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Abstract

The least squares method seems to be a natural choice in estimating the parameters

of a chirp model. But the least squares estimators are very sensitive to the outliers. Even

in presence of very few outliers, the performance of the least squares estimators becomes

quite unsatisfactory. Due to this reason, the least absolute deviation method has been

proposed in the literature. But implementing the least absolute deviation method is quite

challenging particularly for the multicomponent chirp model. In this paper, we propose

to use the weighted least squares estimators, which seem to be more robust in presence

of a few outliers. First, we consider the weighted least squares estimators of the unknown

parameters of a single component chirp signal model. It is assumed that the weight function

is a finite degree polynomial and the errors are independent and identically distributed

random variables with mean zero and finite variance. It is observed that the weighted least

squares estimators are strongly consistent and they have the same convergence rate as the

least squares estimators. The weighted least squares estimators can be obtained by solving

a two dimensional optimization problem. In case of the multicomponent chirp signal, we

provide a sequential weighted least squares estimators and provide the consistency and

asymptotic normality properties of these sequential weighted least squares estimators. To

compute the sequential weighted least squares estimators one needs to solve only one

two dimensional optimization problem at each stage. Extensive simulations have been

performed to see the performances of the proposed estimators. Two data sets have been

analyzed for illustrative purposes.
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1 Introduction

In this paper we have considered the multicomponent chirp signal model with an additive error

and it can be written as follows:

y(t) =

p∑

k=1

{A0
k cos(α

0
kt+ β0

kt
2) + B0

k sin(α
0
kt+ β0

kt
2)}+X(t); t = 1, . . . , N. (1)

Here A0
ks and B0

ks are unknown real numbers and (A02

k + B02

k )s are known as amplitudes, α0
ks

and β0
ks are known as frequency and frequency rate, respectively, and X(t) is an additive error,

independent and identically distributed (i.i.d.) with mean zero and finite variance. The problem

is to estimate the unknown parameters A0
k, B

0
k, α

0
k and β0

k , k = 1, . . . , p based on a sample of

size N , assuming p is known.

Retrieving the parameters of Chirp signals has received a considerable amount of attention

in the signal processing literature due to its wide applications in many natural and man-made

systems like audio signals, sonar, radar, etc. Unlike the sinusoidal model, a chirp signal has a

frequency that changes with time. Chirp model has its roots in radar signal modeling and is

used in various forms for modeling trajectories of moving objects. An extensive amount of work

has been done developing different estimation procedures of the parameters of a chirp model,

see for example Abatzoglou [1], Djurić and Kay [2], Farquharson, O’Shea and Ledwich [3], Gini,

Montanari and Verrazzani [4], Lahiri, Kundu and Mitra [10], Grover, Kundu and Mitra [5] and

see the references cited therein.

The chirp model (1) is a non-linear regression model, and the least squares method has

been used in estimating the unknown parameters of this model. But the chirp model (1) does

not satisfy the standard sufficient conditions of Jennrich [7] or Wu [15] so that the least squares

estimators (LSEs) become consistent. Hence, although the LSEs are the most natural estimators,

the consistency of the estimators is not guaranteed. Nandi and Kundu [12] first provided the
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formal proof of consistency and asymptotic normality properties of the LSEs of the parameters

of a chirp model under the assumption that the errors are i.i.d. random variables with mean zero

and finite variance. It is observed that the asymptotic variances of the frequency and frequency

rate estimators are of the orders N−3 and N−5, respectively. Therefore, the variance of the

frequency rate estimator converges much faster than the variance of the frequency estimator.

Due to these consistency and asymptotic normality properties the LSEs are the most preferred

estimators in a perfect condition. Moreover, under the assumption of normality of the error

distribution, the variances of the LSEs achieve the Cramer-Rao lower bound. Hence, they are

the most efficient estimators also in case of Gaussian errors.

It is further observed that although the LSEs seem to be a natural choice, they are very sen-

sitive to the outliers. Even if very few outliers are present, they affect the performances of the

estimators quite significantly. Due to this reason Lahiri, Kundu and Mitra [9] proposed the least

absolute deviation estimators (LADEs) for one component (p = 1) chirp model. It is observed

that the LADEs are strongly consistent and they are asymptotically normally distributed. It

may be mentioned that one needs a stronger set of assumptions than what are needed in case

of LSEs, to establish the consistency and asymptotic normality properties of the LADEs. It is

further observed that extending the results for a multicomponent model is not straightforward.

Moreover, implementing the LADEs for p component chirp model involves solving a 4p dimen-

sional optimization problem. Therefore, for large p, implementing the least absolute deviation

(LAD) procedure is quite challenging.

In this paper, we propose to use the weighted least squares estimators (WLSEs), which seem

to be quite robust in presence of few outliers. The main motivation to use the WLSEs as more

robust estimators compared to LSEs is the following. In case of WLSEs we choose the weight

function in such a manner that where outliers are present, less weight has been given compared

to the least squares method. Hence, it is expected that this method will produce more robust

estimators compared to the least squares method. The idea is very similar to the least absolute
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deviation criterion. We consider the WLSEs of the parameters of the multiple chirp model (1)

when the weight function is a known finite degree polynomial. Therefore, the LSEs can be

obtained as a special case of the proposed estimators. First, we consider the single component

chirp model, i.e. when p = 1 in the model defined in (1). Under certain restrictions on the weight

function, we have shown that the WLSEs are strongly consistent and asymptotically normally

distributed. It is observed that the asymptotic variances of the WLSEs of the frequency and

frequency rate are of the orders N−3 and N−5, respectively. We further consider the WLSEs

of the multiple chirp model (1). It involves solving a 2p dimensional non-linear optimization

problem, which can be computationally challenging, if p is large. To avoid that we have proposed

a sequential procedure that involves solving p two dimensional problems and we have shown

that the sequential estimators have the same asymptotic properties as the WLSEs. Extensive

simulations have been performed to compare the performances of the WLSEs and LADEs for

one component chirp model, and they are quite comparable. Two data sets have been analyzed

for illustrative purposes using the multicomponent model. Finally we have indicated how the

method can be generalized for a general weight function.

The main contributions of this paper are the following. We have provided a new estimation

procedure namely the weighted least squares (WLS) estimation procedure, to estimate the un-

known parameters of the chirp model (1). The proposed estimation procedure is very easy to

implement in practice, and it can be used quite conveniently even for large p. The proposed

method has the same computational complexity as the least squares method. The proposed

WLSEs are quite robust compared to the LSEs in presence of outliers. The performances of

the WLSEs are very similar to the robust estimators like LADEs, although it is well known

that the LADEs are more difficult to compute than the LSEs. Particularly, for large p, the

implementation of the LAD procedure is a more challenging problem, and it has not been at-

tempted so far. The asymptotic properties of the LADEs have been obtained so far only for p

= 1 under a set of conditions which are much stronger than what are needed in case of LSEs

and WLSEs. Establishing the properties of the LADEs for general p is not immediate. We have
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established the consistency and asymptotic normality properties of the WLSEs for general p,

under the same set of conditions as what are needed in case of the LSEs. Hence, it seems we

have provided a comprehensive solution to this problem.

The rest of the paper is organized as follows. In Section 2 we provide some preliminaries.

One component chirp model has been considered in Section 3. In Section 4 we consider the

multicomponent chirp model. Simulation results and the analysis of two data sets have been

presented in Section 5 and in Section 6, respectively. The case of general weight function has

been discussed in Section 7 and finally, in Section 8 we conclude the paper.

2 Preliminaries

In order to establish the consistency and asymptotic normality of the WLSEs we need some

number theoretic results and one famous number theoretic conjecture. We explicitly mention it

here for easy reference.

Result 1: If (θ1, θ2) ∈ (0, 1)× (0, 1), and θ2 is irrational, then the following results hold.

lim
N→∞

1

N

N∑

n=1

cos(θ1n+ θ2n
2) = lim

N→∞

1

N

N∑

n=1

sin(θ1n+ θ2n
2) = 0,

lim
N→∞

1

Nk+1

N∑

n=1

nk cos2(θ1n+ θ2n
2) =

1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑

n=1

nk sin2(θ1n+ θ2n
2) =

1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑

n=1

nk cos(θ1n+ πθ2n
2) sin(πθ1n+ πθ2n

2) = 0,

where k = 0, 1, 2, . . ..

Proof: The proof can be obtained from Vinogradov’s [14] results. See Lahiri, Kundu and
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Mitra [10] for details.

Comments: The proof of Vinogradov [14] is mathematically quite involved. But one important

point it has been shown that if θ2 is an irrational point, then Result 1 holds. Since in all practical

applications, θ2 = πα, for α ∈ (0, 1), and π is irrational, hence Result 1 holds for all α ∈ (0, 1).

The following famous number theoretic conjecture, see Montgomery [11], can not be estab-

lished formally. But extensive numerical experiments indicate that it holds true.

Conjecture A: If θ1, θ2, θ
′
1, θ

′
2 ∈ (0, π), and θ2, θ

′
2 both are irrational, then

lim
N→∞

1√
NNk

N∑

n=1

nk cos(θ1n+ θ2n
2) sin(θ′1n+ θ′2n

2) = 0; k = 0, 1, 2, . . . . (2)

In addition if θ2 6= θ′2, then

lim
N→∞

1√
NNk

N∑

n=1

nk cos(θ1n+ θ2n
2) cos(θ′1n+ θ′2n

2) = 0; k = 0, 1, 2, . . . (3)

lim
N→∞

1√
NNk

N∑

n=1

nk sin(θ1n+ θ2n
2) sin(θ′1n+ θ′2n

2) = 0; k = 0, 1, 2, . . . (4)

3 One component Chirp Model

In this section we consider the one component chirp model and it can be described as follows:

y(t) = A0 cos(α0t+ β0t2) +B0 sin(α0t+ β0t2) +X(t); t = 1, . . . , N. (5)

Here as mentioned before A0 and B0 are unknown real numbers, |A0|2 + |B0|2 is known as

amplitude, and it is assumed that there exists an M , such that 0 < |A0|, |B0| < M . The

frequency α0 ∈ (0, π) and the frequency rate β0 ∈ (0, π). The additive error random variables

X(t)s are i.i.d. random variables with mean zero and finite variance σ2 > 0, as mentioned
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before. The problem here is to estimate A0, B0, α0 and β0 based on a sample of size N , namely

{y(1), . . . , y(N)}. We use the following notation. θ = (A,B, α, β)⊤, θ0 = (A0, B0, α0, β0)⊤,

µ(t; θ) = A cos(αt+ βt2) + B sin(αt+ βt2),

and w(s) is a m-th degree polynomial, i.e.

w(s) = a0 + a1s+ a2s
2 + . . .+ ams

m, (6)

here a0, a1, . . . , am are such that min0≤s≤1 w(s) > γ > 0. Without loss of generality, it is assumed

that a0 = 1. Suppose K is such that sup0≤s≤1 w(s) ≤ K.

Let us consider the following quantity:

Q(θ) =
N∑

t=1

w

(
t

N

)
(y(t)− µ(t; θ))2. (7)

Suppose θ̂ minimizes Q(θ), then θ̂ is called the WLSE of θ0. When w(s) = 1, θ̂ becomes the

LSE of θ0. Although θ is a four dimensional vector, we will show that the minimization of Q(θ)

can be performed by solving a two dimensional optimization problem. Before showing that we

will establish the asymptotic properties of θ̂.

Theorem 1: If X(t)s are i.i.d. random variables with mean zero and finite variance σ2 > 0,

α0, β0 ∈ (0, π) and w(s) is the weight function as defined in (6), then θ̂ is a strongly consistent

estimator of θ0.

Proof: See in Appendix A.
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We need the following notations for development of the asymptotic distribution of θ̂.

lim
N→∞

1

Nk+1

N∑

t=1

tkw

(
t

N

)
=

∫ 1

0

tkw(t)dt = ck+1,

lim
N→∞

1

Nk+1

N∑

t=1

tkw2

(
t

N

)
=

∫ 1

0

tkw2(t)dt = dk+1; k = 0, 1, 2, . . . ,

Σ =




d1 0 B0d2 B0d3

0 d1 −A0d2 −A0d3

B0d2 −A0d2 (A02 +B02)d3 (A02 + B02)d4

B0d3 −A0d3 (A02 +B02)d4 (A02 + B02)d5




(8)

and

G =




c1 0 B0c2 B0c3

0 c1 −A0c2 −A0c3

B0c2 −A0c2 (A02 +B02)c3 (A02 + B02)c4

B0c3 −A0c3 (A02 +B02)c4 (A02 + B02)c5




. (9)

Based on the same assumptions as in Theorem 1, it can be shown that with the proper normal-

ization the distribution of θ̂ is asymptotically normal having mean θ0, and a dispersion matrix

whose elements depend on α0 and β0. But based on the number theoretic Conjecture A, the

following statement which provides a simplified form of the dispersion matrix, can be proved.

Statement 1: If (2), (3), (4) are true, then under the same assumptions as in Theorem 1, and

if the matrices Σ and G, as defined in (8) and (9), respectively are of full rank, then

(
N1/2(Â− A0), N1/2(B̂ − B0), N3/2(α̂− α0), N5/2(β̂ − β0)

)⊤ d→ N4

(
0, 2σ2

G
−1ΣG

−1
)
.

Here
d→ means convergence in distribution.

Proof: See in Appendix B.
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Statement 1 is helpful in deriving the variances of the estimators for large N . Moreover, it should

be mentioned that even though Conjecture A have not yet been formally proved, extensive

numerical experiments support these results, see for example Vinogradov [14] and Lahiri [8] in

this respect. In our extensive simulation experiments it has been observed that the elements

of the dispersion matrix do not depend on α0 and β0. Hence, it can be concluded that the

experimental results do not contradict Conjecture A.

Observe that the matrix Σ is invertible if and only if

(d3 − d22)(d5 − d23) 6= (d4 − d2d3)
2,

similarly, the matrix G is invertible if and only if

(c3 − c22)(c5 − c23) 6= (c4 − c2c3)
2.

The explicit forms of ck+1 and dk+1 are as follows

ck+1 =
1

k + 1
+

a1

k + 2
+ . . .+

am

k +m+ 1

dk+1 =
1

k + 1
+

a21
k + 3

+ . . .+
a2m

k + 2m+ 1
+ 2

∑

0≤i<j≤m

aiaj

k + i+ j + 1
.

When m = 0, then cj = dj for j = 1, 2, . . ., and 2σ2
G

−1ΣG
−1 = 2σ2

G
−1, where

G =




1 0 1
2
B0 1

3
B0

0 1 −1
2
A0 −1

3
A0

1
2
B0 −1

2
A0 1

3
(A02 +B02) 1

4
(A02 +B02)

1
3
B0 −1

3
A0 1

4
(A02 +B02) 1

5
(A02 +B02)




= Σ
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and

G
−1 =

2

A02 +B02




1
2

(
A02 + 9B02

)
−4A0B0 −18B0 15B0

−4A0B0 1
2

(
9A02 + B02

)
18A0 −15A0

−18B0 18A0 96 −90

15B0 −15A0 −90 90




,

which is the asymptotic variance matrix of the LSE θ̂.

Now we will describe how we can obtain the WLSEs as a two dimensional optimization

problem. Note that the WLSEs of Â, B̂, α̂, β̂ are obtained by minimizing Q(θ) as defined

in (7). Since A and B are the linear parameters, therefore, for a given α and β, Â(α, β) and

B̂(α, β) minimize Q(θ), where

Â(α, β) =
b1(α, β)a22(α, β)− b2(α, β)a12(α, β)

a11(α, β)a22(α, β)− a21(α, β)a12(α, β)
,

B̂(α, β) =
b1(α, β)a21(α, β)− b2(α, β)a11(α, β)

a21(α, β)a12(α, β)− a11(α, β)a22(α, β)
,

a11(α, β) =
N∑

t=1

w

(
t

N

)
cos2(αt+ βt2), a22(α, β) =

N∑

t=1

w

(
t

N

)
sin2(αt+ βt2),

a12(α, β) =
N∑

t=1

w

(
t

N

)
sin(αt+ βt2) cos(αt+ βt2) = a21(α, β),

b1(α, β) =
N∑

t=1

w

(
t

N

)
y(t) cos(αt+ βt2), b2(α, β) =

N∑

t=1

w

(
t

N

)
y(t) sin(αt+ βt2).

Hence α̂ and β̂ can be obtained by minimizing Q(Â(α, β), B̂(α, β), α, β) with respect to α and

β. Then Â and B̂ can be obtained as Â = Â(α̂, β̂) and B̂ = B̂(α̂, β̂), respectively.
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4 Multicomponent Chirp Model

In this section we consider the multicomponent chirp model as it has been defined in (1). First,

we consider the WLSEs and discuss its properties, and then we consider the sequential WLSEs.

It is assumed that p is known and without loss of generality

0 < A02

p + B02

p < . . . < A02

1 + B02

1 < M. (10)

We use the following notations for k = 1, . . . , p: θk = (Ak, Bk, αk, βk)
⊤ and θ0k = (A0

k, B
0
k, α

0
k, β

0
k)

⊤.

The WLSEs of θ01, . . . , θ
0
p can be obtained by minimizing

Qp(θ1, . . . , θp) =
N∑

t=1

w

(
t

N

)(
y(t)−

p∑

k=1

µ(t; θk)

)2

, (11)

with respect to the unknown parameters. Let us denote them as θ̂1 . . . , θ̂p, respectively. It

can be shown as before that WLSEs of θ1, . . . , θp can be obtained by solving a 2p dimensional

optimization problem. Now we provide the asymptotic properties of the WLSEs of θ1, . . . , θp

without proofs, because these can be proved along the similar lines as the one component model

and using Conjecture A.

Theorem 2: If X(t)s are same as defined in Theorem 1, w(s) is the weight function as defined

in (6), α0
k, β

0
k ∈ (0, π), then θ̂k is a strongly consistent estimator of θ0k for k = 1, . . . , p.

Along the same line as the one component model, it can be shown that with the proper normal-

ization, the asymptotic distribution of θ̂k is normally distributed with the mean vector θ0k and a

dispersion matrix whose elements depend on the frequency and frequency rate parameters also.

But based on Conjecture A, similar to Statement 1, we can make the following statement which

provides a simplified form of the dispersion matrix. Statement 2 can be proved along the same

line as Statement 1.
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Statement 2: If (2), (3), (4) are true, then under the same assumptions as in Theorem 2,

(
(θ̂1 − θ01)

⊤
D . . . (θ̂p − θ0p)

⊤
D

)⊤ d→ N4p

(
0, 2σ2

H
)
,

where D = diag{N 1

2 , N
1

2 , N
3

2 , N
5

2} and H is a 4p × 4p block diagonal matrix with the k-th

block as G−1
k ΣkG

−1
k . Here Σk and Gk can be obtained from Σ and G, by replacing A0, B0, α0,

β0 with A0
k, B

0
k, α

0
k, β

0
k , respectively for k = 1, . . . , p.

The procedure to obtain the sequential WLSEs is outlined below. Consider

Q1(θ1) =
N∑

t=1

w

(
t

N

)
(y(t)− µ(t; θ1))

2
. (12)

Obtain the sequential WLSEs of θ1 by minimizing (12) with respect to θ1, and let us denote it

by θ̃1 = (Ã1, B̃1, α̃1, β̃1)
⊤. Note that the minimization of Q1(θ1) can be obtained as a two dimen-

sional optimization problem. At the second stage, obtain the new data {y1(t); t = 1, . . . , N},

where y1(t) = y(t)− µ(t; θ̃1), for t = 1, . . . , N . Consider,

Q2(θ2) =
N∑

t=1

w

(
t

N

)
(y1(t)− µ(t; θ2))

2
. (13)

Obtain the sequential WLSEs of θ2 by minimizing (13) with respect to θ2. We denote it by

θ̃2 = (Ã2, B̃2, α̃2, β̃2)
⊤. At the third stage, obtain the new data {y2(t); t = 1, . . . , N}, where

y2(t) = y1(t)− µ(t; θ̃2), for t = 1, . . . , N and continue the process till the p-th stage. Therefore,

sequentially we can obtain θ̃1, . . . , θ̃p. It is clear that the computational complexity of the se-

quential WLSEs is same as the sequential LSEs. Both of them require solving p two dimensional

optimization problem. Hence, the method which is being used to compute the LSEs can be used

to compute the WLSEs also.

Now we will show that θ̃1, . . . , θ̃p are strongly consistent estimators of θ01, . . . , θ
0
p, respectively.

In the following theorems, Σk and Gk, k = 1, . . . , p are same as defined in Statement 2.
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Theorem 3: Under the same assumption as in Theorem 2, θ̃1 is a strongly consistent estimator

of θ01.

Proof: See in Appendix C.

Regarding the asymptotic equivalence between the WLSEs and sequential WLSEs, we can prove

the following statement based on Conjecture A.

Statement 3: If (2), (3), (4) are true, then under the same assumption as in Theorem 2

(
N1/2(Ã1 − A0

1), N
1/2(B̃1 −B0

1), N
3/2(α̃1 − α0

1), N
5/2(β̃1 − β0

1)
)⊤ d→ N4

(
0, 2σ2

G
−1
1 Σ1G

−1
1

)
.

Proof: See in Appendix D.

Theorem 4: Under the same assumption as in Theorem 2, θ̃2 is a strongly consistent estimator

of θ02.

Proof: See in Appendix D.

Similar to Statement 3, we can prove the following Statement 4, based on Conjecture A. Hence,

it is avoided.

Statement 4: If (2), (3), (4) are true, then under the same assumption as in Theorem 2

(
N1/2(Ã2 − A0

2), N
1/2(B̃2 −B0

2), N
3/2(α̃2 − α0

2), N
5/2(β̃2 − β0

2)
)⊤ d→ N4

(
0, 2σ2

G
−1
2 Σ2G

−1
2

)
.

Now if the process is repeated beyond p steps and Âp+1 and B̂p+1 are the estimates of A and

B at step p+ 1, respectively, then we have the following result.

Theorem 5: Under the same assumption as in Theorem 2, Âp+1
a.s→ 0 and B̂p+1

a.s→ 0.

Proof: See in Appendix D.
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5 Simulation Results

In this section, we provide a demonstration of the performance of the proposed WLSEs through

numerical simulations. We consider a simple one-component model:

y(t) = 4 cos(0.38πt+ 0.01πt2) + 3 sin(0.38πt+ 0.01πt2) +X(t). (14)

Here, X(t)s are i.i.d. random variables simulated from Gaussian distribution with mean 0 and

variance σ2. For different sample sizes varying from 100 to 500 and for error standard devia-

tions σ = 0.5, 1, 2, 5 and 10, we generate data from the above model. To each of these data sets,

we add a few outliers to assess the robustness of the proposed estimators. These outliers are

added to 10 percent of the middle section of the data. The outliers are generated from normal

distribution with mean 0 and standard deviation 50.

Since the outliers are added in the middle, we choose the following weight function for the

computation of WLSEs:

w

(
t

N

)
=

1

4
− t

N
+

t2

N2
. (15)

It is important to note that the choice of weights is vital for the computation of optimal WLSEs.

This weight function puts less weight in the middle of the data. We compute the WLSEs for

different sample sizes and different error variances. For a comparative study, we also compute

the usual LSEs and the robust LADEs. It may be mentioned here that there are other robust

estimators available in the literature, see for example Rousseeuw and Leroy [13]. Among the

different robust estimators, other than the LADEs, Huber’s M-estimators are also quite popular.

The behavior of Huber’s estimators are very similar to the LADEs. Unfortunately, in case

of chirp models, the properties of Huber’s M-estimators are not yet established. Moreover,

computationally it is more challenging than the LADEs, depending on the choice of the influence

function. Hence, it has not been attempted here. For each set of parameters, the experiment
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Figure 1: In each sub-plot, the graphed line represents the MADs of the WLSEs, LSEs, and
LADEs of the simulated one component model.
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Figure 2: In each sub-plot, the graphed line represents the MSEs of the WLSEs, LSEs, and
LADEs of the simulated one component model.

is replicated 1000 times and the mean absolute deviations (MADs) as well as the mean square

errors (MSEs) of WLSEs, LSEs, and LADEs are reported here. Computing both the LSE and

WLSEs, one needs to solve two-dimensional optimization problem, where as in case of LADEs

it is a four dimensional optimization problem. We have mainly used Nelder-Mead algorithm

to solve both the two and four dimensional optimization problems. We have tried with other

set of parameters values also, but the overall pattern of the behavior of the different estimators

remains same. Some noteworthy observations are listed below.

• As the sample size increases, the MSEs and MADs of the proposed estimators decrease,
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validating their consistency property. This is also observed for the LSEs and LADEs.

• As the standard deviation increases, the MSEs and MADs curves move upward along

the y-axis, thereby implying the estimators perform better with increasing signal to noise

ratio.

• WLSEs perform much better than LSEs in terms of both MADs and MSEs for all values

of N and σ.

• WLSEs are observed to be robust to the outliers.

• WLSEs perform at par with the LADEs for all values of N and for all σ. WLSEs and

LADEs are more efficient than the LSEs in presence of outliers.

From the simulation results, we can conclude that the WLSEs are robust than the LSEs in

presence of outliers. As a matter of fact, their performance is as good as the LADEs which

are known to be robust. Another important point to note here is that although the LADEs

perform the best, computing them for a one component model involves solving a 4 dimensional

optimisation problem as there is no closed form solution for the linear parameters in this case.

For the multiple component model, the problem becomes more complex because unlike the least

squares and the weighted least squares methods, this problem cannot be broken down into a

series of two-dimensional optimisation problems and will require a 4p dimensional search. Also

initial guesses are required not only for the frequency and frequency rate parameters but also

for the linear parameters. Since the number of components required for analysis of real data can

be very large, we use the sequential LSEs and sequential WLSEs for the parameter estimation

in the next section and compare their performances.
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Figure 3: Simulated data.

6 Data Analysis

6.1 Simulated Data Analysis

We illustrate the performance of sequential WLSEs in comparison with the sequential LSEs

through a simulated example in this section. We consider a two-component chirp model given

by:

y(t) = 10 cos(0.80πt+ 0.001πt2) + 10 sin(0.80πt+ 0.001πt2)

+8 cos(0.48πt+ 0.002πt2) + 8 sin(0.48πt+ 0.002πt2) +X(t)

for t = 1, . . . , 256. Here e(t)s are independent and identically normally distributed with mean

0 and standard deviation 5. Figure 3 shows the simulated data from the above-defined model

equation. To the simulated data, we add 10 outliers in the middle of the data set. These outliers

are generated from normal distribution as well. However, in this case they have standard devi-

ation 20. To this contaminated data, we fit a two-component chirp model using the sequential

LSEs first. Figure 4 shows the estimated signal using the LSEs along with the simulated data.

Figure 4 reveals that using the sequential LSEs to fit the model to the data with outliers leads to

unsatisfactory results. Since the LSEs are sensitive to perturbations in the data, it is expected
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Figure 4: The estimated signal using sequential LSEs along with the simulated data.

that sequential WLSEs may yield better results than the sequential LSEs. To choose an appro-

priate weight function, we first plot the residuals obtained by fitting the model using sequential

LSEs. Figure 5 shows the residual plot obtained after fitting the two-component chirp model to

the simulated data using the sequential LSEs. It can be seen that there are large residuals in

the middle indicating the presence of outliers. We set the weight function to the following:
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residuals

Figure 5: The residual plot of the simulated data and the fitted LSEs signal.

w

(
t

N

)
=

1

4
− t

N
+

t2

N2
, (16)

a convex function so that lesser weights are assigned to the observations in the middle, given

the residuals are large in the middle section in Figure 5. Using this weight function, we compute
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Figure 6: The estimated signal using sequential WLSEs along with the simulated data.

the sequential WLSEs and the estimated signal using these estimators along with the simulated

data is shown in Figure 6.

We observe in Figure 6 that the estimated signal using the sequential WLSEs fits the data

reasonably well. On comparing this with Figure 4, it can be concluded that in the presence of

outliers, the sequential WLSEs provide a satisfactory fit.

6.2 Real Data Analysis

In this section, the applicability of proposed sequential WLSEs is demonstrated through analysis

of an observed EEG signal. Only a part of the observed signal has been used and Figure 7 shows

the original signal with 64 data points.

To this data, we add outliers to first five observations. To test the sensitivity of sequential

LSEs to these outliers, we first fit the model using the sequential least squares method. Figure 8

shows the estimated chirp signal along with the original EEG signal. Next, we use the sequential

WLSEs to fit the model to the EEG data. For their computation, the following weight function

is used:

w

(
t

N

)
= a0 + a1

t

N
, (17)
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Figure 7: A segment of EEG data.
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Figure 8: The estimated signal using sequential LSEs along with the EEG data.

with a0 = a1 =
1
20
. Note that we choose an increasing weight function as the simulated outliers

are added at the beginning of the data. In Figure 9, we plot the estimated signal along with the

original signal. It can be seen that there is an improvement in the fitting when the sequential

WLSEs are used instead of the sequential LSEs. This improvement is quantified in terms of the

residual sum of squares also. The residual sum of squares obtained by using the sequential LSEs

for the fitting is 1.1177, whereas that obtained using the sequential WLSEs is 0.8961. Clearly,

the sequential WLSEs outperform the sequential LSEs in terms of the fitting.
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Figure 9: The estimated signal using sequential WLSEs along with the EEG data.

7 General Weight Function

So far we have assumed that the weight function w(s) to be a polynomial weight function. In this

section we will outline how the method can be extended for a general class of weight functions

and for the single component chirp model (5). The result can be easily extended for the multiple

chirp model (1) along the same line as before. In this section we will be using some of the same

notations for convenience, which have also been used before in a similar context. It should not

create any problem. We need the following assumption and result for further development.

Assumption 1: Suppose w(s) is a non-negative continuous function defined on [0, 1], such that

min0≤s≤1 w(s) > γ > 0 and max0≤s≤1 w(s) ≤ K < ∞.

Result 2: Suppose (θ1, θ2) ∈ (0, π)× (0, π), and it satisfies Result 1, w(s) satisfies Assumption

1, then

lim
N→∞

1

N

N∑

t=1

w

(
t

N

)
sin2(αt) = lim

N→∞

1

N

N∑

t=1

w

(
t

N

)
cos2(αt) =

1

2

∫ 1

0

w(t)dt.

Proof: See in Appendix E.

Theorem 6: If X(t), A0, B0, α0, β0 satisfy the same assumptions as in Theorem 1, and w(s)
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satisfies Assumption 1, then θ̂ is a strongly consistent estimator of θ0.

Proof: The proof of Theorem 6 mainly depends on Lemma 1. It can be easily seen that the

proof of Lemma 1 goes through if w(s) satisfies Assumption 1.

We need the following notations. Similarly as before, for k = 0, 1, 2, . . .,

lim
N→∞

1

Nk+1

N∑

t=1

tkw

(
t

N

)
=

∫ 1

0

tkw(t)dt = ck+1 (18)

lim
N→∞

1

Nk+1

N∑

t=1

tkw2

(
t

N

)
=

∫ 1

0

tkw2(t)dt = dk+1. (19)

These cks and dks are defined for a weight function that satisfies Assumption 1.

Regarding the asymptotic distribution, the following statement can be proved along the same

line as the proof of Statement 1, using Conjecture A. Hence, it is avoided.

Statement 5: If (2), (3), (4) are true, X(t), A0, B0, α0, β0 satisfy the same assumptions as in

Theorem 1, w(s) satisfies Assumption 1, Σ and G are same as in Theorem 1, where ck and dk

are as above, and the matrix Σ and G are of full rank, then

(
N1/2(Â− A0), N1/2(B̂ − B0), N3/2(α̂− α0), N5/2(β̂ − β0)

)⊤ d→ N4

(
0, 2σ2

G
−1ΣG

−1
)
.

The results of the WLSEs and sequential WLSEs for multiple chirp model follow exactly the

same way as before and therefore, they are omitted.

8 Concluding Remarks

In this paper, we have considered the WLSEs for multiple chirp model. The proposed estima-

tors are robust in presence of a few outliers and they outperform the LSEs in terms of lower
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mean absolute deviations and mean squared errors. The asymptotic properties of the proposed

estimators have been established and the proposed WLSEs have the same convergence rates as

the LSEs. Extensive simulations have emphasized that the performance of WLSEs is as good as

the LADEs. But the strong consistency and asymptotic distribution results are not available for

LADEs in case of multiple chirp model and are open problems. Also computing the LADEs for

p component signal involves solving a 4p dimensional optimisation problem as there is no closed

form solution for the linear parameters in this case. Another important point is that WLSEs can

be estimated component-wise sequentially and the sequential WLSEs have the same asymptotic

distribution as the WLSEs. Therefore, the proposed weighted least squares is a method which

is as good as the LAD estimation procedure computationally and are strongly consistent and

asymptotically normal. Also the method is relatively much easier to implement. The analysis

of a real data set have been performed by artificially including outliers and the performances

are quite satisfactory. One important point to be noted here is that the performance of the

proposed estimation method depends on the choice of the weight function. Further studies are

needed in that direction.
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Appendix A

We need the following lemmas to prove Theorem 1.

Lemma 1: If {X(t)}s are i.i.d. random variables with mean 0 and variance σ2, and w(s) are

same as in Theorem 1, and 0 < α, β < π, then as N → ∞,

sup
α,β

∣∣∣∣∣
1

N

N∑

t=1

X(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣
a.s.→ 0.

Proof of Lemma 1: Consider the following random variable

Z(t) =





X(t) if |X(t)| ≤ t
3

4

0 o.w.

Then

∞∑

t=1

P [X(t) 6= Z(t)] =
∞∑

t=1

P [|X(t)| > t
3

4 ] =
∞∑

t=1

∑

2t−1≤s<2t

P [|X(t)| > s
3

4 ]

≤
∞∑

t=1

∑

2t−1≤s<2t

P
[
|X(1)| > 2(t−1) 3

4

]
≤

∞∑

t=1

2tP
[
|X(1)| > 2(t−1) 3

4

]

≤
∞∑

t=1

2t
E|X(1)|2

2(t−1) 3
2

≤ C

∞∑

t=1

2−
t
2 < ∞.

Therefore, {X(t)} and {Z(t)} are equivalent sequences. So

sup
α,β

∣∣∣∣∣
1

N

N∑

t=1

X(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣
a.s.→ 0 ⇔

sup
α,β

∣∣∣∣∣
1

N

N∑

t=1

Z(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣
a.s.→ 0.
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Let U(t) = Z(t)− E(Z(t)). Therefore,

sup
α,β

∣∣∣∣∣
1

N

N∑

t=1

E(Z(t))w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣ ≤
K

N

N∑

t=1

|E(Z(t))| = K

N

N∑

t=1

∣∣∣∣
∫

|x|<t
3
4

xdF (x)

∣∣∣∣→ 0,

where sup0≤s≤1 w(s) ≤ K, same as defined in Section 3 and F (x) is the distribution of X(1).

Therefore, it is enough to prove that

sup
α,β

∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣
a.s.→ 0.

For any fixed α, β and ǫ > 0, and 0 ≤ h ≤ 1

4KN
3
4

, we have

P

[∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣ ≥ ǫ

]
≤ 2e−hNǫ

N∏

t=1

E(ehU(t)w( t
N ) cos(αt) cos(βt2))

≤ 2e−hNǫ

N∏

t=1

(1 + h2σ2) ≤ 2−hNǫ+Nh2σ2

.

The first inequality follows from Markov inequality. From the definition of Z(t), V (U(t)) =

V (Z(t)) ≤ V (X(t)) = σ2. Since |hU(t)w
(

t
N

)
cos(αt) cos(βt2)| ≤ 1

2
, and for |x| ≤ 1

2
, ex ≤

1 + x+ x2, the second inequality holds true.

Choose h =
1

4KN
3

4

, therefore for large N ,

[∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣ ≥ ǫ

]
≤ 2e

−N
1
4 ǫ
4

+ σ2

16N
1
2 ≤ 4e−

N
1
4 ǫ
4 .

Let J = N6, and choose J points (α1, β1), . . . , (αJ , βJ), such that for any point (α, β) in [0, π]×

[0, π], we have a point (αk, βk) satisfying

|αk − α| ≤ π

N3
and |βk − β| ≤ π

N3
.
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Now by Taylor series expansion can be used to estimate

| cos(βt2)− cos(βkt
2)| ≤ t2|β − βk| and | cos(αt)− cos(αkt)| ≤ |t||α− αk|

therefore,

∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

){
cos(αt) cos(βt2)− cos(αkt) cos(βkt

2)
}
∣∣∣∣∣

≤
∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αt)

{
cos(βt2)− cos(βkt

2)
}
∣∣∣∣∣

+

∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(βkt

2) {cos(αt)− cos(αkt)}
∣∣∣∣∣

≤ C

[
1

N

N∑

t=1

t
3

4 t2
π

N3
+

1

N

N∑

t=1

t
3

4 t
π

N3

]
≤ C

[
π

N
1

4

+
π

N
5

4

]
→ 0.

Therefore, for large N

P

[
sup
a,b

∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αt) cos(βt2)

∣∣∣∣∣ ≥ 2ǫ

]

≤ P

[
max
k≤N6

∣∣∣∣∣
1

N

N∑

t=1

U(t)w

(
t

N

)
cos(αkt) cos(βkt

2)

∣∣∣∣∣ ≥ 2ǫ

]
≤ 4N6e−

N
1
4 ǫ
4 .

Since
∞∑

N=1

N6e−
N

1
4 ǫ
4 < ∞, by using Borel-Cantelli lemma the result follows.

Lemma 2: Let us denote

Sc = {θ : θ = (A,B, α, β)⊤, |θ − θ0| ≥ 4c}.

If there exists a c > 0,

lim inf
θ∈Sc

1

N
[Q(θ)−Q(θ0)] > 0 a.s. (20)

then θ̂ is a strongly consistent estimator of θ0.
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Proof of Lemma 2: It follows by simple argument by contradiction, exactly similar to a

lemma by Wu [15].

Proof of Theorem 1: Consider

1

N
[Q(θ)−Q(θ0)] =

1

N

[
N∑

t=1

w

(
t

N

)
(y(t)− µ(t; θ))2 −

N∑

t=1

w

(
t

N

)
X2(t)

]

=
1

N

[
N∑

t=1

w

(
t

N

)
(µ(t; θ0)− µ(t; θ))2

]

+
2

N

[
N∑

t=1

w

(
t

N

)
X(t)(µ(t; θ0)− µ(t; θ))

]

= f1(θ) + f2(θ).

Here

f1(θ) =
1

N

N∑

t=1

w
( t

N

)(
µ(t; θ0)− µ(t; θ)

)2

f2(θ) =
2

N

N∑

t=1

w

(
t

N

)
X(t)

(
µ(t; θ0)− µ(t; θ)

)
.

Consider

Sc,1 = {θ : θ = (A,B, α, β)⊤, |A− A0| ≥ c}

Sc,2 = {θ : θ = (A,B, α, β)⊤, |B −B0| ≥ c}

Sc,3 = {θ : θ = (A,B, α, β)⊤, |α− α0| ≥ c}

Sc,4 = {θ : θ = (A,B, α, β)⊤, |β − β0| ≥ c}.

Then Sc ⊂ Sc,1 ∪ Sc,2 ∪ Sc,3 ∪ Sc,4 = S. Therefore,

lim inf
θ∈Sc

f1(θ) ≥ lim inf
θ∈S

f1(θ) = lim inf
θ∈∪jSc,j

f1(θ).
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Now

lim inf
θ∈Sc,1

f1(θ) = lim inf
|A−A0|≥c

(A− A0)2
1

N

N∑

t=1

w

(
t

N

)
cos2(α0t+ β0t2)

≥ γ lim inf
|A−A0|≥c

(A− A0)2
1

N

N∑

t=1

cos2(α0t+ β0t2) > 0. (using Result 1).

Similarly, it can be shown for Sc,2, Sc,3 and Sc,4 also. Therefore,

lim inf
θ∈Sc

f1(θ) > 0.

Since from Lemma 1, it follows that

lim sup
θ

|f2(θ)| = 0,

hence, we have

lim inf
θ∈Sc

1

N
[Q(θ)−Q(θ0)] > 0 a.s.

Using Lemma 2, the result follows.

Appendix B

In this Appendix we provide the Proof of Statement 1 based on Conjecture A.

Since

Q(θ) =
N∑

t=1

w

(
t

N

)
(y(t)− µ(t; θ))2 ,
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therefore,

Q′(θ0) =




∂Q(θ)
∂A

∂Q(θ)
∂B

∂Q(θ)
∂α

∂Q(θ)
∂β




θ=θ0

= −2




∑N
t=1w

(
t
N

)
X(t) cos(α0t+ β0t2)

∑N
t=1 w

(
t
N

)
X(t) sin(α0t+ β0t2)

∑N
t=1 tw

(
t
N

)
X(t)(B0 cos(α0t+ β0t2)− A0 sin(α0t+ β0t2))

∑N
t=1 t

2w
(

t
N

)
X(t)(B0 cos(α0t+ β0t2)− A0 sin(α0t+ β0t2))




Q
′′

(θ0) =




∂2Q(θ)
∂A2

∂2Q(θ)
∂A∂B

∂2Q(θ)
∂A∂α

∂2Q(θ)
∂A∂β

∂2Q(θ)
∂B∂A

∂2Q(θ)
∂B2

∂2Q(θ)
∂B∂α

∂2Q(θ)
∂B∂β

∂2Q(θ)
∂α∂A

∂2Q(θ)
∂α∂B

∂2Q(θ)
∂α2

∂2Q(θ)
∂α∂β

∂2Q(θ)
∂β∂A

∂2Q(θ)
∂β∂B

∂2Q(θ)
∂β∂α

∂2Q(θ)
∂β2




θ=θ0

.

The elements of Q
′′

(θ0) are given at the end of this appendix. Let us denote

D = diag(N−1/2, N−1/2, N−3/2, N−5/2). (21)

Then using Result 1, it follows that

DQ′(θ0)
d→ N4(0, 2σ

2 Σ),

where Σ is same as defined in (8). Now expanding Q′(θ̂) around θ0 using Taylor series we obtain

Q′(θ̂) = Q′(θ0) +Q′′(θ̄)(θ̂ − θ0),

where θ̄ lies on the line joining θ̂ and θ0. Since Q′(θ̂) = 0, therefore

DQ′(θ0) = −DQ′′(θ̄)DD
−1(θ̂ − θ0).

Since θ̂
a.s→ θ0, then using explicit expressions of the elements of Q′′(θ0), and repeated use of
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Result 1, we obtain

lim
N→∞

DQ
′′

(θ̄)D = lim
N→∞

DQ
′′

(θ0)D = G,

where G is same as in (9). Hence the results follow. .

In the following we provide the second order derivatives of Q(θ) with respect to elements of

θ at θ0.

∂2Q(θ0)

∂A2
= 2

N∑

t=1

w

(
t

N

){
cos2(α0t+ β0t2)

}
,

∂2Q(θ0)

∂B2
= 2

N∑

t=1

w

(
t

N

){
sin2(α0t+ β0t2)

}
,

∂2Q(θ0)

∂α2
= 2

N∑

t=1

w

(
t

N

){
(B0t cos(α0t+ β0t2)− A0t sin(α0t+ β0t2))2

}

−2
N∑

t=1

t2w

(
t

N

)
X(t)

{
A0 sin(α0t+ β0t2) + B0 cos(α0t+ β0t2)

}
,

∂2Q(θ0)

∂β2
= 2

N∑

t=1

w

(
t

N

){
(B0t2 cos(α0t+ β0t2)− A0t2 sin(α0t+ β0t2))2

}

−2
N∑

t=1

t4w

(
t

N

)
X(t)

{
A0 sin(α0t+ β0t2) + B0 cos(α0t+ β0t2)

}
,

∂2Q(θ0)

∂A∂B
= 2

N∑

t=1

w

(
t

N

){
cos(α0t+ β0t2) sin(α0t+ β0t2)

}
,

∂2Q(θ0)

∂A∂α
= 2

N∑

t=1

w

(
t

N

)
(B0t cos(α0t+ β0t2)− A0t sin(α0t+ β0t2)) cos(α0t+ β0t2)

+2
N∑

t=1

tw

(
t

N

)
X(t) sin(α0t+ β0t2),

∂2Q(θ0)

∂A∂β
= 2

N∑

t=1

w

(
t

N

)
(B0t2 cos(α0t+ β0t2)− A0t2 sin(α0t+ β0t2)) cos(α0t+ β0t2)

+2
N∑

t=1

t2w

(
t

N

)
X(t) sin(α0t+ β0t2),
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∂2Q(θ0)

∂B∂α
= 2

N∑

t=1

w

(
t

N

)
(B0t cos(α0t+ β0t2)− A0t sin(α0t+ β0t2)) sin(α0t+ β0t2)

−2
N∑

t=1

tw

(
t

N

)
X(t) cos(α0t+ β0t2),

∂2Q(θ0)

∂B∂β
= 2

N∑

t=1

w

(
t

N

)
(B0t2 cos(α0t+ β0t2)− A0t2 sin(α0t+ β0t2)) sin(α0t+ β0t2)

−2
N∑

t=1

t2w

(
t

N

)
X(t) cos(α0t+ β0t2),

∂2Q(θ0)

∂α∂β
= 2

N∑

t=1

t3w

(
t

N

)
(B0 cos(α0t+ β0t2)− A0 sin(α0t+ β0t2))2

−2
N∑

t=1

t3w

(
t

N

)
X(t)(A0 sin(α0t+ β0t2) + B0 cos(α0t+ β0t2)).

Appendix C:

We need the following lemma to prove Theorem 3.

Lemma 3: Let us denote

S1c = {θ : θ = (A,B, α, β)⊤, |θ − θ01| ≥ 4c}.

If there exists a c > 0,

lim inf
θ∈S1c

1

N
[Q1(θ)−Q1(θ

0
1)] > 0 a.s. (22)

then θ̃1 that minimises Q1(θ), is a strongly consistent estimator of θ01.

Proof: It follows by contradiction using simple arguments.
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Proof of Theorem 5: Consider

1

N
[Q1(θ)−Q1(θ

0)] =
1

N




N∑

t=1

w

(
t

N

)
(y(t)− µ(t; θ))2 −

N∑

t=1

w

(
t

N

)(
X(t) +

p∑

k=2

µ(t; θ0k)

)2



= f11(θ) + f21(θ)

where

f11(θ) =
1

N

[
N∑

t=1

w

(
t

N

)
(µ(t; θ01)− µ(t; θ))2

]
+

2

N

[
N∑

t=1

w

(
t

N

)
(µ(t; θ01)− µ(t; θ))

p∑

k=2

µ(t; θ0k)

]

f21(θ) =
2

N

[
N∑

t=1

w

(
t

N

)
X(t)(µ(t; θ01)− µ(t; θ))

]
.

Using Lemma 1, it follows that

sup
θ∈S1c

|f21(θ)| a.s.→ 0,

and using lengthy but straight forward calculations and splitting the set S1c as in Theorem 1,

it follows that

lim inf
θ∈S1c

f11(θ) > 0 a.s.

Hence,

lim inf
θ∈S1c

1

N
[Q1(θ)−Q1(θ

0
1)] > 0 a.s.

and the result follows.

Appendix D:

In this Appendix we provide the proof of Statement 3 based on Conjecture A.

Let us denote Q′
1(θ) as the 4× 1 derivative vector and Q

′′

1(θ) as the 4× 4 second derivative

matrix of Q1(θ). Therefore, using multivariate Taylor series expansion of Q′
1(θ̃1) around θ01, we
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can get

Q′
1(θ̃1)−Q′

1(θ
0
1) = Q

′′

1(θ̄1)(θ̃1 − θ01), (23)

where θ̄1 is a point on the line joining θ̃1 and θ01. Now following exactly the same procedure as

Theorem 2, we can obtain

DQ′
1(θ

0
1)

d→ N4(0, 2σ
2Σ1)

and

lim
N→∞

DQ
′′

(θ̄1)D = lim
N→∞

DQ
′′

(θ01)D = G1,

hence the result follows.

To prove Theorem 4, we need the following Lemma.

Lemma 6: N(α̃1 − α0
1)

a.s→ 0 and N2(β̃1 − β0
1)

a.s→ 0.

Proof of Lemma 6: Let us denote the 4 × 4 diagonal matrix D1 = diag(1, 1, N−1, N−2).

Since Q′
1(θ̃1) = 0, therefore, from (23), we can write

− 1

N
D1Q

′
1(θ

0
1) =

[
1

N
D1Q

′′

1(θ̄1)D1

]
D

−1
1 (θ̃1 − θ01).

Using Lemma 1, it can be shown that
1

N
D1Q

′
1(θ

0
1)

a.s→ 0 and

lim
N→∞

1

N
D1Q

′′

1(θ̄1)D1 = lim
N→∞

DQ
′′

1(θ̄1)D = G1.

Since G1 is a positive definite matrix, the result follows.

Now to prove Theorem 7, note that using Lemma 6, we obtain

Ã1
a.s.
= A0

1 + o(1), B̃1
a.s.
= B0

1 + o(1), α̃1
a.s.
= α0

1 + o

(
1

N

)
, β̃1

a.s.
= β0

1 + o

(
1

N2

)
.

Here a random variable U = o(1) means U
a.s.→ 0, U = o

(
1
N

)
means NU

a.s.→ 0 and U = o
(

1
N2

)
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means N2U
a.s.→ 0. Therefore

µ(t; θ̃1)
a.s
= µ(t; θ01) + o(1).

Hence, the result follows.

Proof of Theorem 5:

Note that it is enough to prove the following. If X(t) is same as defined before and Â, B̂, α̂ and

β̂ minimize

1

N

N∑

t=1

w

(
t

N

)
(X(t)− µ(t; θ))2,

then Â
a.s→ 0 and B̂

a.s→ 0.

To prove the above statement, we denote Â, B̂, α̂ and β̂ by ÂN , B̂N , α̂N and β̂N , respectively,

to emphasis that they depend on N . Suppose ÂN does not converge to zero a.s., and the same

for B̂N . Since ÂN , B̂N , α̂N and β̂N are all bounded, therefore, there exists a subsequence {Nk}

of {N} such that ÂNk

a.s→ Ā > 0, B̂Nk

a.s→ B̄ > 0, α̂Nk

a.s→ ᾱ and β̂Nk

a.s→ β̄. Therefore, if

θ̂Nk
= (ÂNk

, B̂Nk
, α̂Nk

, β̂Nk
)⊤, then

lim
Nk→∞

1

Nk

Nk∑

t=1

w

(
t

Nk

)
(X(t)− µ(t; θ̂Nk

))2
a.s.→ σ2c1 +

1

2
(Ā2 + B̄2).

Consider a point θ′ = (1
2
Ā, 1

2
B̄, ᾱ, β̄)⊤, then

lim
Nk→∞

1

Nk

Nk∑

t=1

w

(
t

Nk

)
(X(t)− µ(t; θNk

))2 ≤ lim
Nk→∞

1

Nk

Nk∑

t=1

w

(
t

Nk

)
(X(t)− µ(t; θ′))2

a.s.→ σ2c1 +
1

4
(Ā2 + B̄2),

which is a contradiction. Hence the result follows.
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Appendix E

We will show

lim
N→∞

1

N

N∑

t=1

w

(
t

N

)
cos2(θ1t+ θ2t

2) =
1

2

∫ 1

0

w(t)dt.

For ǫ > 0, there exists a polynomial pǫ(x), such that |w(x)− pǫ(x)| ≤ ǫ, for all x ∈ [0, 1]. Hence,

∫ 1

0

w(x)dx− ǫ ≤
∫ 1

0

pǫ(x)dx ≤
∫ 1

0

w(x)dx+ ǫ.

Further

1

N

N∑

t=1

pǫ

(
t

N

)
cos2(θ1t+ θ2t

2)− ǫ

N

N∑

t=1

cos2(θ1t+ θ2t
2) ≤ 1

N

N∑

t=1

w

(
t

N

)
cos2(θ1t+ θ2t

2) ≤

1

N

N∑

t=1

pǫ

(
t

N

)
cos2(θ1t+ θ2t

2) +
ǫ

N

N∑

t=1

cos2(θ1t+ θ2t
2).

Suppose

pǫ(x) = a0 + a1x+ . . .+ akx
k ⇒

∫ 1

0

pǫ(x)dx = a0 +
a1

2
+ . . .+

ak

k + 1
.

Now due to Result 1,

1

N

N∑

t=1

pǫ

(
t

N

)
cos2(θ1t+ θ2t

2) =
1

N

N∑

t=1

{
a0 +

a1t

N
+ . . .+

akt
k

Nk

}
cos2(θ1t+ θ2t

2)

−→ 1

2

[
a0 +

a1

2
+ . . .+

ak

k + 1

]
=

1

2

∫ 1

0

pǫ(x)dx.

Therefore,

lim
N→∞

1

N

N∑

t=1

pǫ

(
t

N

)
cos2(θ1t+ θ2t

2)− ǫ

2
≤ lim

N→∞

1

N

N∑

t=1

w

(
t

N

)
cos2(θ1t+ θ2t

2) ≤

lim
N→∞

1

N

N∑

t=1

pǫ

(
t

N

)
cos2(θ1t+ θ2t

2) +
ǫ

2
.
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Hence

1

2

∫ 1

0

w(t)dt− 2ǫ ≤ lim
N→∞

1

N

N∑

t=1

w

(
t

N

)
cos2(θ1t+ θ2t

2) ≤ 1

2

∫ 1

0

w(t)dt+ 2ǫ.

Since ǫ is arbitrary, the result follows. Exactly, the same proof will go through for

lim
N→∞

1

N

N∑

t=1

w

(
t

N

)
sin2(θ1t+ θ2t

2) =
1

2

∫ 1

0

w(t)dt.
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