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Abstract

Suppose an individual is exposed to k risks of failure. Assume that the la-

tent failure times associated with these risks are independently distributed. We

review various tests based on heuristics to test for the hypotheses of stochas-

tic dominance, proportionality of competing risks hazards and for ordering of

hazard rates. We also review tests based on martingale theory for independent

latent risks. We illustrate our tests on two data sets .
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1 Introduction

The competing risks situation was first considered in the eighteenth cen-

tury when small pox vaccination was being discovered and popularised. D.

Bernoulli (1761) posed the question : How much would the mortality be re-

duced or expected life be increased if the risk of death due to small pox is

totally eliminated, the other risks persisting as before? The demographers ,

over the years, have taken up this question enthusastically. A strong motiva-

tion has come from the insurance business in which different premium rates

have to be established for groups of persons exposed to different sorts of risks.

Of course now it is relevant in several disciplines - medicine, reliability engi-

neering , economics , manufacturing and even the game of cricket (Crowder

(2001)).

Let X1, X2, . . . , Xk denote the latent failure times of individuals sub-

ject to k risks, where Xi represents the age at death if cause i were the

only cause of failure. What is actually observed is the time to failure T ,

where T = min(X1, X2, . . . , Xk), and the cause of failure δ where δ = j if

Xj = min(X1, X2, . . . , Xk). Note that if X1, X2, . . . , Xk are independent and

identically distributed random variables with a common distribution function

F (x), then it is uniquely determined by the distribution function of the mini-

mum, that is,

P [T ≤ x] = 1− [1− F (x)]k.

If X ′s are independent, but not identically distributed , Berman (1963) showed

that the joint distribution of (T, δ) uniquely determines Fi, the distribution

function of Xi.

Fi(x) = 1− exp[1−
∫ x

−∞
[1−

k∑
j=1

Hj(t)]
−1dHi(t)], i = 1, 2, . . . , k,

where Hj(x) = P [δ = j, T ≤ x].
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If the latent failure times are not independent, then the underlying distri-

butions are not identifiable on the basis of (T, δ) ( see Tsiatis (1975), Crowder

(1991, 1993)). The underlying risks may not always be independent. But Key-

fitz et al (1972) have strongly argued that risks to human life can be grouped

into four non-overlapping sets, which are independent of each other. In this,

and other such situations, one can use methods based on the apriori indepen-

dence assumption while dealing with pooled risks.

Throughout this paper we will assume that the latent failure times are

independently distributed. In section 2 we look at the locally most powerful

rank tests for equality of distribution functions of independent latent failure

times. In sections 3, 4 and 5, respectively, we look at tests based on heuristics

to test for the hypotheses of stochastic dominance, proportionality of compet-

ing risks hazards and for ordering of hazard rates . In section 6 we review tests

based on martingale theory for independent latent risks. Finally we illustrate

our tests on two data sets.

2 Locally Most Powerful Rank Tests

We will restrict ourselves to the case when k = 2. Let X and Y denote

the hypothetical lifetimes due to two risks with corresponding distribution

functions F and G, survival functions F̄ and Ḡ , density functions f and g

and failure rate functions rF = f/F̄ and rG = g/Ḡ, respectively. We observe

T = min(X, Y ) and δ = I(X > Y ). On the basis of data (T1, δ1), . . . , (Tn, δn)

on n independent individuals we wish to test the null hypothesis

H01 : F (x) = G(x), for all x ≥ 0 (1)

against various alternatives discussed below.

We begin with testing procedures based on likelihood theory. The likeli-
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hood function is given by (see Miller (1981))

L(t1, . . . , tn; δ1, . . . , δn) =
n∏

i=1

[g(ti)F̄ (ti)]
δi [f(ti) ¯G(ti)]

1−δi . (2)

Let us parametrize the problem by writing G(x) = Fθ(x), such that the null

hypothesis that the two distributions are identical is given by θ = 0. Then, it

is easy to see that the locally most powerful test for testing H01 against the

alternative that H1 : θ > 0 is based on the statistic

n∑
i=1

δi[
f̄(ti)

f(ti)
+

f ∗(ti)

F̄ (ti)
]−

n∑
i=1

f ∗(ti)

F̄ (ti)
(3)

where

f ∗(x) =
∂

∂θ
Fθ(x)|θ=0,

f̄(x) =
∂

∂θ
fθ(x)|θ=0. (4)

Large values of the statistic are significant. Using standard results (see, Rao

(1973) pp 455) it follows that the statistic has limiting normal distribution.

Parametric estimation and testing based on independent latent failures can

be studied by using any reasonable parametric form for the distribution of the

latent failure times (see, e.g., David and Moeschberger (1978)).

Next we consider the locally most powerful rank tests for the above prob-

lem. These would use the ranks of T1, T2, . . . , Tn among themselves and the

corresponding identifiers of the cause of failure. Let T(1) ≤ T(2) ≤ . . . ≤ T(n)

denote the ordered failure times. Let

Wi =

 1 if T(i) corresponds to a Y observation,

0 otherwise.
(5)

Thus Wi identifies the cause of failure corresponding to the ith ordered

failure time T(i). Let Rj be the rank of Tj among T1, . . . , Tn . Let

R′ = (R1, R2, . . . , Rn), W ′ = (W1, W2, . . . ,Wn)
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denote the vector of ranks and indicator functions corresponding to ordered

minima. The likelihood of ranks is given by

P (R, W, θ) =
∫

. . .
∫
0<t1<...<tn<∞

n∏
i=1

[fθ(ti)F̄ (ti)]
wi [f(ti)F̄θ(ti)]

1−widt1dt2 . . . dtn

(6)

Under the null hypothesis H01, that is, θ = 0

P (R, W, 0) =
1

n!2n
= P (R1 = r1, . . . , Rn = rn, W1 = w1, . . . ,Wn = wn) (7)

where (r1, . . . , rn) is a permutation of (1, . . . , n) and (w1, . . . , wn) is a vector

of 0′s and 1′s. Under H01, R and W are independent.

Theorem 1 Under regularity conditions (see Puri and Sen (1971)) the LMP

rank test for testing H01 : θ = 0 against H1 : θ > 0 is based on the statistic

V =
n∑

j=1

[ajwj − bj(1− wj)] (8)

where

aj = n!2n
∫

. . .
∫
0<t1,...<tn<∞

f̄(tj)

f(tj)

n∏
i=1

[f(ti)F̄ (ti)dti]

bj = n!2n
∫

. . .
∫
0<t1,...<tn<∞

f ∗(tj)

F̄ (tj)

n∏
i=1

[f(ti)F̄ (ti)dti] (9)

In particular,

(i) if Fθ(x) = ex+θ

1+ex+θ , the logistic distribution, then

V =
n∑

i=1

(1− cj)Wj

where

cj =
1

2n + 1
+

j∑
k=2

2n(2n− 2) . . . (2n− 2k + 4)

(2n + 1)(2n− 1) . . . (2n− 2k + 3)
(10)

which is the analog in the competing risks set up for Wilcoxon-Mann-Whitney

statistic for the two sample location problem. The statistic is remarkably
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simple in the two sample complete data problem compared to what is obtained

here for the competing risks data. We would therefore like to study certain

tests based on some simpler statistics. Also, the logistic distribution , being

on (−∞,∞) is not an appropriate model for lifetimes.

(ii) If Fθ(x) = 1− e−(1+θ)x, θ > 0, the exponential distribution, then the LMP

rank statistic is

nU1 =
n∑

j=1

Wj =
n∑

j=1

δj. (11)

Here, the statistic U1 is the usual sign statistic, the proportion of deaths due

to second cause.

Note that under exponential alternatives we have proportional hazards

and hence T and δ are independent (see Kochar and Proschan (1991)). Since

P (T = t) = 1
n!

, both under the null and the alternative hypotheses, T does

not provide any additional information for discriminating between the null and

the alternative hypotheses. Thus for exponential, or any other proportional

hazards alternatives, where T and W are independent, one cannot improve

upon the sign test in the class of all rank tests. But for other alternatives

the additional information is useful. Most of these alternatives have been ex-

tensively studied for the two sample problem - here we review non-parametric

procedures relevant to competing risks data.

We see that in the rank set up the relevant simple statistics will be nU1 =∑n
i=1 δi and W+ =

∑n
i=1 δiRi . The first is the sign statistic and the second

may be regarded as an adaptation of the Wilcoxon signed rank statistic to the

competing risks data, being the sum of the ranks of those lifetimes which were

terminated due to the second risk. We detail below certain tests proposed on

heuristic grounds which are based on linear combinations of these two.

Before we look at various tests on heuristic grounds let us look at some

general results.
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Lemma 1 Whenever T and δ are independent, we have

(i) P [
∑n

i=1 Riδi = k] = P [
∑n

i=1 iWi = k],

(ii) W1, W2, . . . ,Wn are independent and identically distributed with

P [Wi = 1] = P [Wi = 0] = 1/2, i = 1, . . . , n,

(iii) W+ =
∑n

i=1 Riδi is symmetric about n(n + 1)/4,

(iv) The moment generating function of S =
∑n

i=1 a(Ri)δi =
∑n

i=1 aiWi is

given by

MS(t) =
1

2n

n∏
i=1

(1 + etai), (12)

(v)

E[aW+ + bU1] = an(n + 1)/2 + b/2,

V [aW+ + bU1] = a2n(n + 1)(2n + 1)/24 + b ∗ 2n/4. (13)

It should be seen that an improvement over the sign test is possible only when

T and δ are dependent under the alternative hypotheses.

3 Tests for stochastic dominance

Here we look at tests for testing

H01 : F (x) = G(x) for all x (1)

against the alternative

HA1 : F (x) ≤ G(x) for all x, F (x) < G(x) for some x. (2)

Under the alternative X ′s tend to be stochastically larger than Y ′s. This

means that under the alternative we expect failures due to risk 2 to occur

more often than failures due to risk 1. Note that if G(x) = F (x + θ) or

G(x) = F ((θ + 1)x) , then the alternative H1 implies HA1.
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Consider two pairs (Ti, δi) and (Tj, δj) simultaneoulsly. In the following

table we exhibit the correspondence between the ordering of X ′s and the Y ′s

with the values of δi, δj and the ordering between Ti and Tj.

TABLE 1

δi = 1, δj = 1 δi = 1, δj = 0 δi = 0, δj = 1 δi = 0, δj = 0

Ti > Tj Xi > Yi, Xj > Yj Xi > Yi, Xj < Yj Xi < Yi, Xj > Yj Xi < Yi, Xj < Yj

Yi > Yj Yi > Xj Xi > Yj Xi > Xj

Ti < Tj Xi > Yi, Xj > Yj Xi > Yi, Xj < Yj Xi < Yi, Xj > Yj Xi < Yi, Xj < Yj

Yi < Yj Yi < Xj Xi < Yj Xj > Xi

It is seen that in each case one can order X and Y in only three of the four

possible types of pairs.

Define a kernel function

φ2(Ti, δi, Tj, δj) =


1 if δi = 1, Ti < Tj

or δi = 1, Ti > Tj,

0 otherwise,

(3)

and construct a U-statistic based on it

U2 =
1(
n
2

) ∑
1≤i<j≤n

φ2(Ti, δi, Tj, δj) =
1(
n
2

) n∑
i=1

(n−Ri)δi. (4)

Or consider a modified version

U∗
2 =

1(
n
2

) n∑
i=1

(n−Ri + 1)δi =
1(
n
2

)S2, (say). (5)

This would count the number of pairs (Xi, Yi) for which (Xi > Yi) also. It is

easy to see that the moment generating function of S2 under H01 is given by

MS2(t) = 2−n
n∏

j=1

(1 + ejt) (6)

which is same as that of the Wilcoxon-signed rank statistic under H01 (see

Hettmansperger (1984)). Hence tables of critical values for the Wilcoxon-

signed rank statistic can be used for S2 also.
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From the results on U-statistics it follows that under H01 the asymptotic

distribution of
√

n(U2 − E(U2)) is Normal with mean zero and variance 1/3.

Further, using Slutsky’s theorem, it is easy to see that U2 and U∗
2 are asymp-

totically equivalent. Infact U2 =
∑n

i=1(n−Ri)δi is a linear combination of U∗
2

and the sign statistic U1. This test has been proposed by Bagai, Deshpande

and Kochar (1989a).

4 Tests for proportionality of competing risks

hazard rates

Analysis of data in reliability and mortality studies is often carried out under

the proportional hazards model due to Cox (1972). However, it has been

observed (see, e.g., Begg et al (1984)) that the ratio of hazard rates is not

constant over all ages as assumed under Cox’s model. In male mice cancer

data due to Hoel (1972), the adverse effect of cancer appears only in the long

term. Sengupta and Deshpande (1995) proposed a test for testing the null

hypothesis

H02 :
rF (x)

rG(x)
= constant for all x (1)

against the alternative

HA2 :
rF (x)

rG(x)
is increasing in x (2)

Under the null hypothesis failures due to first and second risk occur at the

same relative rate throughout whereas under the alternative the failures due

to risk 1 occur at a relatively faster rate as age increases.

rF (x)
rG(x)

is increasing in x implies

f(x2)Ḡ(x2)F̄ (x1)g(x1)− f(x1)Ḡ(x1)F̄ (x2)g(x2) ≥ 0 for x1 < x2.

Integrating the difference above over the range x1 < x2, we get

∆2(F, G) = Pr(Y1 < X1, Y1 < X2 < Y2)− Pr(X1 < Y1, X1 < Y2 < X2) (3)
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where X1, X2 and Y1, Y2 are independent random variables from F and G,

respectively. ∆2(F, G) = 0 under H02 and positive under HA2.

In the following table we take a relook at the possible arrangements of X ′s

and Y ′s with not only pairwise orderings, but those in triples also in pairs as

included in the above probabilities.

TABLE 2

δi = 1, δj = 1 δi = 1, δj = 0 δi = 0, δj = 1 δi = 0, δj = 0

Ti > Tj Yj < Yi < Xi Xj < Yi < Xi Yj < Xi < Yi Xj < Xi < Yi

Yj < Xj Xj < Yj Yj < Xj Xj < Yj

Ti < Tj Yi < Yj < Xj Yi < Xj < Yj Xi < Yj < Xj Xi < Xj < Yj

Yi < Xi Yi < Xi Xi < Yi Xi < Yi

On heuristic basis we isolate those orderings which favour the alternative

and define the kernel

φ3(Ti, δi, Tj, δj) =



1 if δi = 1, δj = 0, Ti < Tj

or δi = 0, δj = 1, Ti > Tj,

−1 if δi = 1, δj = 0, Ti > Tj

or δi = 0, δj = 1, Ti < Tj,

0 otherwise.

(4)

The corresponding U-statistic is

U3 =
1(
n
2

) ∑
1≤i<j≤n

φ3(Ti, δi, Tj, δj). (5)

Large values of the statistic are significant.

It is easy to see that E(U3) = 2∆(F, G). Also

S3 =

(
n

2

)
U3 =

∑
1≤i<j≤n

(Wi −Wj) =
n∑

i=1

(n + 1− 2i)Wi. (6)

Therefore

S3 = (n + 1)U1 − 2W+ (7)
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Hence S3 is a linear combination of the sign statistic and the Wilcoxon

signed rank type statistic W+. Since (T1, . . . , Tn) and (δ1, . . . , δn) are indepen-

dent under H02, we have the moment generating function of S3 under H02 is

given by

MS3(t) =
n∏

i=1

[
1

a + 1
+

a

a + 1
exp(n + 1− 2i)t]. (8)

This gives V arH02 = 4
3

a
(a+1)2

n+1
n2−n

. A consistent estimator of a is given

by U1

1−U1
hence the asymptotic null distribution of {4

3
U1(1 − U1)}−1/2

√
nU3 is

standard normal.

Deshpande and Sengupta (1995) have considered the above statistic and

have also extended this to the case of more than two independent risks when

all the risks other than the two important ones can be grouped together as a

single risk and called risk 3.

5 Tests for equality of hazard rates

The next step would be to test if the constant a in H02 is unity, that is, we

wish to test

H03 : rF (x) = rG(x), for all x (1)

against the alternative

HA3 : rF (x) ≤ rG(x), for all x (2)

with a strict inequality over a set of non-zero probability.

Note that H03 is equivalent to H01, that is failure rates are equal iff distri-

butions are equal but rF (x) ≤ rG(x) implies F (x) ≤ G(x) and not vice-versa.

Hence tests which are consistent for testing H03 against HA3 are also consistent

for testing H03 or H01 against a wider class HA1. Under the alterantive HA3

failure rate due to the first risk is uniformly smaller than the failure rate due

to second risk . Thus, under the alterantive HA3 we would expect the failures
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due to risk 2 to occur at an earlier stage as compared to the failures due to

risk 1. Arrangements of the type Y Y XX and XY Y X favour HA3 whereas

arrangements of the type XXY Y and Y XXY would favour a smaller failure

rate due to second risk. Kochar (1979) considered the following functional for

testing H03 against HA3

∆3(F, G) = P [Y Y XX] + P [XY Y X]− P [XXY Y ]− P [Y XXY ]. (3)

P [Y Y XX] means P [(Y1 < Y2 < X1 < X2)] + P [(Y1 < Y2 < X2 < X1)] +

P [(Y2 < Y1 < X1 < X2)] + P [(Y2 < Y1 < X2 < X1)], where X1, X2, Y1 and Y2

are independent observations , the first two from F and the latter two from G.

∆3(F, G) = 0 under H03 and is positive under HA3. Kochar proposed a test

based on U-statistic estimator of ∆3(F, G). From Table 2 we try to identify

the combinations which would enable us to estimate ∆(F, G) on the basis of

competing risk data.

Define the kernel

φ∗4(Ti, δi, Tj, δj) =


1 if δi = 1, Ti > Tj

or δj = 1, Ti < Tj,

−1 otherwise

(4)

Consider the U-statistic

U∗
4 =

1(
n
2

) ∑
1≤i<j≤n

φ∗4(Ti, δi, Tj, δj). (5)

E(U∗
4 ) = ∆3(F, G) . However, we consider an equivalent statistic

U4 =
1(
n
2

) ∑
1≤i<j≤n

φ4(Ti, δi, Tj, δj), (6)

where

φ∗4(Ti, δi, Tj, δj) =


1 if δi = 1, Ti > Tj

or δj = 1, Ti < Tj,

0 otherwise.

(7)
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Large values of U4 are significant and(
n

2

)
U4 =

n∑
i=1

(Ri − 1)δi =
n∑

i=1

(i− 1)Wi. (8)

which is again a linear combination of the sign statistic and the Wilcoxon

signed rank type statistic. Being a U-statistic , the standardized version of U4

will have asymptotically N(0, 1) distribution. This test has been discussed by

Bagai, Deshpande and Kochar (1989b)

Remark We see that the heuristics lead us to linear combinations of type

aW+ + bU1 in all the above cases. It is interesting that such simple statistics

are able to discriminate between the various null hypotheses on one hand and

the relevant alternatives involving competing risks on the other hand quite

effectively. The exact null distributions of these statistics have been studied

and all of them have limiting normal distributions.

In the next section we provide a summary of some other work where the

proofs of aymptotic distributions of certain tests are based on the martingale

central limit theorem.

6 Tests based on martingale theory

Yip and Lam (1992) proposed a class of nonparametric tests for testing equality

of failure rates using martingale theory.

Let λi(t), i = 1, 2 denote the instantaneous transition rate, per individual,

for a transition from state alive to dead from ith cause during the time interval

(0, t]. Let Ni(t) denote the number of transitions from alive to dead due to

ith cause during the time interval (0, t], Y (t) = n − N(t−) is the number of

survivors just before time t and N(t) = N1(t) + N2(t) represents the total

number of deaths from the two causes by time t. The Nelson-Aalen estimator

for the cumulative hazard rate , Λi(τ) =
∫ τ
0 λi(u)du, is given by Λ̂i(τ) =∫ τ

0
dNi(u)
Y (u)

, i = 1, 2.
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For testing the null hypothesis λ1 = λ2 = λ (say) consider the stochastic

process R(t) defined by

R(t) =
∫ t

0
W (u)[dΛ̂1(u)− dΛ̂2(u)], (1)

where W (u) is a locally bounded predictable process.

Under H0, R(t) is a zero mean martingale with variance

2E[
∫ t

0
{W (u)}2(

1

Y (u)
)λ(u)du] (2)

which can be estimated by

S(t)2 =
∫ t

0
(W (u))2 dN(u)

(Y (u))2
, (3)

where dN(u) = dN1(u) + dN2(u). Under H0 we can estimate the common

value of Λ(u) by

Λ̂(t) =
∫ t

0

dN1(u) + dN2(u)

2Y (u)
. (4)

From the martingale central limit theorem it follows that as n → ∞ the

statistic R(τ)/S(τ) is asymptotically a standard normal variable.

The choice of the weight function W (u) determines the weight attached to

each time point in the comparison of λ1 and λ2. For W (u) = Y (u), R(τ) =

N1(τ) − N2(τ). This is equivalent to the sign test discussed before. For

W (u) = (Y (u))2, it gives more weight to the earlier part of the experiment.

W (u) = Y (u)N(u−) gives more weight to the later part of the experiment

and is equivalent to U4. W (u) = Y 2(u)N(u−) puts more weight to the centre

and less weight to both ends of the experiment.

Yip and Lam (1992) have added that the statistic R(τ)/S(τ) can also be

used to test the hypothesis λ1(t) = λ2(t), t > 0 against the alternative that

intensities are proportional, that is, λ1(t) = θλ1(t), t > 0.

Yip and Lam (1993) extended their results for testing for equality of k

failure rates.
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7 Two examples

We illustrate our testing procedures on two data sets due to King (1971) and

Boag (1949). The data sets are given in Crowder (2001).

King’s Data . The data consists of breaking strength (mg) of 23 wire

connections. There are two types of failure : breakage at the bonded end and

breakage along the wire itself. The response variable T is breaking strength or

loading, which takes the place of failure time. We assume that the two risks

of failure act independently. δ = 1 denotes breakage along the wire and δ = 0

denotes breakage at the bonded end.

We carry out various tests of hypotheses discussed above. The null distri-

bution of
(

n
2

)
U2 and

(
n
2

)
U4 is identical. From the tables for Wlicoxon signed

rank statistic for n = 22, we get the critical value is 178, whereas the two statis-

tics take values 99 and 121, respectively. However, Nelson (1982) pointed out

that there are two breakages due to bond with breaking strengths 0. These

two zeros must correspond to faulty bonds. He also expressed some doubt

about the value 3150. We recalculated the statistics after deleting these three

values.
(

n
2

)
U2 and

(
n
2

)
U4 take values 89 and 101, respectively. The exact cutoff

point for n = 19 is 137. In both the cases the null hypothesis of equality of

distributions is not rejected . One concludes that breakage of wire occurs at

the same time as breakage of bonds. + However U3 is -0.09 in the first case

and -0.06 in the second case. Hence, the hypothesis that the ratio of failure

rates is constant is accepted.

Boag’s data The data consists of survival times (in months) for 121 breast

cancer patients. It comes from the clinical records of one hospital from the

years 1929 to 1938. The causes of death are cancer (1) and others(0). We want

to test whether cancer occurs earlier compared to other risks, whether it has

a faster failure rate. Boag compared fits of the log-normal distribution with
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others, e.g., the exponential. We want to know if proportional hazards is an ap-

propriate model for this data. U1 = 0.64, U2 = 0.81, U3 = 0.33 and U4 = 0.8.

Since the sample size is large we use limiting distributions of the statistic.

Standardised U2 is significant rejecting the null hypothesis of equality of dis-

tributions. Failures due to cancer occur more often. Standardised U3 is signif-

icant. So the ratio of failure rates is not proportional - and hence T and δ are

not independent.
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