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Abstract. Let sq(n) denote the sum of the digits in the q-ary expansion of an integer n.

In 1978, Stolarsky showed that lim inf
n→∞

s2(n2)

s2(n)
= 0. He conjectured that, as for n2, this limit

infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing

that for any polynomial p(x) = ahxh + ah−1x
h−1 + · · ·+ a0 ∈ Z[x] with h ≥ 2 and ah > 0 and

any base q,

lim inf
n→∞

sq(p(n))

sq(n)
= 0.

For any ε > 0 we give a bound on the minimal n such that the ratio sq(p(n))/sq(n) < ε.

Further, we give lower bounds for the number of n < N such that sq(p(n))/sq(n) < ε.

1. Introduction

Let q ≥ 2 and denote by sq(n) the sum of digits in the q-ary representation of an integer n.
In recent years, much effort has been made to get a better understanding of the distribution
properties of sq regarding certain subsequences of the positive integers. We mention the ground-
breaking work by C. Mauduit and J. Rivat on the distribution of sq of primes [9] and of
squares [10]. In the case of general polynomials p(n) of degree h ≥ 2 very little is known. For
the current state of knowledge, we refer to the work of C. Dartyge and G. Tenenbaum [3], who
provided some density estimates for the evaluation of sq(p(n)) in arithmetic progressions. The
authors [7] recently examined the special case when sq(p(n)) ≈ sq(n).

A problem of a more elementary (though, non-trivial) nature is to study extremal properties
of sq(p(n)). Here we will always assume that

(1) p(x) = ahx
h + ah−1x

h−1 + · · ·+ a0 ∈ Z[x]

is a polynomial of degree h ≥ 2 with leading coefficient ah > 0.
In the binary case when q = 2, B. Lindström [8] showed that

(2) lim sup
n→∞

s2(p(n))
log2 n

= h.
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In the proof of (2), Lindström uses a sequence of integers n with many 1’s in their binary
expansions such that p(n) also has many 1’s. The special case p(n) = n2 of (2) has been
reproved by M. Drmota and J. Rivat [5] with constructions due to J. Cassaigne and G. Baron.

On the other hand, it is an intriguing question whether it is possible to generate infinitely
many integers n such that p(n) has few 1’s compared to n. If this is possible, then this is indeed
a rare event. It is well-known [4, 12] that the average order of magnitude of sq(n) and sq(nh)
is

(3)
∑
n<N

sq(n) ∼ 1
h

∑
n<N

sq(nh) ∼ q − 1
2 log q

N logN.

In particular, the average value of sq(nh) is h times larger than the average value of sq(n).
In 1978, K. Stolarsky [14] proved several results on the extremal values of sq(p(n))/sq(n) for

the special case when q = 2 and p(n) = nh. He showed that the maximal order of magnitude is

c(h)(log2 n)1−1/h,

where c(h) only depends on h. This result is best possible, which follows from the Bose-
Chowla theorem [2, 6]. His proof can be generalized to base q and to general polynomials p(n).
Although this generalization is straightforward, we include it here for completeness. Recall
that p(n) may have negative coefficients as well.

Theorem 1.1. Let p(x) ∈ Z[x] have degree at least 2 and positive leading coefficient.

(1) If p(n) has only nonnegative coefficients then there exists c1, dependent only on p(x)
and q, such that for all n ≥ 2,

sq(p(n))
sq(n)

≤ c1(logq n)1−1/h.

This is best possible in that there is a constant c′1, dependent only on p(x), such that

sq(p(n))
sq(n)

> c′1(logq n)1−1/h

infinitely often.
(2) If p(n) has at least one negative coefficient then there exists c2 and n0, dependent only

on p(x) and q, such that for all n ≥ n0,

sq(p(n))
sq(n)

≤ c2 logq n.

This is best possible in that for all ε > 0 we have

sq(p(n))
sq(n)

> (q − 1− ε) logq n

infinitely often.

The proof of this result along with some useful preliminary results are given in Section 2.
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For the minimal order of sq(p(n))/sq(n), Stolarsky treated the special case q = 2 and p(n) =
n2. He proved that there are infinitely many integers n such that

(4)
s2(n2)
s2(n)

≤ 4(log logn)2

log n
.

He conjectured that an analogous result is true for every fixed h ≥ 2 but he did “not see how
to prove this”.

Conjecture 1.2 (Stolarsky [14], 1978). For fixed h ≥ 2,

lim inf
n→∞

s2(nh)
s2(n)

= 0.

By naive methods, it can be quite hard to find even a single value n such that s2(nh) < s2(n)
for some h, let alone observe that the limit infimum goes to 0. For example, an extremely brute
force calculation shows that the minimal n such that s2(n3) < s2(n) is n = 407182835067 ≈ 239.

In Section 3 we prove and generalize Conjecture 1.2.

Theorem 1.3. We have
lim inf
n→∞

sq(p(n))
sq(n)

= 0.

In view of our generalization, it is natural to ask how quickly we can expect this ratio to go
to zero. Recall that h = deg p.

Theorem 1.4. There exist explicitly computable constants B and C, dependent only on p(x)
and q, such that for all ε with 0 < ε < h(4h+ 1) there exists an n < B · C1/ε with

sq(p(n))
sq(n)

< ε.

The proof of this result along with an explicit construction for B and C is given in Section
4. As a nice Corollary to this result we have

Corollary 1.5. There exists a constant C0, dependent only on p(x) and q, such that there
exists infinitely many n with

sq(p(n))
sq(n)

≤ C0

log n
.

This is an improvement and generalization upon (4).

Proof. By solving for ε in n < B · C1/ε, one easily sees that ε < logC
logn−logB . If B > 1, we

can take C0 = logC. If B < 1, we take n sufficiently large that log n > − logB and take
C0 = 2 logC. �

One might expect that the ratio sq(p(n))/sq(n) is small only rarely, with most of its time
being spent near h = deg p. It turns out that this ratio is small somewhat more often than
expected.
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Theorem 1.6. For any ε > 0 there exists an explicitly computable α > 0, dependent only on
ε, p(x) and q, such that

#
{
n < N :

sq(p(n))
sq(n)

< ε

}
� Nα

where the implied constant also only depends on ε, p(x) and q.

The proof of this result is given in Section 5.
In Section 6 we collect together questions raised in this paper and pose some further lines of

inquiry for this research.

2. Preliminaries and Proof of Theorem 1.1

First we prove some preliminary results about sq which we need in the proofs. Recall (cf. [8])
that terms are said to be noninterfering if we can use the following splitting formulæ:

Proposition 2.1. For 1 ≤ b < qk and a, k ≥ 1,

sq(aqk + b) = sq(a) + sq(b),(5)

sq(aqk − b) = sq(a− 1) + (q − 1)k − sq(b− 1).(6)

Proof. Relation (5) is a consequence of the (strong) q-additivity of sq. For (6) we write b− 1 =∑k−1
i=0 biq

i with 0 ≤ bi ≤ q − 1. Then

sq(aqk − b) = sq((a− 1)qk + qk − b) = sq(a− 1) + sq(qk − b)

= sq(a− 1) + sq

(
k−1∑
i=0

(q − 1− bi)qi
)

= sq(a− 1) +
k−1∑
i=0

(q − 1− bi)

implying (6). �

Proposition 2.2. The function sq is subadditive and submultiplicative, i.e., for all a, b ∈ N we
have

sq(a+ b) ≤ sq(a) + sq(b),(7)

sq(ab) ≤ sq(a)sq(b).(8)

Proof. The proof follows on the lines of [13, Section 2]. As for (7), an even stronger result
is true, namely that sq(a + b) = sq(a) + sq(b) − (q − 1) · r where r is the number of “carry”
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operations needed when adding a and b. Writing b =
∑k−1

i=0 biq
i we also have

sq(ab) = sq

(
a
k−1∑
i=0

biq
i

)
≤

k−1∑
i=0

sq(abi)

=
k−1∑
i=0

sq(a+ · · ·+ a︸ ︷︷ ︸
bi times

) ≤ s(a)
k−1∑
i=0

bi,

where we used twice the subadditivity of sq and we get (8). �

Proof of Theorem 1.1. This is an almost direct generalization of Stolarsky’s proof (see [14, Sec-
tion 2]) and Propositions 2.1 and 2.2. First, suppose that p(n) has only nonnegative coefficients.
Then using Proposition 2.2 we see that sq(p(n)) ≤ p(sq(n)). Therefore

sq(p(n))
sq(n)

≤
min{(q − 1)

(
logq p(n) + 1

)
, p(sq(n))}

sq(n)

≤ c1 ·
min{logq n, sq(n)h}

sq(n)
(9)

where c1 only depends on p(x) and q. If logq n ≤ sq(n)h then we have (logq n)1/h ≤ sq(n).
From this and (9), we get that

sq(p(n))
sq(n)

≤ c1 ·
logq n

(logq n)1/h
= c1(logq n)1−1/h.

Alternately, if logq n > sq(n)h then we have (logq n)1/h > sq(n) and

sq(p(n))
sq(n)

≤ c1 · sq(n)h−1 ≤ c1(logq n)1−1/h.

For the lower bound, set

(10) k = blogq(λ(h+ 1)!)c+ 1,

where λ = max{ai : 0 ≤ i ≤ h}. By Stolarsky’s use of the Bose-Chowla Theorem, there
are infinitely many integers M ≥ 3(k + 1) such that there are integers y1, y2, . . . , yN with
N := b(M + 1)/(k + 1)c − 1, with the following three properties:

(i) 1 ≤ y1 < y2 < · · · < yN ≤Mh,
(ii) yi ≡ 0 mod (k + 1),

(iii) all sums yj1+· · ·+yjh are distinct (distinct sum property); here j1, j2, . . . , jh ∈ {1, 2, . . . , N}
with possible repetition.

Note that (iii) implies the distinct sum property for all yj1 + · · ·+ yji with 1 ≤ i ≤ h. Now set

n =
N∑
i=1

qyi ,



6 KEVIN G. HARE, SHANTA LAISHRAM, AND THOMAS STOLL

such that

(11) p(n) =
h∑
i=0

ain
i =

h∑
i=0

∑ ′
aiα(i;h1, . . . , hN )qy1h1+···+yNhN

where the summation
∑ ′

is over all vectors (h1, . . . , hN ) satisfying h1 + · · · + hN = i, and
α(i;h1, . . . , hN ) denote the multinomial coefficients i!/(h1! . . . hN !) bounded by i!. Consider (11)
as a polynomial in q. By the distinct sum property (iii) we have for all 0 ≤ i ≤ h that

#{y1h1 + · · ·+ yNhN : h1 + · · ·+ hN = i} =
(
N + i− 1
N − 1

)
.

Thus the coefficients of qy1h1+···+yNhN = qR with h1 + · · · + hN = h in (11) are nonzero and
bounded by

(12) ahh! + ah−1(h− 1)! + · · ·+ a0 ≤ λ(h+ 1)h! < qk.

By (12) and (ii), the sums y1h1 + · · · + yNhN ≡ 0 mod (k + 1) and hence the powers qR are
noninterfering and we get

sq(p(n))
sq(n)

≥
(
N + h− 1
N − 1

)
· 1
N
≥ Nh−1

h!
.

By construction,
logq n ≤ yN + 1 ≤ 2h+1Nh(k + 1)h.

The claim now follows by observing that k is largest for q = 2.
Secondly suppose that p(n) has at least one negative coefficient. Then the first claim follows

by observing that sq(p(n)) ≤ blogq p(n)c+1 for sufficiently large n. For the lower bound, denote
by aj the negative coefficient with smallest index j, i.e., aj < 0 and aj−l ≥ 0 for 1 ≤ l ≤ j.
Then for all sufficiently large k we have

sq(p(qk)) = sq(ahqhk + · · ·+ aj+1q
(j+1)k + ajq

jk + aj−1q
(j−1)k + · · ·+ a0)

= sq(ahq(h−j)k + · · ·+ aj+1q
k + aj) +

j−1∑
l=0

sq(al)

≥ k(q − 1)− s(−aj − 1)

> k(q − 1− ε).

Here we have used Proposition 2.1. As sq(qk) = 1 and logq(qk) = k, the result follows. This
completes the proof of Theorem 1.1. �
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3. Proof of Theorem 1.3

The proof of Theorem 1.3 will use a construction of a sequence with noninterfering terms.
First assume that p(x) = xh, h ≥ 2 and define the polynomial

tm(x) = mx4 +mx3 − x2 +mx+m

where m ∈ Z with m ≥ 3. By consecutively employing (5) and (6) we see that for all k with
qk > m,

(13) sq(tm(qk)) = (q − 1)k + sq(m− 1) + 3sq(m).

The appearance of k in (13) is crucial. The next lemma lies at the heart of the proofs. We
will use it to see that sq(tm(qk)h), h ≥ 2, is independent of k whenever k is sufficiently large.
Furthermore, we will exploit the fact that the coefficients of [xi] in tm(x)h are polynomials in
m with alternating signs.

Lemma 3.1. For fixed h ≥ 2 and m ≥ 3, we have

tm(x)h =
4h∑
i=0

ci,h(m) xi

satisfying

(14) 0 < ci,h(m) ≤ (2mh)h i = 0, 1, . . . , 4h.

In fact, we have

c0,h(m) = c4h,h(m) = mh, c1,h(m) = c4h−1,h(m) = hmh.(15)

Proof. A direct calculation shows that tm(x)2 and tm(x)3 have property (14) provided m ≥ 3.
Set h = 2h1 + 3h2 with max(h1, h2) ≥ 1. Then

tm(x)h = tm(x)2 . . . tm(x)2︸ ︷︷ ︸
h1 times

· tm(x)3 . . . tm(x)3︸ ︷︷ ︸
h2 times

.

Since products of polynomials with all positive coefficients have all positive coefficients too, we
get ci,h(m) > 0 for all i = 0, 1, . . . , 4h. On the other hand, the coefficients of tm(x)h are clearly
bounded by the corresponding coefficients of the polynomial

mh(1 + x+ x2 + x3 + x4)h = mh
∑

0≤l≤k≤j≤i≤h

(
h

i

)(
i

j

)(
j

k

)(
k

l

)
xi+j+k+l.



8 KEVIN G. HARE, SHANTA LAISHRAM, AND THOMAS STOLL

Therefore, for all i with 0 ≤ i ≤ 4h, we have

ci,h(m) ≤ mh
∑

0≤l≤k≤j≤i≤h

h!
(h− i)!(i− j)!(j − k)!(k − l)!

(16)

≤ mhh! exp(h− i+ i− j + j − k + k − l)

≤ mhh!eh ≤ (2mh)h.

�

Proof of Theorem 1.3. Now let k be such that qk > (2mh)h. By (14) and (5) we then have

sq(tm(qk)h) = sq(c0,h(m)) + sq(c1,h(m)) + · · ·+ sq(c4h,h(m))

where sq(ci,h(m)) is bounded by a function which only depends on q, m and h. Together
with (13) and letting k →∞ we thus conclude for fixed m ≥ 3,

lim
k→∞

sq(tm(qk)h)/sq(tm(qk)) = 0,

as wanted.
Finally we consider the case with a general polynomial instead of xh. Write

(17) p(tm(x)) = ahtm(x)h + ah−1tm(x)h−1 + · · ·+ a1tm(x) + a0

where ah > 0 and h ≥ 2. First suppose that all the coefficients are nonnegative. Lemma 3.1
shows that for i with 2 ≤ i ≤ h all the coefficients of tm(x)i are positive. Also, the coefficient
[x2] in p(tm(x)) is nonnegative if we choose m ≥ 3 sufficiently large. In fact, a sufficient
condition is ah

((
h
2

)
mh − hmh−1

)
≥ a1 which is true whenever

(18) m ≥
(

2a1

h(3h− 5)ah

)1/(h−1)

.

If the polynomial p(x) has negative coefficients then there is a positive integer b such that the
polynomial p(x+ b) has all positive coefficients. A good choice for b is

(19) b =
⌈

1 +
λ

ah

⌉
= 1 +

⌈
λ

ah

⌉
, λ = max{|ai| : 0 ≤ i ≤ h}.

This is easy to see since both p(x+ b)− (ah(x+ b)h − λ
∑h−1

i=0 (x+ b)i) and

ah(x+ b)h−λ
h−1∑
i=0

(x+ b)i

=
(
ah −

λ

x+ b− 1

)
(x+ b)h +

λ

x+ b− 1

=
1

x+ b− 1

(
(ahx+ (b− 1)ah − λ)(x+ b)h + λ

)
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have nonnegative coefficients when b ≥ 1 + λ
ah

. Thus if qk > m + b then sq(tm(qk) + b) =
(q − 1)k + sq(m− 1) + 2sq(m) + sq(m+ b) and one similarly obtains for fixed m,

lim
k→∞

sq(p(tm(qk) + b))/sq(tm(qk) + b) = 0.

This completes the proof of Theorem 1.3. �

4. Proof of Theorem 1.4

The construction of an extremal sequence in the proof of Theorem 1.3 gives a rough bound
on the minimal n such that sq(nh) < sq(n). We first illustrate the method in the case q = 2,
h = 3.

Set m = 3. Then for all k with 2k > max
0≤i≤4h

ci,h(m) = 225 we have

s2(t3(2k)) = k + 1 + 6 = k + 7,

s2(t3(2k)3) = 2 · (4 + 3 + 4 + 4 + 4 + 4) + 4 = 50.

Therefore, by setting k = 44, we get

min{n : s2(n3) < s2(n)} < 2178.

It is possible to show that the minimal such n to be n = 407182835067 ≈ 239.

Proof of Theorem 1.4. Consider the general polynomial

p(x) = ahx
h + ah−1x

h−1 + · · ·+ a0 ∈ Z[x]

with ah > 0, h ≥ 2. Let λ = max |ai|. Pick b such that p(x+b) has only nonnegative coefficients,
as in (19). Pick m ≥ 3 such that p(tm(x) + b) has only nonnegative coefficients, as in (18). Our
task is to bound the coefficients of of p(tm(x) + b) ∈ Z[x].

To begin with, we estimate the coefficient of xi, 0 ≤ i ≤ h of p(x+ b),

(20)
h∑
j=i

ajb
j−i
(
j

i

)
≤

h∑
j=i

∣∣∣∣ajbj−i(ji
)∣∣∣∣ ≤ λ(2b)h.

Combining (20) with (15), we find that the constant term of p(tm(x) + b) is bounded by

λ(2b)h
h∑
i=0

mi = λ(2b)h
mh+1 − 1
m− 1

≤ λh(4mbh)h

since m ≥ 3 and h ≥ 2. Again from (20) and (14), we find that the other coefficients of
p(tm(x) + b) are bounded by

(21) λ(2b)h
h∑
i=1

(2mi)i ≤ λh(4mbh)h.



10 KEVIN G. HARE, SHANTA LAISHRAM, AND THOMAS STOLL

Therefore the coefficients of p(tm(x) + b) are bounded by λh(4mbh)h. Hence for qk > m + b,
we have

(22) sq(p(tm(qk)) + b) ≤ (q − 1)(4h+ 1)
(

log(λh(4mbh)h)
log q

+ 1
)
.

On the other hand, we clearly have sq(tm(qk) + b) > (q − 1)k for qk > m+ b. Let

k =
⌊

4h+ 1
ε

(
log(λh(4mbh)h)

log q
+ 1
)⌋

+ 1.

Then for 0 < ε < h(4h+ 1) we have qk > m+ b and hence

sq(p(tm(qk) + b))
sq(tm(qk) + b)

< ε.

Therefore,

min
{
n :

sq(p(n))
sq(n)

< ε

}
≤ tm(qk) + b

< m(q4k + q3k + qk + 1)

< 2mq4k

≤ 2mq4
(
qλh(4mbh)h

)(16h+4)/ε
.

Setting B := 2mq4 and C :=
(
qλh(4mbh)h

)16h+4, it gives the desired result. �

5. Proof of Theorem 1.6

We start our analysis with the simple case of p(n) = nh. Let tm(x) = mx4+mx3−x2+mx+m
as in Section 3. Letting n = nk,m = tm(qk) we see from equation (13) that, for m < qk,

sq(n) = (q − 1)k + sq(m− 1) + 3sq(m) ≥ (q − 1)k.

If m has i q-ary digits then n will have 4k + i q-ary digits. We see that tm(qk)h is of length at
most h(4k + i).

Let tm(qk)h =
∑4h

j=0 cjq
kj . These cj are dependent upon m and h, but are independent

of k for k sufficiently large. We see from equation (16) that cj ≤ (mh · 2)h and hence has
at most hi + h logq h + h q-ary digits. As there are (4h + 1) coefficients cj and sq(cj) ≤
(q − 1)(hi+ h logq h+ h), we get

sq(nh) ≤ (q − 1)(4h+ 1)
(
hi+ h logq h+ h

)
.
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Combining these together we have

sq(nh)
sq(n)

≤
(q − 1)(4h+ 1)

(
hi+ h logq h+ h

)
(q − 1)k

=
(4h+ 1)

(
hi+ h logq h+ h

)
k

.

Without loss of generality suppose that 0 < ε < h(4h + 1). Let k0 be large enough so that
k0 > i and

(4h+ 1)
(
hi+ h logq h+ h

)
k0

< ε.

For i sufficiently large, we can take k0 =
⌊

(4h+1)(hi+i)
ε

⌋
. Then this says that for every sufficiently

large m having i q−ary digits, there is an integer n having 4k0 + i q−ary digits such that

sq(nh)
sq(n)

< ε.

Moreover, by construction, each distinct m will give rise to a distinct n. Letting

α =
i

4k0 + i
≥ i

4(4h+ 1)(h+ 1)i/ε+ i
=

ε

4(4h+ 1)(h+ 1) + ε

we get as N →∞ that

#
{
n < N :

sq(nh)
sq(n)

< ε

}
� Nα.

Now to extend this for general p(x), we proceed as we did in the proof of Theorem 1.3.
First consider the case where p(x) has only nonnegative coefficients. There is a lower bound
on m such that p(tm(x)) will have only nonnegative coefficients and we proceed as before, after
which the result follows as before. Second, if p(x) has at least one negative coefficient, then
consider instead the polynomial p(x+b) for sufficiently large b, which will have only nonnegative
coefficients, and the result follows.

6. Conclusions and further work

All results in this paper have explicitly computable constants for existence or density results.
Many times these constants are far from the observed experimental values, and it is quite likely
that many of them may be strengthened. Examples include Theorems 1.4 and 1.6.

Some obvious generalizations of this problem are in looking at the ratios of sq(p1(n))
sq(p2(n)) , or even

more generally of sq1 (p1(n))

sq2 (p2(n)) with respect to two different bases q1, q2. Alternately, instead of
looking at polynomials p(x) ∈ Z[x], we could look at quasi-polynomials bp(n)c with p(x) ∈ R[x].

As another direction, we could consider expansions in other numeration systems, e.g. the
Zeckendorf expansion (or expansions with respect to linear recurrences) or the balanced based q
representation. In the latter case, for example, 11 = 1·32+1·31−1·30, and s′3(11) = 1+1−1 = 1,
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being the sum-of-digits function in this representation. This value will quite often be 0, but its
extremal distribution could still have some interesting properties.
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