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Abstract. For positive integers n > k, let Pn,k(x) =
k∑
j=0

(
n

j

)
xj be the polynomial obtained

by truncating the binomial expansion of (1 + x)n at the kth stage. These polynomials arose in

the investigation of Schubert calculus in Grassmannians. In this paper, the authors prove the

irreducibility of Pn,k(x) over the field of rational numbers when 2 6 2k 6 n < (k + 1)3.
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1. Introduction

For positive integers k and n with k 6 n− 1, let Pn,k(x) denote the polynomial
k∑
j=0

(
n

j

)
xj ,

where
(
n
j

)
= n!

j! (n−j)! . In 2007, Filaseta, Kumchev and Pasechnik considered the problem of

irreducibility of Pn,k(x) over the field Q of rational numbers. This problem arose during the

2004 MSRI program on “topological aspects of real algebraic geometry” in the work of Inna

Scherbak [6]. These polynomials have also arisen in the context of work of Iossif V. Ostrovskii

[3]. In the case k = 2, Pn,k(x) has negative discriminant and hence is irreducible over Q. In

fact it is already known that Pn,k(x) is irreducible over Q for all n 6 100, k + 2 6 n (cf. [2,

p.455]). In [2], Filaseta et al. pointed out that when k = n− 1, then Pn,k(x) is irreducible over

Q if and only if n is a prime number. They also proved that for any fixed integer k > 3, there

exists an integer n0 depending on k such that Pn,k(x) is irreducible over Q for every n > n0.

So there are indications that Pn,k(x) is irreducible for every n, k with 3 6 k 6 n− 2.

In this paper, we prove the irreducibility of Pn,k(x) for all n, k such that 2 6 2k 6 n <

∗All correspondence may be addressed to this author.
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(k + 1)3. We consider the irreducibility of the polynomial Pn,k(x − 1) =
k∑
j=0

cjx
j , where

cj =
k∑
i=j

(
n

i

)(
i

j

)
(−1)i−j . As in [2], on using the identity

a∑
j=0

(−1)j
(
b

j

)
= (−1)a

(
b− 1
a

)
, a < b non-negative integers,

a simple calculation shows that

cj = (−1)k−j
(
n

j

)(
n− j − 1
k − j

)
=

(−1)k−j n(n− 1) · · · (n− k)
j!(k − j)!

1
(n− j)

. (1)

In fact we shall prove the irreducibility of Pn,k(x) using Newton polygons with respect to primes

exceeding k dividing
(
n
k

)
and some results of Erdős, Selfridge, Saradha, Shorey and Laishram

regarding such primes (cf. [7], [5]). The same method gives the irreducibility of polynomial

Fn,k(x) =
k∑
j=0

ajcjx
j , (2)

where a0, a1, . . . , ak are non-zero integers and each ai has all of its prime factors 6 k.

We prove

Theorem 1.1. Let k and n be positive integers such that 2k 6 n < (k + 1)3. Then Pn,k(x) is

irreducible over Q.

Theorem 1.1 is derived from the following more general result.

Theorem 1.2. Let k and n be positive integers such that 8 6 2k 6 n < (k + 1)3 and Fn,k(x)

be as in (2). Then Fn,k(x) is irreducible over Q except possibly when (n, k) belongs to the set

{(8, 4), (10, 5), (12, 6), (16, 8)}.

It may be pointed out that the polynomial1 F10,5(x) given by

F10,5(x) = 2000.c5x
5 − 375.c4x

4 − 9.c3x
3 + 10.c2x

2 − 27.c1x+ 25.c0

= 2000 · 252x5 + 375 · 1050x4 − 9 · 1800x3 − 10 · 1575x2 − 27 · 700x− 25 · 126

has 7x2 + 7x+ 1 as a factor which shows that Fn,k can be reducible over Q.

In the course of the proof of Theorem 1.2, we prove the following result which is of inde-

pendent interest as well.

1This example was constructed by the referee.
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Theorem 1.3. Let k, n be integers such that n > k + 2 > 4. Suppose there exists a prime

p > k, p|(n−l) with 1 6 l 6 k−1 and ordp(n−l) = e such that gcd(e, l) 6 2 and gcd(e, k−l) 6 2.

If l1 < k/2 is a positive integer such that l /∈ {l1, 2l1, k − l1, k − 2l1}, then Fn,k(x) cannot have

a factor of degree l1 over Q.

2. Notation and Preliminary Results

For any non-zero integer a, let vp(a)= ordp(a) denote the p-adic valuation of a, i.e., the

highest power of p dividing a and denote vp(0) by ∞. Let g(x) =
k∑
j=0

ajx
j be a polynomial

over Q with a0ak 6= 0. To each term aix
i, we associate a point (n− i, vp(ai)) ignoring however

the point (n− i,∞) if ai = 0 and form the set

S = {(0, vp(ak)), . . . , (n− j, vp(aj)), . . . , (k, vp(a0))}.

The Newton polygon of g(x) with respect to p is the polygonal path formed by the lower edges

along the convex hull of points of S. Slopes of the edges are increasing when calculated from

left to right.

We begin with the following well known results (see [1] for Theorem 2.A and [4, 5.1.F] for

Theorem 2.B).

Theorem 2.A. Let p be a prime and g(x), h(x) belong to Q[x] with g(0)h(0) 6= 0 and u 6= 0

be the leading coefficient of g(x)h(x). Then the edges of the Newton polygon of g(x)h(x) with

respect to p can be formed by constructing a polygonal path beginning at (0, vp(u)) and using the

translates of the edges in the Newton polygon of g(x) and h(x) with respect to p taking exactly

one translate for each edge. The edges are translated in such a way as to form a polygonal path

with slopes of edges increasing.

Theorem 2.B. Let (x0, y0), (x1, y1), . . . , (xr, yr) denote the successive vertices of the Newton

polygon of a polynomial g(x) with respect to a prime p. Let ṽp denote the unique extension of

vp to the algebraic closure of Qp, the field of p-adic numbers. Then g(x) factors over Qp as

g1(x)g2(x) · · · gr(x) where the degree of gi(x) is xi − xi−1, i = 1, 2, . . . , r and all the roots of

gi(x) in the algebraic closure of Qp have ṽp valuation yi−yi−1

xi−xi−1
. In particular all the roots of an

irreducible factor of g(x) over Qp will have the same ṽp valuation.

For an integer ν > 1, let P (ν) denote the greatest prime divisor of ν and let π(ν) denote

the number of primes not exceeding ν. As in [5], δ(k) will denote the integer
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defined for k > 3 by

δ(k) =


2, if 3 6 k 6 6;
1, if 7 6 k 6 16;
0, otherwise.

For numbers n, k and h, [n, k, h] will stand for the set of all pairs (n, k), (n + 1, k), . . . , (n +

h− 1, k). In particular [n, k, 1] = {(n, k)}.

We shall denote by S the union of the sets

[6, 3, 1], [8, 3, 3], [18, 3, 1], [9, 4, 1], [10, 5, 4], [16, 5, 1], [18, 5, 3], [27, 5, 2], [12, 6, 2], [20, 6, 1],

[14, 7, 3], [18, 7, 1], [20, 7, 2], [30, 7, 1], [16, 8, 1], [21, 8, 1], [26, 13, 3], [30, 13, 1], [32, 13, 2],

[36, 13, 1], [28, 14, 1], [33, 14, 1], [36, 17, 1]

and by T the union of the sets

[38, 19, 3], [42, 19, 1], [40, 20, 1], [94, 47, 3], [100, 47, 1], [96, 48, 1], [144, 71, 2], [145, 72, 1],

[146, 73, 3], [156, 73, 1], [148, 74, 1], [162, 79, 1], [166, 83, 1], [172, 83, 1], [190, 83, 1],

[192, 83, 1], [178, 89, 1], [190, 89, 1], [192, 89, 1], [210, 103, 2], [212, 103, 2][216, 103, 2],

[213, 104, 1], [217, 104, 1], [214, 107, 12], [216, 108, 10], [218, 109, 9], [220, 110, 7]

[222, 111, 5], [224, 112, 3], [226, 113, 7], [250, 113, 1], [252, 113, 2], [228, 114, 5], [253, 114, 1],

[230, 115, 3], [232, 116, 1], [346, 173, 1], [378, 181, 1], [380, 181, 2], [381, 182, 1], [392, 193, 2],

[393, 194, 1], [396, 197, 1], [398, 199, 3], [400, 200, 1], [552, 271, 5], [553, 272, 1], [555, 272, 2],

[556, 273, 1], [554, 277, 3], [558, 277, 5], [556, 278, 1], [559, 278, 4], [560, 279, 3], [561, 280, 1],

[562, 281, 7], [564, 282, 5], [566, 283, 5], [576, 283, 1], [568, 284, 3], [570, 285, 1], [586, 293, 1].

With the above notations, we shall use the following theorem due to Laishram and Shorey

[5, Theorem 3].

Theorem 2.C. Let n > 2k > 6 and f1 < f2 < · · · < fµ be integers in [0, k). Assume that

the greatest prime factor of (n− f1) . . . (n− fµ) 6 k. Then µ 6 k −
[

3
4π(k)

]
+ 1− δ(k) unless

(n, k) ∈ S ∪ T .

The following corollary is an immediate consequence of Theorem 2.C.

Corollary 2.D. Let n and k be positive integers with n > 2k > 38. Then there are at least

five distinct terms of the product n(n− 1) · · · (n− k + 1) each divisible by a prime exceeding k

except when (n, k) ∈ T .
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For the proof of Theorem 1.3, we need the following propositions.

Proposition 2.1. Let k > 6 and n > k2. Then there exist two distinct terms n+ r and n+ s

of the product n(n+1) · · · (n+k−1) which are divisible by primes > k exactly to an odd power.

Proof. Suppose the proposition is false for some n and k with k > 6 and n > k2. Let

∆(n, k) = n(n + 1) · · · (n + k − 1). Thus either ordp(∆(n, k)) is even for all primes p > k or

there is exactly one term n + i and a prime p > k such that ordp(∆(n, k)) is odd. The first

possibility is excluded since for any positive integer b with P (b) 6 k, the equation

n(n+ 1) · · · (n+ k − 1) = by2

has no solution in positive integers n, k, y when n > k2 > 42 by [7, Theorem A]. We now

consider the case when there is exactly a term n+ i and a prime p > k such that ordp(∆(n, k))

is odd. Suppose first that 0 < i < k − 1. Removing the term n + i from ∆(n, k), we see that

n(n+ 1) · · · (n+ i− 1)(n+ i+ 1) · · · (n+ k− 1) = b1y
2
1 where P (b1) 6 k which is impossible by

virtue of [7, Theorem 22].

It remains to consider the case when i = 0 or k − 1. Let ∆′ denote the product (n +

1) · · · (n+ k − 1) or n(n+ 1) · · · (n+ k − 2) according as i = 0 or k − 1. Then ∆′ is a product

of k − 1 consecutive integers such that

∆′ = b2y
2
2 (3)

with P (b2) 6 k. This is impossible when P (b2) 6 k − 1 by [7, Theorem A]. It only remains to

deal with the situation when P (b2) = k. Then k will be a prime dividing only one term of the

product ∆′, say k divides n + j, j 6= i. We remove the term n + j of the product ∆′ and it is

clear from (3) that
∆′

n+ j
= b3y

2
3 , P (b3) 6 k − 2. (4)

It is immediate from (4) and [7, Theorem 2] that n+ j is the first or last term of the product

∆′ as k − 1 > 5. Thus we see that ∆′

n+j is the product of k − 2 consecutive integers. This is

impossible by [7, Theorem A].

Proposition 2.2. Let n, k be positive integers with n > k + 2 > 4 and Fn,k(x) be given by

(2). Suppose there exists a prime p > k such that pe||(n − l) for some l, 1 6 l 6 k − 1. Let

d =gcd(e, l) and d′ =gcd(e, k − l). Then the following hold.
2It states that for n > k2 > 52 the equation n(n + 1) · · · (n + i − 1)(n + i + 1) · · · (n + k − 1) = by2 has no

solution in positive integers n, k, b, y with P (b) 6 k and 0 < i < k − 1.
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(i) The edges of the Newton polygon of Fn,k(x) with respect to p have slopes −ek−l ,
e
l .

(ii) Fn,k(x) has at least two distinct irreducible factors over Qp; one of them has degree a

multiple of l
d and other has degree a multiple of k−l

d′ .

(iii) If d = d′ = 1, then Fn,k(x) factors over Qp as a product of two distinct irreducible

polynomials of degrees l and k − l.

Proof. We consider the Newton polygon of Fn,k(x) with respect to the prime p. In view of (1),

the vertices of the Newton polygon are (0, e), (k − l, 0), (k, e). Thus the Newton polygon has

two edges, one from (0, e) to (k − l, 0) and other from (k − l, 0) to (k, e) with respective slopes
−e
k−l and e

l proving (i).

Note that equations of the two edges are given by:

y − e =
−e
k − l

x and y =
e

l
(x− k + l).

On the first edge, the x-coordinates of the lattice points occur at multiples of k−l
d′ , i.e., when

x = k−l
d′ .M where 0 6 M 6 d′; on the second edge the x-coordinates of lattice points are given

by k − l + l
d .N where 0 6 N 6 d. By Theorem 2.B, all the roots of an irreducible factor of

Fn,k(x) over Qp have the same slope. Since the slopes of the two edges as shown in (i) are

different, we see that any irreducible factor of Fn,k(x) over Qp must lie on the first edge or

on the second edge. Hence assertion (ii) now follows from Theorem 2.A. Assertion (iii) is an

immediate consequence of (ii). The last assertion quickly yields the following result.

Corollary 2.3. If for a pair (n, k), n > k+2, there exist terms n− l′, n− l′′, 1 6 l′ < l′′ < k,

divisible respectively by primes p′, p′′ exceeding k exactly to the first power such that l′+ l′′ 6= k,

then Fn,k(x) is irreducible over Q.

The following proposition is already known (cf. [2, Lemma 1]). For the sake of reader’s

convenience, it is proved here.

Proposition 2.4. Let n, k and Fn,k(x) be as in Proposition 2.2. Let p be a prime > k and

e > 0 be such that pe||n. Then every irreducible factor of Fn,k(x) over Qp has degree a multiple

of k
D , where D =gcd(e, k).

Proof. The vertices of the Newton polygon of Fn,k(x) with respect to p are (0, e), (k, 0). Thus the

Newton polygon has only one edge whose equation is given by y− e = −e
k x. The x-coordinates

of the lattice points on this edge occur at multiples of k/D. So arguing as in Proposition 2.2,

any irreducible factor of Fn,k(x) must have degree a multiple of k/D.
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3. Proof of Theorem 1.3

As pointed out in the proof of Proposition 2.2 (with d, d′ atmost 2), if (x, y) is a lattice

point on the Newton polygon of Fn,k(x) with respect to p, then x ∈ X = {0, k−l2 , k− l, k− l
2 , k}.

By Theorems 2.A, 2.B, each irreducible factor of Fn,k(x) over Q must have degree equal to a

sum of numbers (may be one of the numbers) from

l

2
,
l

2
,
k − l

2
,
k − l

2
;

these correspond to possible differences xi − xi−1 in Theorem 2.B, with the actual differences

possibly formed from sums of these possible differences. Thus an irreducible factor of Fn,k(x)

over Q must have degrees in the set{
l

2
, l,

k

2
,
k − l

2
, k − l, 2k − l

2
,
k + l

2
, k

}
.

Given that l < k, the elements of this set that can be less than k/2 are l/2, l, (k − l)/2 and

k − l. The conditions in Theorem 1.3 imply that l1 is not among l/2, l, (k − l)/2 and k − l, so

the theorem follows.

4. Proof of Theorem 1.2

With S and T as in Theorem 2.C, we first prove

Lemma 4.1. For (n, k) ∈ S ∪ T, k > 4, Fn,k(x) is irreducible over Q except possibly when

(n, k) belongs to the subset S′ of S given by S′ = {(10, 5), (12, 6), (16, 8)}.
Proof. Let S′′ denote the subset of S given by S′′ = {(9, 4), (12, 5), (16, 5), (18, 5), (27, 5)}.
Observe that if n is divisible by a prime p > k with ordp(n) = 1, then xkFn,k(1/x) is an

Eisenstein polynomial with respect to p and so Fn,k(x) is irreducible over Q. Further if two

distinct terms n−l1, n−l2 of the product n(n−1) · · · (n−k+1) are divisible by primes p1 and p2

exceeding k such that ordpi(n−li) = 1 and l1+l2 6= k, then in view of the above observation and

Corollary 2.3, Fn,k(x) is irreducible over Q. For each (n, k) belonging to T ∪(S \S′∪S′′) with n

not divisible by any prime > k up to the first power, Table 1 at the end of this section indicates

two primes p1 and p2 satisfying the above property. It can be easily seen that for (n, k) ∈ S′′,
F9,4(x) is an Eisenstein polynomial with respect to the prime 5, F12,5(x) is Eisenstein with

respect to 7, F16,5(x), F27,5(x) are Eisenstein with respect to 11 and F18,5(x) is Eisenstein with

respect to 13. Hence the lemma is proved.
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Lemma 4.2. For 8 6 n < 53, the polynomial Fn,4(x) is irreducible over Q except when n

belongs to the set U = {8, 50, 98, 100}.
Proof. As pointed out in the proof of Lemma 4.1, we need to verify the irreducibility of Fn,4(x)

when n is not divisible by any prime more than 4 exactly with the first power. For such n not

exceeding 124 and n not belonging to the set {8, 9, 18, 27, 50, 98, 100}, Table 2 at the end of this

section indicates two terms n− l′, n− l′′, 1 6 l′, l′′ 6 3, l′ + l′′ 6= 4 such that n− l′, n− l′′ are

divisible by primes p′, p′′ (respectively) up to the first power only. So the lemma is proved in

view of Corollary 2.3 and the fact that F9,4(x), F18,4(x) and F27,4(x) are Eisenstein polynomials

with respect to the primes 5, 7 and 23 respectively.

Proof of Theorem 1.2. We divide the proof into two cases.

Case I. 8 6 2k 6 n < (k+1)2. Note that the theorem is already proved in the present case for

k = 4 by virtue of Lemma 4.2, so it may be assumed that k > 5 here. Applying Theorem 2.C,

we see that there exist at least three terms n − li, i ∈ {1, 2, 3} which are divisible by primes

exceeding k exactly up to the first power unless (n, k) ∈ S ∪ T. Using Proposition 2.2 (iii),

Fn,k(x) factors over Qpi as a product of two non-associate irreducible polynomials of degree li
and k− li for 1 6 i 6 3. If Fn,k(x) were reducible over Q, then Fn,k(x) will have a factorization

of the type Fn,k(x) = akckGi(x)Hi(x) where Gi(x), Hi(x) are monic irreducible polynomials

belonging to Q[x] with degrees k − li, li respectively. This is impossible as l1, l2 and l3 are

distinct. So the theorem is proved in the present case when (n, k) does not belong to S ∪ T.
When (n, k) ∈ (S \ S′) ∪ T with k > 4, the irreducibility of Fn,k(x) follows from Lemma 4.1.

Case II. k > 4, (k+ 1)2 6 n < (k+ 1)3. In this case, we first show that Fn,k(x) cannot factor

over Q as a product of two irreducible polynomials of degree k
2 each. For this it is enough

to show that there exists l′ 6= k/2, 0 6 l′ 6 k − 1 such that n − l′ is divisible by a prime

p′ > k exactly with the first power. If l′ = 0, then as pointed out in the opening lines of

the proof of Lemma 4.1, Fn,k(x) is irreducible over Q. If l′ > 1 then by Proposition 2.2 (iii),

Fn,k(x) has two irreducible factors of degree l′ and k− l′ over Qp′ . This leads to a contradiction

as l′ 6= k/2 thereby proving the irreducibility of Fn,k(x) over Q. The existence of a term

n − l′ 6= n − k
2 , 0 6 l′ 6 k − 1, which is divisible by some prime p′ > k with ordp′(n − l′) = 1

is guaranteed for k > 6 by Proposition 2.1 as (k + 1)2 6 n < (k + 1)3 in the present situation.

This proves the assertion stated in the opening lines of Case II.

It only remains to be shown that Fn,k(x) cannot have a factor of degree less than k
2 over Q.

Suppose to the contrary that it has a factor of degree l1 < k
2 over Q. We make some claims.
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Claim 1: P (n) 6 k.

Suppose not. Let p be a prime > k dividing n with exact power e > 1. Then e 6 2 since

n < (k + 1)3. So by Proposition 2.4, every irreducible factor of Fn,k(x) over Qp has degree

a multiple of k or k
2 according as e = 1 or 2 respectively. This is not possible in view of our

supposition.

Claim 2: There are at most four distinct terms in the product n(n− 1) · · · (n− k+ 1) each of

which is divisible by some prime > k.

Assume the contrary. Then there is a term n − l with 0 6 l < k and a prime p > k with p

dividing (n− l) such that l /∈ {l1, 2l1, k− l1, k−2l1} where l1 is as in the paragraph preceeding

Claim I. Note that l > 0 in view of Claim 1. Further e =ordp(n− l) 6 2 implying that Fn,k(x)

cannot have a factor of degree l1 over Q by Theorem 1.3, which contradicts our assumption.

Claim 3: There are at most two distinct terms in the product n(n− 1) · · · (n− k + 1) which

are divisible by a prime >
√
n.

Suppose not. Let 1 6 l′1 < l′2 < l′3 be such that there exist primes pi >
√
n dividing n− l′i. Note

that ordpi(n − l′i) = 1 for i ∈ {1, 2, 3}. Since (k + 1)2 6 n, in view of Proposition 2.2 (iii), it

follows that Fn,k(x) factors over Qpi as a product of two non-associate irreducible polynomials

of degree l′i and k − l′i, 1 6 i 6 3. Arguing as in Case I, we get a contradiction because l′1, l
′
2

and l′3 are distinct.

From Claim 2, Corollary 2.D and Lemma 4.1, it follows that k 6 18. Note that for k = 4,

in view of Lemma 4.2, we have only to consider n = 50, 98, 100 as 52 6 n < 125. For each of

these values of n, Fn,k(x) must be irreducible over Q by virtue of Claim 1, as P (n) is more

than 4. For k > 5, by virtue of Claim 1, we may first restrict to those n for which P (n) 6 k.

Further by Claims 2 and 3, those n can be excluded for which n(n−1) · · · (n−k+ 1) has either

five terms divisible by a prime > k or three terms divisible by a prime >
√
n. We use Sage

mathematics software for the above computations. Then we are left with the following pairs

(n, k) given by

(50, 5), (64, 5), (100, 5), (128, 5), (200, 5), (50, 6).

All these pairs satisfy the hypothesis of Corollary 2.3 as is clear from Table 3. This completes

the proof of the theorem.
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Table 1.

(n, k) ∈ [n, k, h]→ Primes (n, k) ∈ [n, k, h]→ Primes (n, k) ∈ [n, k, h]→ Primes

[20, 5, 1] 17, 19 [162, 79, 1] 131, 139 [346, 173, 1] 293, 307

[20, 6, 1] 17, 19 [166, 83, 1] 131, 139 [378, 181, 1] 293, 307

[14, 7, 3] 11, 13 [172, 83, 1] 137, 139 [380, 181, 2] 293, 307

[18, 7, 1] 13, 17 [190, 83, 1] 131, 139 [381, 182, 1] 293, 307

[20, 7, 1] 17, 19 [192, 83, 1] 131, 139 [392, 193, 2] 293, 307

[21, 7, 1] 17, 19 [178, 89, 1] 131, 139 [393, 194, 1] 293, 307

[30, 7, 1] 13, 29 [190, 89, 1] 131, 139 [396, 197, 1] 293, 307

[21, 8, 1] 17, 19 [192, 89, 1] 139, 149 [398, 199, 3] 293, 307

[26, 13, 3] 19, 23 [210, 103, 1] 139, 149 [400, 200, 1] 283, 307

[30, 13, 1] 19, 23 [212, 103, 2] 139, 149 [552, 271, 5] 421, 431

[32, 13, 2] 29, 31 [216, 103, 2] 139, 149 [553, 272, 1] 421, 431

[36, 13, 1] 29, 31 [213, 104, 1] 139, 149 [555, 272, 2] 421, 431

[28, 14, 1] 17, 19 [217, 104, 1] 139, 149 [556, 273, 1] 421, 431

[33, 14, 1] 29, 31 [214, 107, 12] 139, 149 [554, 277, 3] 421, 431

[36, 17, 1] 29, 31 [216, 108, 10] 139, 149 [558, 277, 5] 421, 431

[38, 19, 3] 23, 29 [218, 109, 9] 139, 149 [556, 278, 1] 421, 431

[42, 19, 1] 37, 41 [220, 110, 7] 139, 149 [559, 278, 4] 421, 431

[40, 20, 1] 31, 37 [222, 111, 5] 139, 149 [560, 279, 3] 421, 431

[94, 47, 3] 89, 83 [224, 112, 3] 139, 149 [561, 280, 1] 421, 431

[100, 47, 1] 83, 89 [226, 113, 7] 139, 149 [562, 281, 7] 409, 431

[96, 48, 1] 79, 83 [250, 113, 1] 139, 149 [564, 282, 5] 409, 431

[144, 71, 2] 101, 103 [252, 113, 2] 139, 149 [566, 283, 5] 421, 431

[145, 72, 1] 101, 103 [228, 114, 5] 139, 149 [576, 283, 1] 421, 431

[146, 73, 3] 101, 103 [253, 114, 1] 139, 149 [568, 284, 3] 419, 431

[156, 73, 1] 109, 113 [230, 115, 3] 139, 149 [570, 285, 1] 421, 431

[148, 74, 1] 107, 113 [232, 116, 1] 139, 149 [586, 293, 1] 421, 431

10



Table 2.

n → n− l′, n− l′′, p′, p′′ n → n− l′, n− l′′, p′, p′′ n → n− l′, n− l′′, p′, p′′

12 10, 11, 5, 11 48 46, 47, 23, 47 81 79, 80, 79, 5

16 14, 15, 7, 5 49 46, 47, 23, 47 96 94, 95, 47, 19

24 22, 23, 11, 23 54 52, 53, 13, 53 108 106, 107, 53, 107

25 22, 23, 11, 23 64 62, 63, 31, 7 121 119, 120, 17, 5

32 30, 31, 5, 31 72 70, 71, 5, 71

36 34, 35, 17, 5 75 73, 74, 73, 37

Table 3.

(n, k) → n− l′, n− l′′ (n, k) → n− l′, n− l′′ (n, k) → n− l′, n− l′′

(50, 5) 46, 47 (100, 5) 97, 99 (200, 5) 197, 199

(64, 5) 61, 63 (128, 5) 126, 127 (50, 6) 46, 47

5. Proof of Theorem 1.1

In view of Theorem 1.2., we need to prove the irreducibility of Pn,k(x) only when 1 6 k 6 3

with 2k 6 n < (k + 1)3 or (n, k) belongs to {(8, 4), (10, 5), (12, 6), (16, 8)}. Using Maple, we

have verified the irreducibility of Pn,k(x) for these values of (n, k).
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