitarily invariant norms are the

Schatten p-norms, much used in operator theory and physics.

12



5 The weighted geometric mean

A weight vector w = (w1, . . . , wm) is an m-tuple of positive numbers wj, such that

w1 + · · ·+wm = 1. The weighted geometric mean of positive definite matrices A1, . . . , Am

is defined as the solution of the minimisation problem

G(w;A1, A2, . . . , Am) = argmin
X

m∑
j=1

wjδ
2
2(X,Aj). (35)

It is known that the problem has a unique solution in P, and that is also the unique

solution of the matrix equation

m∑
j=1

wj log(X−1Aj) = 0. (36)

The mean G(A1, . . . , Am) corresponds to the special choice wj = 1/m, 1 ≤ j ≤ m.

All our results can be proved for the weighted geometric mean. In fact, with continuity

of G(A1, . . . , Am) in hand, the more general case can be deduced from the special one.

We indicate this briefly.

Suppose all weights wj are rational. Choosing a common denominator, we can assume

that wj = pj/q, 1 ≤ j ≤ m. Then we consider a q-tuple of matrices in which each Aj

occurs with multiplicity pj. This brings us to the case we have already studied. From

rational weights we go to real ones by a continuity argument.

Thus the mean G(w;A1, . . . , Am) is monotone and jointly concave in the variables

A1, . . . , Am.

Most of our inequalities have a general version in which the term 1
m

is replaced by

wj at the appropriate places. Thus, for example, instead of (20) we have the inequality

δ2(G(w;A1, . . . , Am), G(w;A′1, . . . , A
′
m)) ≤

k∑
j=1

wjδ2(Aj, A
′
j), (37)

and instead of (34) we have

|||G(w;A1, . . . , Am)||| ≤
m∏
j=1

|||Aj|||wj , (38)

for every unitarily invariant norm.
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Lawson-Lim [11], Yamazaki [17] and some other authors prove their results in the

weighted setting. Our argument offers an easy transition from the equal-weights case to

the general one.

An alternative approach is the following. When m = 2 and w = (1 − t, t) for some

0 < t < 1, then G(w;A,B) = A#tB. Properties such as monotonicity, joint concavity

and continuity, for this mean are very well known. In the several variable case with

weights w = (w1, . . . , wm) and matrices A1, . . . , Am we can follow the arguments used in

Section 3. The modification would be that we now define the “means” Mn(j1, . . . , jn)

inductively as follows:

M1(j) = Aj, for all j ∈ J1

Mn+1(j1, . . . , jn; k) =Mn(j1, . . . , jn)#tAk,

for all (j1, . . . , jn) ∈ Jn, where

t =
wk

wj1 + · · ·+ wjn + wk
.

Now with

α =
m∑
j=1

wjδ
2
2(G(w;A1, . . . , Am), Aj)

we can establish the weighted version of Theorem 3.1, and then use it to prove the

corresponding version of Theorems 3.2 and 3.3. Results of Section 4 can also be obtained

using this argument.
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