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Introduction

Competing risks data: T = failure time
δ = an indicator of the failure type, δ ∈ {1,2, . . . , k}

Planning studies: T could be the time to first
employment and δ indicating the employment
obtained.

Acturial / Medical / engineering studies

Sub-distribution function :

F (i, t) = P [T ≤ t, δ = i],

Sub-survival function :

S(i, t) = P [T > t, δ = i],

Sub-density function :f(i, t), i = 1,2, . . . , k.

The distribution function of T : H(t) =
∑k
i=1 F (i, t),

the survivor function of T : S(t) =
∑k
i=1 S(i, t),

the density function of T is h(t) =
∑k
i=1 f(i, t),

the probability of failure due to the ith risk
pi = F (i,∞),

cause-specific hazard rate is λi(t) = f(i,t)
S(t) .
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The latent failure time model:

X1, X2, . . . , Xk are latent failure times of any

unit exposed to k risks.

Observe T = min(X1, X2, . . . , Xk),

δ = j if Xj = minXi,1 ≤ i ≤ j.

Under independence the marginal and hence

the joint distribution is identifiable from the

probability distribution of the observable ran-

dom variables (T, δ).

The independence or otherwise of the latent

lifetimes (X1, X2, . . . , Xk) cannot be statistically

tested from any data collected on (T, δ) and

has to be assumed on the basis of a priori in-

formation, if any.

The marginal distribution functions Fi(x) of Xi
may not represent the probability distribution

of lifetimes in any practical situation.

Elimination of jth risk may change the environ-

ment in such a way that Fi(x) does not repre-

sent the lifetime of Xi in the changed scenario.
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Locally Most Powerful Rank Tests

Suppose k = 2, that is , a unit is exposed to

two risks of failure denoted by 1 and 0.

n units are put to trial , the data consists of

(Ti, δ
∗
i), i = 1, . . . , n where δ∗ = 2− δ.

Test the hypothesis H0 : F (1, t) = F (2, t), for all t.

Under H0 the two risks are equally effective.

However under the alternative hypothesis one

would expect that the two risks are not equally

effective atleast at some ages.

The likelihood function for n units is given by

(see , Aras and Deshpande (1992))

L(T , δ∗) =
∏n
i=1[f(1, ti)]

δ∗i[f(2, ti)]
1−δ∗i

If F (i, t) depends upon the parameter θ , then

inference about it can be based on the above

likelihood function.
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When T and δ∗ are independent then Desh-

pande (1990) proposed the model

F (1, t) = θH(t), F (2, t) = (1− θ)H(t).

θ = P [δ∗ = 1], and the likelihood reduces to

L(θ,H) = θ
∑n
i=1 δ

∗
i(1− θ)

∑n
i=1(1−δ∗i)

∏n
i=1 h(ti).

The hypothesis F (1, t) = F (2, t) reduces to

testing that θ = 1/2.

Then the obvious statistic is the sign statistic

U1 = 1
n

∑n
i=1 δ

∗
i.

nU1 has B(n, θ) distribution and one can have

optimal estimation and testing procedures based

on it.

However, if F (1, t) and F (2, t) depend on a pa-

rameter θ in a more complicated manner then

one needs to look at locally most powerful rank

tests.
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Let f(1, t) = f(t, θ), f(2, t) = h(t)− f(t, θ)

h(t) and f(t, θ) are known density functions and

incidence density such that f(t, θ0) = 1
2h(t).

Let T(1) ≤ T(2) ≤ . . . ≤ T(n) denote the ordered

failure times.

Wi =

{
1 if T(i) corresponds to first risk
0 otherwise.

.

Let Rj be the rank of Tj among T1, . . . , Tn .

The likelihood of ranks is given by

∫
0<t1<...<tn<∞

∏n
i=1[f(ti, θ)]

wi[h(ti)−f(ti, θ)]1−widti

Theorem : If f ′(t, θ) is the derivative of f(t, θ)

with respect to θ, then the locally most power-

ful rank test for H0 : θ = θ0 against H1 : θ > θ0
is given by: reject H0 for large values of

Lc =
∑n
i=1wiai, where

ai =
∫
. . .

∫
0<t1<...<tn<∞

f ′(ti,θ0)
f(ti,θ0)

∏n
i=1[f(ti, θ0)dti].
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Special cases

(i) If the independence model holds with θ0 =

1/2, then sign test is the LMPR test.

(ii) If f(1, t) = 1
2g(t,0) and f(2, t) = 1

2g(t, θ), θ >

0 and g(t, θ) is the logistic density function

g(t, θ) = e(x−θ)

[1+e(x−θ)]2
, then the LMPR test is

based on the statistic

W+ =
∑n
i=1WiRi.

(iii) In case of Lehmann type alternative de-

fined by F (1, t) = [H(t)
2 ]θ, F (2, t) = H(t) −

[H(t)
2 ]θ,, LMPR test is based on scores ai =

E(E(j)) where E(j) is the jth order statistic

from a random sample of size n from standard

exponential distribution.

For more complicated families of distributions,

e.g., Gumbel (1960), the scores are compli-

cated and need to be solved using numerical

integration (see Aras and Deshpande (1992)).
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Tests for bivariate symmetry

Suppose the latent failure times X and Y are
dependent.

Their joint distribution is given by F (x, y).

On the basis of independent pairs (Ti, δ
∗
i) we

want to test whether the forces of two risks
are equivalent against the alternative that the
force of one risk is greater than that of the
other.

H0 : F (x, y) = F (y, x) for every (x, y)

Theorem : Under the null hypothesis of bi-
variate symmetry we have

(i)F (1, t) = F (2, t) for all t,

(ii)S(1, t) = S(2, t) for all t,

(iii) λ(1, t) = λ(2, t) for all t,

(iv) P [δ∗ = 1] = P [δ∗ = 0]

(v) T and δ∗ are independent.
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H1 : λ(1, t) < λ(2, t)

H2 : F (1, t) < F (2, t)

H3 : S(1, t) > S(2, t).

All these alternatives say that risk II is more po-

tent than risk I at all ages t in some stochastic

sense.

Sen (1979) considered fixed sample and se-

quential tests for the null hypothesis of bi-

variate symmetry of the joint distribution of

(X,Y ). The alternatives are expressed in terms

of π1(t) = Pr[δ̃ = 1|T = t],

the conditional probability that the failure is

due to first risk , given that failure occurs at

time t.

He derived optimal score statistics for such

parametric situations. But the statistics can-

not be used without the knowledge of the joint

distribution F (x, y).

9



For testing H0 against H1 consider

ψ(t) = F (1, t)− F (2, t)

∫ t
0 S(t)[λ(1, u)− λ(2, u)]du.

H1 holds iff the above function is non-increasing
on t.

Consider the following measure of deviation
between H0 and H1,

∆ =
∫
0<x<y<∞

[ψ(x)− ψ(y)] dF (x) dF (y)

Its empirical estimator is ∆n

∆n =
∫
0<x<y<∞[ψn(x)− ψn(y)] dFn(x) dFn(y)

where

F1n(t) = 1
n

∑n
j=1 I{δj = 1, Tj ≤ t},

Fn(t) = 1
n

∑n
j=1 I{Tj ≤ t},

ψn(t) = 2F1n(t)− Fn(t),

are the empirical estimators of F1, F and ψ,
respectively.
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Then we can write

∆n = 1
n3[

n(n2−1)
6 − 2

∑n
i=1(i− 1)(n− i+ 1)Wi].

Under H0, ∆ = 0, under H1, ∆ > 0.

Large values of the statistic are significant.

Rejecting H0 for large values of ∆n is equiva-

lent to rejecting it for small values of the statis-

tic

U2 =
∑n−1
i=1 i(n− i)Wi+1.

T and δ are independent under H0.

Therefore W1,W2, . . . ,Wn are i.i.d. Bernoulli

random variables with

P{Wi = 1} = P{Wi = 0} = 1
2, i = 1,2, . . . , n.

The moment generating function of the null

distribution of U2 is given by

M(t) = 2−n+1 ∏n−1
i=1(1 + eait),

where ai = i(n− i), i = 1,2, · · · , n− 1.
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For n = 5(1)20, the 5% and 1% critical values

of U2 are given below.
Critical points of U2 and exact significance levels.

n α ≈ 0.01 α ≈ 0.05
5 - 0, 0.0625
6 - 0, 0.03125
7 0, 0.015625 6, 0.046875
8 7, 0.015625 14, 0.046875
9 8, 0.011719 22, 0.054688
10 18, 0.011719 34, 0.054688
11 28, 0.013672 50, 0.050781
12 38, 0.010254 67, 0.051758
13 54, 0.010498 90, 0.051514
14 74, 0.01001 118, 0.052734
15 98, 0.010132 148, 0.050293
16 126, 0.01001 186, 0.0513
17 158, 0.01001 228, 0.050308
18 198, 0.010269 278, 0.050613
19 242, 0.010311 332, 0.049911
20 290, 0.01005 396, 0.050467

E[U2] = n(n2−1)
12 , V ar[U2] = n(n4−1)

120

By the Central Limit Theorem, it can be shown

that, under H0,

n
1
2{U2
n3 − 1

12}
L→ N(0, 1

120).
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To give an idea about the accuracy of the nor-

mal approximation of U2, we give the exact

(respectively, approximate) significance levels

for n = 10 and n = 20.

For n = 10, P [U2 ≤ 18] = 0.011719 (resp.

0.0118) and P [U2 ≤ 34] = 0.054688 (resp.

0.0594).

For n = 20, P [U2 ≤ 290]= 0.01005 (resp. 0.0111)

and P [U2 ≤ 396] = 0.050467 (resp. 0.049).

Deshpande (1990) proposed two tests for test-

ing H0 versus H2 : F (1, t) < F (2, t) on heuristic

grounds.

The first test is the Wilcoxon signed rank type

statistic

W+ =
∑n
i=1(1− δ∗i)Ri.

It was felt that W+ will be large when the

alternative H2 is true, there being a greater

incidence of the second risk upto any fixed time

t.
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Another test is based on the U-statistic

U3 = 1
(n2)

∑
1≤i<j≤n φ3(Ti, δ

∗
i, Tj, δ

∗
j)

φ3(Ti, δ
∗
i, Tj, δ

∗
j) =


1 if δ∗j = 0, Ti > Tj

or δ∗i = 0, Ti < Tj
0 otherwise

The kernel φ3 takes value 1 if , and only if, a Y

observation is the smallest among (Xi, Xj, Yi, Yj).

(
n
2

)
U3 =

∑n
i=1(n−Ri + 1)δ∗i.

E(U3) = 1/2 under H0 and strictly larger than

1/2 under H2.

U3 is same as the statistic proposed earlier

to test for H0 against the alternative HA1 of

stochastic dominance of distribution functions

of independent latent failure times (see, Desh-

pande and Dewan (2003)) is also consistent for

testing bivariate symmetry against dominance

of incidence functions.
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For testing H0 against H2, one can consider

the measure of deviation F (2, t)−F (1, t), which

is non-negative under H2.

∫∞
0 [F (2, t)− F (1, t)]dH(t)

= P [δ∗1 = 0, T1 ≤ T2]− 1
2.

A U-statistic estimator of this parameter is the

statistic U3 discussed above.

Similarly for testing H0 against H3 consider the

measure of deviation S(1, t)− S(2, t), which is

non-negative under H3. Then

∫∞
0 [S(1, t)− S(2, t)]dH(t)

= P [δ∗1 = 1, T1 > T2]− 1
2.

Consider the kernel

φ4(Ti, δi, Tj, δj) =


1 if δ∗i = 1, Ti > Tj

or δ∗j = 1, Ti < Tj
0 otherwise

The corresponding U-statistic is given by

U4 = 1
(n2)

∑
1≤i<j≤n φ4(Ti, δi, Tj, δj).
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(
n
2

)
U4 =

∑n
i=1(Ri − 1)δ∗i.

This statistic was earlier proposed by Bagai,

Deshpande and Kochar (1989) to test for equal-

ity of failure rates of independent latent com-

peting risks.

Aly , Kochar and Mckeague (1994) proposed

Kolmogrov-Smirnov type tests for testing the

equality of two competing risks against the al-

ternatives H1 and H2.

ψ∗(t) = F (2, t)− F (1, t)

=
∫ t

0
S(u)(λ(2, u)− λ(1, u))du.

Under H0, ψ
∗(t) = 0.

H1 holds iff ψ∗(t) is nondecreasing in t .

Let ψ∗n(t) be its empirical estimator.

D1n = sup0≤s<t<∞{ψ∗n(t)− ψ∗n(s)}.

Large values of the statistic are significant.
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Exact null distribution of D1n is given below

for t = 1, . . . , n+ 1,

P [nD1n < t]

= 2
2t+1

∑2t
j=0(cos jπ

2t+1)(sin
jπ(t+1)
2t+1 )

×(1 + cos jπ
2t+1)(

1−(−1)j

2 )/ sin jπ
2t+1.

Asymptotic null distribution of D1n is given by

√
nD1n

L→ sup0≤x≤1 |W (x)|,

where {W (t), t ≥ 0} is a standard Brownian

motion.

The asymptotic 0.90,0.95,0.99 quantiles of
√
nD1n

were found to be 1.96,2.241,2,807, respec-

tively.

For a general two sided alternative F (1, t) 6=
F (2, t) for some t or equivalently λ1(t) 6= λ2(t)

for some t , then one can use the Kolmogrov-

Smirnov type statistic
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Dn = supt≥0 |ψ∗n(t)|.

Under H0,
√
nDn

L→ sup0≤x≤1 |W (x)|.

This test is consistent against arbitrary depar-

tures from H0.

For testing H0 against H2, Aly , Kochar and

McKeague (1994) proposed the statistic

D2n = sup0≤t∞ψn(t).

Large values of D2n are significant for testing

H0 against H2.

The exact nulltribution of D2n is

P [nD2n = k] = 1
2n

(
n

[n−k2 ]

)
, k = 0,1, . . . , n.

The asymptotic null distribution is

P [
√
nD2n > x] → 2(1−Φ(x)), x ≥ 0,

where Φ is the standard normal distribution

function.
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Remarks

(i) The various tests are consistent against

their intended alternatives.

(ii) The tests are distribution-free under H0.

The null distribution of the tests U3 and U4

is same as in the case of independent latent

failures (see, Deshpande and Dewan (2003)).

(iii) We can also use these tests for the hy-

pothesis λ1(t) = λ2(t) against the alternative

that cause-specific hazards are ordered.

(iv) T and δ continue to be independent under

the null hypothesis of bivariate symmetry .

(v) The statistic U2 puts more weight on the

middle observations and is less sensitive to the

observations in the beginning and the end of

the experiment.

U3 puts more weight to later observations and

U4 puts higher weight to observations in the

beginning.
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(vi) The statistics U2, U3, U4 are all linear com-

binations of the sign statistic and the Wilcoxon-

signed rank type statistic.

(vii) Tests proposed by Aly, Kochar and Mck-

eague (1994) can be extended to the case of

multiple risks in which any two of the cause-

specific risks are to be compared. The statistic

can be modified to test dominance of one risk

over the other in a specified interval.

Censored data

Let C be the censoring random variable inde-

pendent of the latent failure times X and Y .

The survival function of C is Sc and assume

that SC(t) > 0 for all t.

The available information consists of (T̃i, δ̃i), i =

1,2, · · · , n

T̃ = min(T,C) and δ̃ = δ∗I(T ≤ C).
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Aly et al (1994) generalised the function ψ∗ so

as to capture departures of H0 from H2 in case

of censored data.

φ(t) =
∫ t
0 S(u−)(SC(u−))

1
2(λ(2, u)− λ(1, u))du

which is the ψ∗ function when there is no cen-

soring.

The integrand SC(u−)1/2 is the function re-

quired to compensate for censoring in order

that the D statistics remain asymptotically distribution-

free.

Under H0, φ(t) = 0.

H1 holds iff φ(t) is increasing in t.

The relevant statistic is

D3n = sup0≤s<t<∞{φn(t)− φn(s)}.

An obvious choice of φn is

φn(t) =
∫ t
0 Ŝ(u−)(ŜC(u−))1/2 d(Λ̂1 − Λ̂2)(u)
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Ŝ and ŜC are the product limit estimators of S̄

and SC,

Λ̂j is the Aalen estimator of the cumulative

CSHR function Λj(t) =
∫ t
0 λ(j, u) du.

Λ̂(j, t) =
∑
i|T̃i≤t

I(δ̃i=j)
Ri

where Ri = #{k : T̃k ≥ T̃i} is the risk set at

time T̃i.

Large values of the statistic are significant.

Since φ(t) > 0 for some t under H2, a suitable

test procedure is based on large values of

D4n = sup0≤t<∞ φn(t).

Aly et al (1994) showed that D3n and D4n are

asymptotically distribution-free with the same

limiting distributions as those obtained in the

uncensored case.

A suitable modification of U2 to censored data

is given by the statistic
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Kn =
∫
0<x<y<∞(φn(x)− φn(y)) dŜ(x) dŜ(y)

where φn and Ŝ are as defined above.

Kn can be expressed as

Kn =
∑
i|δ̃i 6=0 φn(i)(2Ŝ(T̃(i−1))−1)(Ŝ(T̃(i−1))

1
n−i+1

Large values of Kn are significant for testing

H0 against H1.

Aly et al (1994) showed that, under H0,

n1/2φn
L→ W (S(.))

where W(.) is the standard Brownian Motion.

Using the continuous mapping theorem, we

have

n1/2Kn
L→ N(0, σ2)

σ2 = 1
30
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Sun and Tiwari (1995) modified the statistic

U3 so that it can be used for censored data.

V =
∫ ∞

0
(F (2, t)− F (1, t))dH(t)

=
∫ ∞

0
[S(t)]2d(Λ2(t)− Λ1(t))

A natural estimator of V is given by Vn where

Vn =
∫∞
0 [Ŝ(t−)]2d(Λ̂2(t)− Λ̂1(t))

where Ŝ(t) and Λ̂j are as defined above.

In the absence of censoring Vn reduces to the

statistic U3.

Then Sun and Tiwari (1995) proved the fol-

lowing theorem.

Theorem: Let K(t) = 1 − S(t)SC(t), τK =

sup{t : K(t) < 1}. If
∫ τK
0

dH(t)
SC(t) <∞, then

√
n(Vn − V )

L→ N(0, σ2) asn→∞.
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Under H0,

σ2 =
∫∞
0

S2(t)
SC(t)dH(t).

A consistent estimator σ̂2 of σ2 is obtained by

replacing S ans SC by their consistent Kaplan

Meier-estimators.

When there is no censoring σ2 = 1
3.

The test rejects for large values of the statistic.

The approximate power of this test of size α

is equal to 1−Φ(zα−
√
nV/σ̂), where zα is the

upper α percentile of standard normal distribu-

tion.
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SIMULATION RESULTS

Random samples were generated from abso-

lutely continuous bivariate exponential (ACBVE)

due to Block and Basu (1974) with density

f(x, y) =


λλ1(λ2+λ0)
λ1+λ2

e−λ1x−(λ2+λ0)y if x < y,
λλ2(λ1+λ0)
λ1+λ2

e−λ2y−(λ1+λ0)x if x > y,

where (λ0, λ1, λ2) are the parameters and λ =

λ0 + λ1 + λ2. The CSHR’s are

λj(t) =
λjλ

λ1 + λ2
, j = 1,2.

Under H1 λ1 < λ2.

X and Y are independent if and only if λ0 = 0.

We set λ1 = 1 and consider λ2 = 1.0,1.4,1.8,2.2

indicating larger and larger departures from H0.

The case λ2 = 1.0 corresponds to the null hy-

pothesis. n = 100 and there are 10000 repli-

cations.
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λ2
Test 1.0 1.4 1.8 2.2
D1 3.76 41.98 82.53 96.83
D2 4.85 47.71 86.98 98.14
U2 5.09 44.60 83.96 96.92
U3 4.79 43.06 80.54 95.42
U4 4.99 42.67 80.81 95.77
Sign 4.39 49.50 88.29 98.66

Next we look at the censored case. The cen-

soring distribution was exponential with param-

eters 1 and 3, respectively. We use asymptotic

critical levels of 5 percent. Results are based

on 5,000 replications.

Observed levels and powers of Kn at an asymp-

totic level of 5 percent. The underlying dis-

tribution of (X,Y ) is Block and Basu (1974)

ACBVE with λ1 = 1.

(a) CENSORED (EXP(1))

n=50 n=100
λ2 λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1
1.0 .0218 .0312 .0360 .0376
1.5 .1864 .2192 .3732 .4302
2.0 .4482 .5080 .7862 .8342
2.5 .6928 .7414 .9546 .9704
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(b) CENSORED (EXP(3))

n=50 n=100
λ2 λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1
1.0 .0048 .0124 .0084 .0172
1.5 .0342 .0762 .1012 .1834
2.0 .1202 .1986 .3216 .4860
2.5 .2496 .3774 .5862 .7344

From the table it is clear that the asymptotic

critical levels give conservative tests for the

censored case, with the effect increasing as the

censoring becomes more severe.

There is slight effect on the levels or the power

due to lack of independence of X and Y in the

presence of censoring.

The results are comparable with the test pro-

posed by Aly et al (1994) for the lightly cen-

sored case.
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Test for independence of T and δ

The nature of dependence between T and δ is

crucial and useful in modelling competing risks

data via sub-distribution/subsurvival functions.

If T and δ are independent then Si(t) = pr(δ =

i)S(t), allowing the study of the failure times

and the causes (risks) of failure separately.

The hypothesis of equality of incidence func-

tions or that of cause-specific hazard rates re-

duces to testing whether pr(δ = 1) = pr(δ =

0) = 1/2.

This simplifies the study of competing risks to

a great extent.

Dewan, Deshpande and Kulathinal (2004) stud-

ied the properties of the conditional probability

functions

Φi(t) = pr(δ = i | T ≥ t) = Si(t)/S(t), i = 1,2

Φ∗
i (t) = pr(δ = i | T < t) = Fi(t)/H(t), i =

1,2.
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(i) T and δ are independent iff

Φ1(t) = P [δ = 1] or Φ∗
2(t) = 1− P [δ = 1]

(ii) T and δ are PQD iff

Φ1(t) ≥ P [δ = 1] or Φ∗
2(t) ≥ 1− P [δ = 1]

(iii) δ is Right Tail Increasing in T iff Φ1(t) is

increasing in t.

(iv) δ is Left Tail Decreasing in T iff Φ∗
2(t) is

decreasing in t.

They considered the problem of testing H0 :

T and δ are independent which is equivalent to

H0 : Φ1(t) is a constant

against various alternative hypotheses which

characterise the properties of Φ1(t) and Φ∗
0(t):

H1 : Φ1(t) is not a constant

H2 : Φ1(t) ≥ P [δ = 1] for all t with strict inequality for some t

H3 : Φ1(t) is a monotone nondecreasing function of t

H4 : Φ∗
0(t) is a monotone nonincreasing function of t.
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If the hypothesis of independence is accepted

then one can simplify the model and study the

failure time and cause of failure separately.

If the hypothesis is rejected then a suitable

model under specific dependence between T

and δ in terms of the incidence functions is

needed.

The tests constructed for the two risk case

cannot be straightway extended to the case of

more than 2 causes of failure.

For example, in the most commonly cited mor-

tality data given in Hoel (1972), the data were

obtained from a laboratory experiment on two

groups of RFM strain male mice which had re-

ceived a radiation dose of 300 r at an age of

5-6 weeks.

The first group of mice lived in a conventional

laboratory environment, while the second group

was in a germ-free environment.
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The causes of death were grouped into three

classes - thymic lymphoma (risk=1), reticu-

lum cell sarcoma (risk=2) and all other causes

(risk=3).

Suppose we have information on (T, δ), where

δ takes three values 1,2,3.

Let φi(t) = Si(t)
S(t) .

(T, δ) are PQD iff

φ3(t) ≥ φ3(0) = φ3,

and

φ1(t) ≤ φ1(0) = φ1,

Similarly δ is RTI in T iff

φ3(t) is increasing in t

and

φ1(t) is decreasing in t.
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Tests For PQD

∫∞
0 [S3(t)− φ3S(t)]dF (t) = P [T2 > T1, δ2 = 3]

and

∫∞
0 [S1(t)− φ1S(t)]dF (t) = P [T2 > T1, δ2 = 1].

Consider

ψ1(Ti, δi, Tj, δj) =



1 if Tj > Ti, δi = 1, δj = 3,
Tj > Ti, δi = 2, δj = 3,
Tj > Ti, δi = 3, δj = 3,
or if Ti > Tj, δi = 3, δj = 1,
Ti > Tj, δi = 3, δj = 2,
Ti > Tj, δi = 3, δj = 3,

0 otherwise.

Let U1 be the corresponding U-statistic.

Further consider

ψ2(Ti, δi, Tj, δj) =



1 if Tj > Ti, δi = 1, δj = 1,
Tj > Ti, δi = 2, δj = 1,
Tj > Ti, δi = 3, δj = 1,
or if Ti > Tj, δi = 1, δj = 1,
Ti > Tj, δi = 1, δj = 2,
Ti > Tj, δi = 1, δj = 3,

0 otherwise.
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Let U2 be the corresponding U-statistic.

Then U1 − U2 can be used to test for PQD.

Large values of the statistic are significant.

E(U1) = 2
∫∞
0 S3(t)dF (t), E(U2) = 2

∫∞
0 S1(t)dF (t).

In particular under the null hypotheses

E(U1) = φ3, E(U2) = φ1.

Under H0,

σ2
1 = 1

3φ3(1− φ3),

σ2
2 = 1

3φ1(1− φ1).

Theorem :
√
n(Ui − E(Ui))

L→ N(0, σ2
i ), i =

1,2 as n→∞, i = 1,2.

Under H0

Cov(U1, U2) = −2φ1φ3
3

2n−1
n(n−1).
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Hence , under H0 , limiting variance of
√
n(U1 − U2) is given by

σ2 = 4
3(φ1 + φ3)− 4

3(φ1 − φ3)
2.

And
√
n(U1 − U2)

L→ N(0, σ2), as n→∞.

One can use asymptotic critical points for test-

ing purposes.

One can easily find the exact distribution of

U1, U2.

Even the tests for independence of T and δ are

linear combinations of the sign statistic and the

signed rank statistic .

MODELS TO FIT THIS SET UP?
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