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Abstract. In this paper, we study the problem of estimation of parameters of multichannel

sinusoidal model. In multichannel sinusoidal model, the inherent frequencies from distinct

channels are same with different amplitudes. It is assumed that the errors in individual chan-

nel are independently and identically distributed whereas the signal from different channels

are correlated. We first propose to minimize the sum of residual sum of squares to estimate

the unknown parameters, and they can be easily obtained. Next we propose to use more

efficient generalized least squares estimators and which become the maximum likelihood

estimators also when the errors follow multivariate Gaussian distribution. Both the estima-

tors are strongly consistent and asymptotically normally distributed. We have provided the

implementation of the generalized least squares estimators. Simulation experiments have

been performed to compare the performances of the least squares estimators and general-

ized least squares estimators. It is observed that the variances of the maximum likelihood

estimators reach the Cramer-Rao lower bound even for moderate sample sizes. We have

extended the methods of estimation and the associated results of the two-channel model to

an arbitrary m-channel model. It is observed that the computational complexity does not

increase significantly with the increase of number of channels.

1. Introduction

The problem of finding sinusoidal parameters received at multichannel outputs has several

applications such as particle size and velocity estimation in laser anemometry, Handel and

Host-Madsen [5], impedance measurement, Ramos, da Silva and Serra [8], electric power

calibration, Vucijak and Saranovac [13] etc. The problem has a long history starting with

the work of Sakai [10]. In recent time also it has received a considerable amount of attention in

the Signal Processing literature, see for example Clercq et al. [2], Sandgren et al. [11], Papy,

Lathauwer and Van Huffel [7], Handel [4], Griffin et al. [3], So and Zhou [14], Chan, So and

Sun [1], Zhou, So and Christensen [17], Stanović et al. [12] and the references cited therein.

Zhou [15] studied the spectral analysis of multichannel sinusoidal model and recently Zhou
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et. al [16] discussed a robust method of estimation. In all these cases the authors developed

efficient estimators of the unknown parameters based on independent error assumptions of

different channels.

In this paper, we consider the estimation of unknown parameters of a multichannel sinu-

soidal signal model. We have first discussed about two channel model, and then we have

generalized it to m-channel model. The two-channel sinusoidal model is given by(
y1(t)

y2(t)

)
=

(
A0

1 B0
1

A0
2 B0

2

)(
cos(ω0t)

sin(ω0t)

)
+

(
e1(t)

e2(t)

)
. (1)

In matrix notation, model (1) can be written as

y(t) = A0θ(ω0, t) + e(t) (2)

= µ(t;β0, ω0) + e(t), (3)

where y(t) = (y1(t), y2(t))
T , A0 =

(
A0

1 B0
1

A0
2 B0

2

)
, θ(ω0, t) = (cos(ω0t), sin(ω0t))T , e(t) =

(e1(t), e2(t))
T , β0 = (A0

1, B
0
1 , A

0
2, B

0
2) and µ(t;β0, ω0) = (µ1(t;β

0, ω0), µ2(t;β
0, ω0))T . The

signal from the k-th channel, k = 1, 2, takes the following form;

yk(t) =
[
A0
k cos(ω0t) +B0

k sin(ω0t)
]
+ek(t), t = 1, . . . , n.

Here the bivariate random vector y(t) represents the signal from the two channels at the time

point t; ω0 ∈ (0, π) is the common frequency; A0
1 and B0

1 are amplitudes corresponding to

ω0 from the first channel and A0
2 and B0

2 are from the second channel; the bivariate random

vector e(t) represents the noise part and its explicit structure is stated in the following

assumption.

Assumption 1. The bivariate random vectors {e(t), t = 1, . . . , n} are independent and

identically distributed (i.i.d.) with mean vector 0 and dispersion matrix Σ =

(
σ2
1 σ12

σ12 σ2
2

)
,

that is,

e(t) =

(
e1(t)

e2(t)

)
i.i.d.∼

[(
0

0

)
,

(
σ2
1 σ12

σ12 σ2
2

)]
(4)

where σ2
1 and σ2

2 > 0.

In the class of multichannel sinusoidal model, two-channel model is the basic model. The

aim will be to estimate the unknown frequencies and the elements of matrix A0 given a

sample of size n. One can consider the observations from different channels and apply

sinusoidal model separately to estimate the unknown parameters. Then the information
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that the frequencies are same through different channels is ignored and there will be loss

of precision in estimation of the frequencies. Therefore, we need estimation method which

estimates the unknown parameters, that is, the frequencies and amplitude parameters of all

the channels simultaneously.

In this paper first we provide a very simple estimation procedure of the unknown pa-

rameters based on least squares (LS) method. The two-channel model has five unknown

parameters and these simple estimators can be obtained by solving a one-dimensional opti-

mization problem. Although, they are not the most efficient estimators, they are consistent

and asymptotically normally distributed. To provide efficient estimators, we propose to use

generalized least squares estimators (GLSEs). First it is assumed that the noise dispersion

matrix Σ is known and it is shown that the proposed GLSEs are consistent and they have

lower asymptotic variances than the simple least squares estimators (LSEs). Since the noise

dispersion matrix Σ is usually unknown, we have indicated how the generalized LSEs can be

implemented in practice. Simulation experiments have been performed to compare the per-

formances of these estimators and it is observed the the proposed generalized LSEs perform

better than the ordinary LSEs in all the cases considered.

It may be mentioned that when the number of channel is one, then the model can be

written as

y(t) = A0 cos(ωt) +B0 sin(ωt) + e(t), (5)

here A0 and B0 are the amplitudes, ω is the frequency and e(t)s are the additive error with

mean zero and variance σ2. An extensive amount of work has been done in the Statistical

Signal Processing literature in developing different estimation procedures of the unknown

parameters of the sinusoidal model (5), and developing their properties, see for example

the recent monograph by Nandi and Kundu [6] and see the references cited therein in this

respect.

The major contribution of this article is the following: This is the first time it has been

considered the correlated error in m-channel set-up. In all the existing literature it has been

assumed that the noise components in different channels are independently distributed. First

we have provided a very simple LSEs of the amplitudes and the frequency, and established

the consistency and asymptotic normality properties of these estimators. They are not

efficient, but they have been used quite effectively to compute efficient GLSEs when the

noise variance-covariance matrix is not known. Moreover, the theoretical properties of the

GLSEs have been established and it has been shown that it reaches the Cramer-Rao lower

bound under the assumption of multivariate normal distribution. Hence, it can be considered
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as a benchmark of any estimation procedure. Further, it may be mentioned that it has been

observed that the computational complexity does not significantly increase as m increases. It

is a significant achievement in terms of theoretical development as well as for implementation

purposes.

The rest of the paper is organized as follows. In Section 2, first we consider the simple least

squares estimators of the two channel model and provide their theoretical properties. The

generalized LSEs, their properties and implementation for two-channel models are discussed

in Section 3. In Section 4, we provide the results of the simulation experiments and in Section

5, we present the general case of multichannel sinusoidal model. Finally, we conclude the

paper in Section 6.

2. Least Squares Estimators

In this section, we consider the LSEs of the unknown parameters of model (1). Our

problem is to estimate the unknown parameters given a sample of size n, {y(1), . . . ,y(n)}.
The main aim is to estimate first the elements of the matrix A0 and ω0 and then using these

estimates, the parameters of the noise process {e(t)} need to be estimated. The consistency

and the asymptotic normality of the estimators have been established. It is observed that

the estimators of the noise component can be used in implementing the generalized LSEs

quite efficiently.

Apart from Assumption 1, we consider the following assumption on the true values of the

unknown parameters.

Assumption 2. For k = 1, 2, A0
k and B0

k are not simultaneously equal to zero.

In this section, we consider the simple LSEs which can be obtained by minimizing the

residual sum of squares from the two channels. Let ξ = (A1, B1, A2, B2, ω)T and ξ0 denote

the true value of ξ. The LSE ξ̃ of ξ in this case minimizes the residual sum of squares with

respect to ξ, defined as follows:

R(ξ) =
n∑
t=1

eT (t)e(t) =
n∑
t=1

[e21(t) + e22(t)]

=
n∑
t=1

[y1(t)− A1 cos(ωt)−B1 sin(ωt)]2 +
n∑
t=1

[y2(t)− A1 cos(ωt)−B1 sin(ωt)]2.
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Using matrix notation R(ξ) can be written as follows:

R(ξ) = (Y1 −X(ω)δ1)
T (Y1 −X(ω)δ1) + (Y2 −X(ω)δ2)

T (Y2 −X(ω)δ2) (6)

where Yk = (yk(1), . . . , yk(n))T , δk = (Ak, Bk)
T for k = 1, 2 and

XT (ω) =

(
cos(ω) cos(2ω) · · · cos(nω)

sin(ω) sin(2ω) · · · sin(nω)

)
.

Minimizing (6) with respect to δ1 and δ2 for a given ω, we obtain

δ̃k(ω) = (XT (ω)X(ω))−1XT (ω)Yk, k = 1, 2. (7)

Replacing δk by δ̃k(ω) in R(ξ) = R(δ1, δ2, ω), we have

R(δ̃1(ω), δ̃2(ω), ω) = (Y1 − PX(ω)Y1)
T (Y1 − PX(ω)Y1) + (Y2 − PX(ω)Y2)

T (Y2 − PX(ω)Y2)

= YT
1 (I− PX(ω))Y1 + YT

2 (I− PX(ω))Y2 = Q(ω) (say),

where PX(ω) = X(ω)(XT (ω)X(ω))−1XT (ω) is the projection matrix on the column space of

X(ω). Therefore, we can use a two step procedure; first estimate ω by minimizing Q(ω) with

respect to ω and denote it as ω̃; then estimate Ak and Bk, k = 1, 2 using

(
Ãk

B̃k

)
= δ̃k(ω̃). The

procedure described above is basically the separable regression technique given by Richards

(Richards[9]). If we have m channels with single frequency, say ω, then one can minimize a

similar term as Q(ω) with sum of m terms. The details are given in Section 5.

Under Assumption 1, e1(t)
i.i.d∼ (0, σ2

1), e2(t)
i.i.d∼ (0, σ2

2) with correlation
σ12
σ1σ2

. According

to Assumption 2, Ai and Bi are not simultaneously equal to zero for i = 1, 2. This implies

that the frequency ω is present in both the channels. We prove the strong consistency under

these assumptions and is stated in the following theorem.

Once, we have estimated the frequency ω and linear parameters Ak and Bk, k = 1, 2 using

the least squares method, the estimators of σ2
1, σ2

2 and σ12 are obtained as follows;

σ̃2
j =

1

n

n∑
t=1

[
yj(t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)

]2
, j = 1, 2, (8)

σ̃12 =
1

n

n∑
t=1

[
y1(t)− Ã1 cos(ω̃t)− B̃1 sin(ω̃t)

][
y2(t)− Ã2 cos(ω̃t)− B̃2 sin(ω̃t)

]
. (9)

The LSEs of β = (δT1 , δ
T
2 ) and ω, obtained above, are strongly consistent and have asymp-

totically normally distributed. The results are stated in following theorems. Theorems 2.1,

2.2 and 2.3 are proved in Appendix A, Appendix B and Appendix C, respectively.



6 SWAGATA NANDI1 AND DEBASIS KUNDU2

Theorem 2.1. Under Assumptions 1 and 2, Ãk, B̃k, k = 1, 2 and ω̃ which minimizes

2∑
j=1

n∑
t=1

[yj(t)− Aj cos(ωt)−Bj sin(ωt)]2

are strongly consistent estimators.

Theorem 2.2. Under the same assumptions as Theorem 2.1, as n→∞,(
n

1
2 (Ã1 − A0

1), n
1
2 (B̃1 −B0

1), n
1
2 (Ã2 − A0

2), n
1
2 (B̃2 −B0

2), n
3
2 (ω̃ − ω0)

) d→ N5(0,Γ
−1GΓ−1)

where

G =

(
Σ⊗ I2 v

vT ψ2

)
with ψ2 =

2

3

[
σ2
1(A0

1
2

+B0
1
2
) + σ2

2(A0
2
2

+B0
2
2
) + 2σ12(A

0
1A

0
2 +B0

1B
0
2)
]
,

vT = (B0
1σ

2
1 +B0

2σ12,−A0
1σ

2
1 − A0

2σ12, B
0
2σ

2
2 +B0

1σ12,−A0
2σ

2
2 − A0

1σ12)

and

Γ =

(
I2 u

uT φ2

)
with φ2 = 1

3
(A0

1
2

+B0
1
2

+ A0
2
2

+B0
2
2
), uT =

(B0
1

2
,−A

0
1

2
,
B0

2

2
,−A

0
2

2

)
.

The matrix Γ−1 has the following form. Write ρs =
2∑
j=1

(A0
j
2

+B0
j
2
), then

Γ−1 =



1 +
3B0

1
2

ρs
−3A0

1B
0
1

ρs

3B0
1B

0
2

ρs
−3A0

2B
0
1

ρs
−6B0

1

ρs

−3A0
1B

0
1

ρs
1 +

3A0
1
2

ρs
−3A0

1B
0
2

ρs

3A0
1A

0
2

ρs

6A0
1

ρs
3B0

1B
0
2

ρs
−3A0

1B
0
2

ρs
1 +

3B0
2
2

ρs
−3A0

2B
0
2

ρs
−6B0

2

ρs

−3A0
2B

0
1

ρs

3A0
1A

0
2

ρs
−3A0

2B
0
2

ρs
1 +

3A0
2
2

ρs

6A0
2

ρs

−6B0
1

ρs

6A0
1

ρs
−6B0

2

ρs

6A0
2

ρs
12
ρs


.

Theorem 2.3. Under the same assumptions as Theorem 2.1, σ̃2
1, σ̃2

2 and σ̃12 are strongly

consistent estimators of σ2
1, σ2

2 and σ12, respectively.

Remark 1. The asymptotic variances of the LSEs of the linear parameters as well as ω

depends on the true values of the linear parameters from all the channels through ρs whereas

the asymptotic variance-covariance matrix Γ−1GΓ−1 does not depend on the true value of

ω.
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3. Generalized Least Squares Estimator

In the previous section we have discussed about the LSEs of the unknown parameters of

the two-channel sinusoidal model (1). It is observed that although the LSEs are consistent,

they are not efficient in the sense when errors are from bivariate normal distributions, the

asymptotic variances of the LSEs do not attain the Cramer-Rao lower bound. In this section,

we discuss the generalized LSE of the unknown parameters for a two-channel sinusoidal

model. It is observed that the generalized LSEs are consistent and when the errors are from

bivariate normal distribution and if the noise covariance matrix Σ is known, the asymptotic

variances of these estimators attain the Cramer-Rao lower bound.

First it is assumed that the noise covariance matrix Σ is known. The generalized LSEs of

the unknown parameters can be obtained by minimizing S(β, ω), where

1

|Σ|
S(β, ω) =

n∑
t=1

(y(t)− µ(t))TΣ−1(y(t)− µ(t)) (10)

with respect to the elements of β = (A1, B1, A2, B2) and ω. Here y(t) is the observation

vector at time point t and E[y(t)] = µ(t,β, ω) ≡ µ(t). The Σ matrix is same as defined in

Assumption 1. Note that when the errors are from bivariate normal distribution with mean

vector zero, and dispersion matrix Σ, then the GLSEs become the maximum likelihood

estimators also. This is the main motivation of considering the GLSEs.

Observe that S(β, ω) can be written as

S(β, ω) =
n∑
t=1

[
σ2
2

(
y1(t)− µ1(t)

)2
+ σ2

1

(
y2(t)− µ2(t)

)2
−2σ12

(
y1(t)− µ1(t)

)(
y2(t)− µ2(t)

)]
.

Here

µk(t) = Ak cos(ωt) +Bk sin(ωt), for k = 1, 2,

are two elements of the mean vector µ(t).

Suppose ξ̂ = (Â1, B̂1, Â2, B̂2, ω̂) minimizes S(β, ω) = S(ξ), then ξ̂ is called the generalized

LSEs of ξ0. The following theorems provide the consistency and asymptotic normality

properties of ξ̂. Theorem 3.1 is proved in Appendix D and Theorem 3.2 is in Appendix E.

Theorem 3.1. Suppose the vector of sequence of error {e(t)} from model (1) satisfies As-

sumption 1 and the elements of Σ matrix, σ2
1, σ2

2 and σ12 are known. Then, ξ̂ is a strongly

consistent estimator of ξ0.



8 SWAGATA NANDI1 AND DEBASIS KUNDU2

Theorem 3.2. Under the same assumptions as Theorem 3.1, as n→∞,

(ξ̂ − ξ0)D1
−1 d→ N5(0, 2Γ−1g ), (11)

where

Γg =

[
Σ11 a

aT b

]
,

Σ11 =
(
Σ−1 ⊗ I2

)
, D1 = diag

{
n

1
2 , n

1
2 , n

1
2 , n

1
2 , n

3
2

}
,

aT =
1

2|Σ|

(
B1σ

2
2 −B2σ12 A2σ12 − A1σ

2
2 B2σ

2
1 −B1σ12 A1σ12 − A2σ

2
1

)
,

b =
1

3|Σ|
[
σ2
2(A2

1 +B2
1) + σ2

1(A2
2 +B2

2)− 2σ12(A1A2 +B1B2)
]
.

Here ‘⊗′ denotes the Kronecker product.

Remark 2. Similar to the LSEs, the asymptotic distribution of ξ̂ depends of the true values

of the linear parameters and Σ matrix and does not depend of the frequency.

By inverting Γg matrix, the asymptotic variances of the generalized LSEs can be obtained.

The asymptotic variances are

Var
(
Âi
)

=
2

n

(
σ2
i +

B2
i

b

)
, Var

(
B̂i

)
=

2

n

(
σ2
i +

A2
i

b

)
, i = 1, 2 and Var

(
ω̂
)

=
8

n3b
,

where b is same as defined in Theorem 3.2.

Now first we provide the method of implementation of the generalized LSEs when the

matrix Σ is known, and then we discuss the case when Σ is unknown. First observe that for

fixed ω, the generalized LSE of β, say β̂(ω), can be obtained by solving

∂

∂A1

S(β, ω) = 0,
∂

∂B1

S(β, ω) = 0,
∂

∂A2

S(β, ω) = 0,
∂

∂B2

S(β, ω) = 0. (12)

After some manipulations, the four equations in (12) can be written in a matrix form as

given below: (
Σ−1 ⊗Mn(ω)

)
βT =

(
Σ−1 ⊗ I2

)
W n(ω), (13)

here

Mn(ω) =
2

n

[ ∑n
t=1 cos2(ωt)

∑n
t=1 cos(ωt) sin(ωt)∑n

t=1 cos(ωt) sin(ωt)
∑n

t=1 sin2(ωt)

]
,
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W n(ω) =
2

n


∑n

t=1 y1(t) cos(ωt)∑n
t=1 y1(t) sin(ωt)∑n
t=1 y2(t) cos(ωt)∑n
t=1 y2(t) sin(ωt)

 ,
and I2 is the 2× 2 identity matrix. Hence,

β̂
T

(ω) =
(
Σ−1 ⊗Mn(ω)

)−1 (
Σ−1 ⊗ I2

)
W n(ω)

=
(
Σ⊗ (Mn(ω))−1

) (
Σ−1 ⊗ I2

)
W n(ω)

=
(
I2 ⊗ (Mn(ω))−1

)
W n(ω).

The last expression is independent of the Σ matrix and is exactly equal to the LSEs which for

a given ω, minimizes the sums of the residual sum of squares from two channels. Therefore,

the generalized LSE of ω0 can be obtained by minimizing S(β̂(ω), ω) with respect to ω. If ω̂

is the generalized LSE of ω0, then β̂, the generalized LSE of β0 can be obtained as β̂ = β̂(ω̂).

Although, the two-channel sinusoidal model has five signal parameters, the generalized LSEs

of the unknown parameters can be obtained by solving only one one-dimensional optimization

problem.

Remark 3. Observe that for large n, Mn(ω) = I2 + o(1/n). Hence for large n,

β̂
T

(ω) = (Σ⊗ I2)
(
Σ−1 ⊗ I2

)
W n(ω) + op(1/n)

= W n(ω) + op(1/n),

the usual approximate LSE.

Remark 4. It has been assumed that in generalized least squares (GLS) method that the

variance covariance matrix of y(t) is known, but in real life situation, it is generally unknown.

We can use consistent estimators of σ2
1, σ2

2 and σ12 discussed in Section 2.

Remark 5. A special case will be if we ignore that σ12 is non-zero. Then, the GLS method

boils down to the weighted least squares method in this case and minimizes

QW (ξ) =
n∑
t=1

1

σ2
1

(y1(t)−A1 cos(ωt)−B1 sin(ωt))2 +
n∑
t=1

1

σ2
2

(y1(t)−A2 cos(ωt)−B2 sin(ωt))2,

(14)

with respect to ξ.

4. Numerical Experiments
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In the last two sections we demonstrated the LSEs and GLSEs and developed their as-

ymptotic properties. In this section we would like to study the behavior of these estimators

when the sample size is finite, based on simulation experiments. We report the results of

these numerical experiments conducted for different model parameters and error variances.

We consider model (1) with the following parameter values

A0
1 = 1.5, B0

1 = 2.0, A0
2 = 3.0, B0

2 = 2.5, ω = 1.25. (15)

The sequence of random vector {e(t)} is generated in different ways; 1) {e(t)} is a sequence

of bivariate normal vectors with mean 0 and variance covariance matrix Σ; 2) {e(t)} is a

sequence of bivariate t-distribution with degrees of freedom 5 and variance covariance matrix

Σ; 3) {e(t)} is a sequence of bivariate t-distribution with degrees of freedom 10 with the

same Σ. The variance-covariance matrix considered for simulation studies are

Σ1 =

(
3.0 0.95

0.95 3.0

)
, Σ2 =

(
2.0 0.9

0.9 2.0

)
.

sample sizes are 100, 200, 300, 400 and 500. The number of replications used in these exper-

iments is 5000. The data are generated from all the three cases and we calculate the average

estimates and mean squared errors (MSES) using both the proposed estimation methods.

We report the average estimates, MSEs and the corresponding asymptotic variances of both

the estimators in Figures 1-10. In Figure 1, the average estimates of LSE and GLSE of

A1 from all the three cases considered here are plotted against the sample size along with

a horizontal line at the true value of the parameter. The plot at the left is for dispersion

matrix Σ1 and the right one is for Σ2. Similarly, the average estimates of B1, A2, B2 and ω

are plotted in Figures 2-5, respectively. The MSEs along with the corresponding asymptotic

variances of LSE as well as the GLSE of A1, B1, A2, B2 and ω are plotted in Figures 6-10

respectively.

The following observation can be made from the numerical experiment considered here.

(1) From Figures 1-5 it is quite clear that the average estimates are close to the true

values at least when sample sizes are grater than 100. The small sample biases in

case of LSEs are slightly larger than the biases in case of GLSEs, specially for the

linear parameter estimators. The biases of both LSEs and GLSEs for the frequency

parameter are quite small for all the error distributions considered here. The biases

of every parameter estimators decrease as the sample size increases.

(2) Both the estimation methods tend to underestimate the linear parameters for mod-

erate sample sizes.
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Figure 1. Average estimates of A1 of model (15) when variance-covariance

matrices are Σ1 and Σ2.
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Figure 2. Average estimates of B1 of model (15) when variance-covariance

matrices are Σ1 and Σ2.

(3) In Figures 1-5, the spread of the average estimates in left plots are wider than that

of the right plots. This is due to the fact that the elements of Σ1 are greater than

the elements of Σ2.

(4) From Figures 6-10 it is quite clear that the MSEs of the LSEs as well as the GLSEs

decrease as the sample size increases.

(5) The MSEs of the GLSEs are smaller than the MSEs of the LSEs and the difference

between them decreases as the sample size increases.

(6) The MSEs are quite close to the corresponding asymptotic variances in most of the

cases considered here.
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Figure 3. Average estimates of A2 of model (15) when variance-covariance

matrices are Σ1 and Σ2.
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Figure 4. Average estimates of B2 of model (15) when variance-covariance

matrices are Σ1 and Σ2.

(7) In MSE and asymptotic variance plots, there are clear separation of lines for LSE and

GLSE. The MSEs in all three cases (i), (ii) and (iii) stated above for any particular

estimators using LS method are clubbing at slightly larger values than the case when

GLS method are used. The lines for GLS method are also clubbed.

(8) From Figures 1-10, it is observed that although the effect of error distribution is quite

prominent in case of biases, it is not felt that much in case of MSEs of the estimates.

In a separate set-up, we have conducted experiments to observe the nature of change of

MSEs and asymptotic variances as the correlation coefficient ρ between {y1(t)} and {y2(t)}
changes. It can be shown when A1 = A2, B1 = B2 and σ2

1 = σ2
2, the asymptotic variances
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Figure 5. Average estimates of ω of model (15) when variance-covariance

matrices are Σ1 and Σ2.

100 200 300 400 500

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

N −−−−>

M
S

E
 &

 A
sy

m
pt

ot
ic

 v
ar

ia
nc

e

A1

MSE Normal LSE
MSE Normal GLSE
MSE t5 LSE
MSE t5 GLSE
MSE t10 LSE
MSE t10 GLSE
ASYM VAR LSE
ASYM VAR GLSE

100 200 300 400 500

0.
02

0.
04

0.
06

0.
08

N −−−−>

M
S

E
 &

 A
sy

m
pt

ot
ic

 v
ar

ia
nc

e

A1

MSE Normal LSE
MSE Normal GLSE
MSE t5 LSE
MSE t5 GLSE
MSE t10 LSE
MSE t10 GLSE
ASYM VAR LSE
ASYM VAR GLSE

Figure 6. MSE and asymptotic variance of estimators of A1 of model (15)

when variance-covariance matrices are Σ1 and Σ2.

of the GLSEs are linear functions of ρ which is not the case in general. In this special case,

i.e. when A1 = A2, B1 = B2 and σ2
1 = σ2

2, it implies that same signals are coming from two

different channels and they are correlated. Consider the following two cases:

I: Model (15) with Σ =

(
2.0 2ρ

2ρ 2.0

)
, where ρ is the correlation coefficient between

{y1(t)} and {y2(t)}.
II: A1 = A2 = 2.0, B1 = B2 = 4.0 and same Σ as in I, so that σ2

1 = σ2
2 = 2.0.
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Figure 7. MSE and asymptotic variance of estimators of B1 of model (15)

when variance-covariance matrices are Σ1 and Σ2.
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Figure 8. MSE and asymptotic variance of estimators of A2 of model (15)

when variance-covariance matrices are Σ1 and Σ2.

The sample size is fixed at N = 500 and ρ is varied from 0 to 0.95. The MSEs and asymptotic

variances of the LSE and the GLSE of ω have been plotted in the same figure. For I and

II, these are plotted in Figure 11 and Figure 12, respectively. We observe in Figure 11

that the asymptotic variance as well as the MSE of the LSE of ω increase as the correlation

coefficient ρ increases. Whereas in case of GLSE, both the MSE and the asymptotic variance

first increase and then decrease as ρ increases. This pattern has been observed in case of

other parameter estimators. In case of Figure 12, for the LSE as well as the GLSE, both

the MSEs and the asymptotic variances increase as ρ increases. We also notice that in this

particular case, the asymptotic variances of LSE and GLSE coincide whereas the MSE of

GLSE is smaller than the MSE of the LSE.



MULTICHANNEL SINUSOIDAL MODEL 15

100 200 300 400 500

0.
05

0.
10

0.
15

0.
20

N −−−−>

M
S

E
 &

 A
sy

m
pt

ot
ic

 v
ar

ia
nc

e

B2

MSE Normal LSE
MSE Normal GLSE
MSE t5 LSE
MSE t5 GLSE
MSE t10 LSE
MSE t10 GLSE
ASYM VAR LSE
ASYM VAR GLSE

100 200 300 400 500

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

N −−−−>

M
S

E
 &

 A
sy

m
pt

ot
ic

 v
ar

ia
nc

e

B2

MSE Normal LSE
MSE Normal GLSE
MSE t5 LSE
MSE t5 GLSE
MSE t10 LSE
MSE t10 GLSE
ASYM VAR LSE
ASYM VAR GLSE

Figure 9. MSE and asymptotic variance of estimators of B2 of model (15)

when variance-covariance matrices are Σ1 and Σ2.
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Figure 10. MSE and asymptotic variance of estimators of ω of model (15)

when variance-covariance matrices are Σ1 and Σ2.

5. Multichannel Sinusoidal Model with m Channels

In previous sections, we have discussed the LSEs and proposed the GLSEs to estimate the

unknown parameters for a model with two channels. In this section, we consider a single

frequency model with m channels. We first define the model in the same line as model (1)
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Figure 11. MSE and asymptotic variance of LSE and GLSE of ω as ρ in-

creases for model I.
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Figure 12. MSE and asymptotic variance of LSE and GLSE of ω as ρ in-

creases for model II.

and state the required assumptions. The signal frequency m-channel model is defined as
y1(t)

y2(t)
...

ym(t)

 =


A0

1 B0
1

A0
2 B0

2
...

...

A0
m B0

m


(

cos(ω0t)

sin(ω0t)

)
+


e1(t)

e2(t)
...

em(t)

 . (16)
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In matrix notation, model (16) can be written similarly as model (1)

y(t) = A0θ(ω0, t) + e(t) (17)

= µ(t;β0, ω0) + e(t). (18)

Here y(t) = (y1(t), y2(t), . . . , ym(t))T , e(t) = (e1(t), e2(t), . . . , em(t)))T , θ(ω0, t) is same as

defined in Section 1, β0 = (A0
1, B

0
1 , A

0
2, B

0
2 , . . . , A

0
m, B

0
m), the vector of linear parameters of

order 2m and A0 is an m× 2 matrix of the following form;

A0 =


A0

1 B0
1

A0
2 B0

2
...

...

A0
m B0

m

 .

The mean component of the vector valued signal y(t) is µ(t;β0, ω0) = (µ1(t;β
0, ω0), µ2(t;β

0, ω0),

. . . , µm(t;β0, ω0))T . The signal from the k-th channel, takes the following form;

yk(t) =
[
A0
k cos(ω0t) +B0

k sin(ω0t)
]
+ek(t), t = 1, . . . , n

where k = 1, 2, . . . ,m. Model (16) being a single component m-channel model, ω0 ∈ (0, π) is

the common frequency, A0
k and B0

k are the amplitudes attached to the k-th channel. The error

vector e(t) represents the noise part and its k-th component corresponds to the additive noise

of the kth channel signal and components of e(t) are correlated. The following assumptions

are required for development of properties of the estimators.

Assumption 3. The sequence of m-variate random vector {e(t)} are i.i.d. with mean vector

0 and covariance matrix

Σ =


σ2
1 σ12 σ13 · · · σ1m

σ12 σ2
2 σ23 · · · σ1m

...
...

...
...

...

σ1m σ2m σ3m · · · σ2
m

 .

Assumption 4. For k = 1, 2, . . . ,m, A0
k and B0

k are not simultaneously equal to zero.
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Write η = (A1, B1, A2, B2, . . . , Am, Bm, ω)T and suppose η0 denote the true value of η.

Then the LSE, η̃ of η minimizes

R(η) =
n∑
t=1

eT (t)e(t) =
n∑
t=1

[e21(t) + e22(t) + · · ·+ e2m(t)]

=
n∑
t=1

m∑
k=1

[yk(t)− Ak cos(ωt)−Bk sin(ωt)]2

=
m∑
k=1

(Yk −X(ω)δk)
T (Yk −X(ω)δk),

where Yk, δk and X(ω) are same as defined in Section 2.

Now using separable regression technique, we can write for a given ω

R(δ1(ω), . . . , δm(ω), ω) =
m∑
k=1

YT
k (I−PX(ω))Yk. (19)

Therefore, ω is estimated by minimizing (19) and then the linear parameter vector δk for the

k-th channel using (7). We denote these estimators as Ã1, B̃1, . . . , Ãm, B̃m and ω̃ which are

the elements η̃. The strong consistency of η̃ can be proved similarly as the proof of Theorem

2.1 and are not discussed here. We state the asymptotic distribution here without the proof.

Theorem 5.1. Under Assumptions 3 and 4, as n→∞(
n

1
2 (Ã1 − A0

1), n
1
2 (B̃1 −B0

1), . . . , n
1
2 (Ãm − A0

m), n
1
2 (B̃m −B0

m), n
3
2 (ω̃ − ω0)

)
d→ N2m+1(0,Γ

−1
m GmΓ−1m ).

Here Γm =

(
I2m um

uTm φm

)
, I2m being the identity matrix of order 2m, φm =

1

3

m∑
k=1

(A0
k
2

+B0
k
2
)

and uTm =
(B1

2
,−A1

2
, · · · , Bm

2
,−Am

2

)
. The matrix Gm has the following form;

Gm =

(
Σ⊗ I2 vm

vTm ζ

)

where ζ =
2

3

[ m∑
k=1

(A0
k
2

+B0
k
2
)σ2

k +
m∑
j=1

m∑
k=1

(A0
jA

0
k +B0

jB
0
k)σjk

]
and

vm = (vi), with v2i−1 = Biσ
2
i +

m∑
j=1

j 6=i

Bjσij and v2i = −Aiσ2
i −

m∑
j=1

j 6=i

Ajσij, i = 1, . . . ,m.
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Once the linear parameters and the frequency are estimated using the LS method, the

error variances and covariances (the elements of the Σ matrix) can be similarly obtained as

the two -hannel model. Explicitly, they can be estimated as

σ̃2
j =

1

n

n∑
t=1

[
yj(t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)

]2
, j = 1, . . . ,m,

σ̃jk =
1

n

n∑
t=1

[
yj(t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)

][
yk(t)− Ãk cos(ω̃t)− B̃k sin(ω̃t)

]
.

These estimators can be shown to be consistent similarly as Theorem 2.3.

In the following, we now discuss the GLSEs of the parameters of an m-channel single

frequency sinusoidal model. Similar to the two-channel model, we assume that the variance-

covariance matrix Σ is known. The GLSEs of the unknown parameters can be obtained by

minimizing Sm(β, ω) where

Sm(β, ω) = |Σ|
n∑
t=1

(
y(t)− µ(t;β, ω)

)T
Σ−1

(
y(t)− µ(t;β, ω)

)
with respect to the elements of β = (A1, B1, . . . , Am, Bm) and ω. Here, µ(t;β, ω) is an

m-vector with k-th element

µk(t;Ak, Bk, ω) = Ak cos(ωt) +Bk sin(ωt).

Suppose η̂ = (Â1, B̂1, . . . , Âm, B̂m, ω̂)T is the argument minimizer of Sm(η) = Sm(β, ω). The

strong consistency of η̂ can be proved along the same line as Theorem 3.1 when the error

vector is i.i.d. with mean vector zero and known p× p variance-covariance matrix Σ. Under

the same assumption η̂ has the following asymptotic distribution.

Theorem 5.2. Suppose that the sequence of error vectors {e(t)} is i.i.d. with mean zero

and dispersion matrix Σ, which is known. Then(
n

1
2 (Â1 − A0

1), n
1
2 (B̂1 −B0

1), . . . , n
1
2 (Âm − A0

m), n
1
2 (B̂m −B0

m), n
3
2 (ω̂ − ω0)

)
d→ N2m+1(0, 2Π−1g )

where

Πg =

(
Σ−1 ⊗ I2 am

aTm bm

)
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with am =
( m∑
j=1

Bjσ
1j,−

m∑
j=1

Ajσ
1j,

m∑
j=1

Bjσ
2j,−

m∑
j=1

Ajσ
2j, . . . ,

m∑
j=1

Bjσ
mj,−

m∑
j=1

Ajσ
mj
)

, a

vector of order 2m and bm =
1

3

m∑
j=1

σjj(A0
j
2

+B0
j
2
) +

2

3

m∑
j<

m∑
k

σjk(A0
jA

0
k +B0

jB
0
k). Here, σij

is the (i, j)-th element of Σ−1 matrix.

We would like to emphasize here that the criterion function in LS optimization involves a

single nonlinear parameter, that is , the frequency parameter ω. Thus it requires only an one

dimensional optimization. Rest of the parameters are linear in nature and are directly esti-

mated channel-wise. Therefore, the computational complexity is not significantly increased

for more number of channels. In GLS method, it has been assumed that the dispersion ma-

trix of the error vector sequence {e(t)} is known. In practice, they are unknown and needed

to be estimated which can be done using the LS method. The LS method provides consis-

tent estimators of the error variances and covariances. Also, given ω, using GLS method,

the linear parameters are estimated as(
Σ−1 ⊗Mn(ω)

)
βT =

(
Σ−1 ⊗ I2

)
Wm

n (ω),

where β is the parameter vector of order 2m andWm
n (ω) is a vector of order 2m with (2j−1)-

th element is
1

n

n∑
t=1

yj(t) cos(ωt) and 2j-th element is
1

n

n∑
t=1

yj(t) sin(ωt) for j = 1, . . . ,m. The

2 × 2 matrix Mn(ω) is same as defined in Section 3. Using an argument similar to the one

presented at the end of Section 3, we observe that the GLSEs of the linear parameters as a

function of ω are same as the LSEs as a function of ω.

6. Conclusions

In this article, we address the problem of estimation of parameters in a multichannel

sinusoidal model. We have proposed two methods of estimation, the LSEs and GLSEs. If

different sets of nearly periodic data are generated from the same system with same number

of observations, then multichannel sinusoidal model is a viable option in analyzing such data

sets simultaneously. As a result, the number of non-linear parameters, that is, the frequencies

reduces to a great extent. The computational costs decreases substantially. We have also

discussed both the LS and GLS estimation methods for a general m-channel model with

single frequency and provided the theoretical properties of the estimators. It is observed
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that due to presence of a single nonlinear parameter, both the methods involve an one-

dimensional optimization problem. Hence, the implementation of the proposed methods is

quite simple in practice.
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Appendix A

In this Appendix, we prove the strong consistency of the LSE, ξ̂
0

of ξ0. We need the

following lemmas to prove Theorem 2.1.

Lemma 1. Let {e(t)} be a sequence of i.i.d. random variables with mean zero and finite

variance σ2 > 0, then as n→∞,

sup
ω

∣∣∣∣∣ 1

nk+1

n∑
t=1

tke(t) cos(ωt)

∣∣∣∣∣ a.s.−→ 0. and sup
ω

∣∣∣∣∣ 1

nk+1

n∑
t=1

tke(t) sin(ωt)

∣∣∣∣∣ a.s.−→ 0,

for k = 0, 1, . . .

Lemma 2. Let ξ̃ = (Ã1, B̃1, Ã2, B̃2, ω̃)T be an estimator of ξ0 that minimizes R(ξ), defined

in (6) and for any ε > 0, let Sε =
{
ξ : |ξ − ξ0| > 5ε

}
for some fixed ξ0 ∈ [−M,M ] ×

[−M,M ]× [−M,M ]× [−M,M ]× (0, π). If for any ε > 0,

limn→∞ inf
Sε

1

n

[
R(ξ)−R(ξ0)

]
≥ 0, a.s. (20)

then as n→∞, ξ̃ → ξ0 a.s.

Proof of Lemma 2: We write ξ̃ by ξ̃n and R(ξ) by Rn(ξ) to emphasize that these quantities

depend on n. Suppose (20) is true but ξ̃n does not converges to ξ0 as n→∞. Then, there

exists an ε > 0 and a subsequence {nk} of {n} such that |ξ̃nk − ξ
0| > ε for k = 1, 2, . . ..
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Therefore, ξ̃nk ∈ Sε for all k = 1, 2, . . .. By definition, ξ̃nk is the estimator of ξ0 that

minimizes Rnk(ξ) when n = nk. This implies that

Rnk(ξ̃nk) ≤ Rnk(ξ
0)⇒ 1

nk

[
Rnk(ξ̃nk)−Rnk(ξ

0)
]
≤ 0.

Therefore, limn→∞ inf
θnk∈Sε

1

nk

[
Rnk(ξ̃nk)−Rnk(ξ

0)
]
≤ 0. This contradicts inequality (20) and

so, the result follows.

Lemma 3. If ω ∈ (0, π), then the following results hold.

lim
n→∞

1

n
2m+1

2

n∑
t=1

tm cos(ωt) = lim
n→∞

1

n
2m+1

2

n∑
t=1

tm sin(ωt) = 0, m = 0, 1, 2.

Proof of Theorem 2.1: Write

1

n

[
R(ξ)−R(ξ0)

]
= f(ξ) + g(ξ)

where

f(ξ) =
1

n

n∑
t=1

[
A0

1 cos(ω0t) +B0
1 sin(ω0t)− A1 cos(ωt)−B1 sin(ωt)

]2
+

1

n

n∑
t=1

[
A0

2 cos(ω0t) +B0
2 sin(ω0t)− A2 cos(ωt)−B2 sin(ωt)

]2
,

g(ξ) =
2

n

n∑
t=1

e1(t)
[
A0

1 cos(ω0t) +B0
1 sin(ω0t)− A1 cos(ωt)−B1 sin(ωt)

]
+

2

n

n∑
t=1

e2(t)
[
A0

2 cos(ω0t) +B0
2 sin(ω0t)− A2 cos(ωt)−B2 sin(ωt)

]
.

As {e1(t)} and {e2(t)} are sequences of i.i.d. random variables with mean zeros are finite

variances, using Lemma 1, we have lim
n→∞

sup
ξ∈Sε

g(ξ) = 0 a.s. Now consider the sets

Sε,Ai =
{
ξ : |Ai − A0

i | > ε
}
, Sε,Bi =

{
ξ : |Bi −B0

i | > ε
}
, i = 1, 2

and Sε,ω =
{
ξ : |ω − ω0| > ε

}
.

Then Sε ⊂ Sε,A1 ∪ Sε,A2 ∪ Sε,B1 ∪ Sε,B2 ∪ Sε,ω. Therefore, to show

lim inf
ξ∈Sε

f(ξ) > 0 a.s. (21)
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it is enough to show (21) over each of these sets Sε,A1 , Sε,A2 , Sε,B1 , Sε,B2 and Sε,ω. Now for

any ε > 0, taking infimum over the set Sε,A1 , we have

lim inf
ξ∈Sε,A1

f(ξ) = lim inf
ξ∈Sε,A1

1

n

n∑
t=1

[{
A0

1 cos(ω0t) +B0
1 sin(ω0t)− A1 cos(ωt)−B1 sin(ωt)

}2

+
{
A0

2 cos(ω0t) +B0
2 sin(ω0t)− A2 cos(ωt)−B2 sin(ωt)

}2
]

= lim inf
ξ∈Sε,A1

1

n

n∑
t=1

{
A0

1 cos(ω0t) +B0
1 sin(ω0t)− A1 cos(ωt)−B1 sin(ωt)

}2

= lim inf
|A1−A0

1|>ε

1

n

n∑
t=1

{
A0

1 cos(ω0t)− A1 cos(ωt)
}2

= inf
|A1−A0

1|>ε

1

2
(A1 − A0

1)
2 >

1

2
ε2 > 0 a.s.

Similarly, it can be proved for Sε,A2 , Sε,B1 , Sε,B2 and Sε,ω. Therefore, we have

lim inf
ξ∈Sε,A1

f(ξ) > 0 a.s.

and the theorem follows.

Appendix B

In this section, we obtain the asymptotic distribution of the estimators which minimizes

R(ξ) for single component two-channel model. This has been stated in Theorem 2.2. In

order to obtain the joint asymptotic distribution of the LSE of ξ̂, let R′(ξ) and R′′(ξ) be the

vector of first derivatives of order 5× 1 and the matrix of second derivatives of order 5× 5

of R(ξ), respectively. Expanding R′(ξ) around ξ0 using multivariate Taylor series expansion

R′(ξ̃)−R′(ξ0) = R′′(ξ̄)(ξ̃ − ξ0), (22)

where ξ̄ is a point on the line joining ξ̃ and ξ0. Define a diagonal matrix D1 as

D1 = diag{n−
1
2 , n−

1
2 , n−

1
2 , n−

1
2 , n−

3
2}.

We note that R′(ξ̃) = 0 and (29) can be written as

D1
−1(ξ̃ − ξ0) = [D1R

′′(ξ̄)D1]−1[D1R
′(ξ0)] (23)
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if [D1R
′′(ξ̄)D1] is an invertible matrix for large n. The elements of R′′(ξ) are all continuous

function and using the consistency results of ξ, we have

lim
n→∞

[D1R
′′(ξ̄)D1] = lim

n→∞
[D1R

′′(ξ0)D1] = Γ. (24)

Γ =


1 0 0 0 B1

2

0 1 0 0 −A1

2

0 0 1 0 B2

2

0 0 0 1 −A2

2
B1

2
−A1

2
B2

2
−A2

2
1
3
(A2

1 +B2
1 + A2

2 +B2
2)

 (25)

Using the central limit theorem (Fuller(1996)), it follows that the normalized first derivative

vector is asymptotically normally distributed

D1R
′(ξ0)

d→ N (0,Σ) (26)

where the symmetric matrix Σ = ((Σjk)) is the asymptotic dispersion matrix of R′(ξ0)D1.

The elements of Σ are given by

Σ11 = 2σ2
1, Σ12 = 0, Σ13 = 2σ12, Σ14 = 0, Σ15 = B1σ

2
1 +B2σ12,

Σ22 = 2σ2
1, Σ23 = 0, Σ24 = 2σ12, Σ25 = −A1σ

2
1 − A2σ12,

Σ33 = 2σ2
2, Σ34 = 0, Σ35 = B2σ

2
2 +B1σ12,

Σ44 = 2σ2
2, Σ45 = −A2σ

2
2 − A1σ12,

Σ55 =
2

3

[
σ2
1(A2

1 +B2
1) + σ2

2(A2
2 +B2

2) + 2σ12(A1A2 +B1B2)
]
,

and this proves the Theorem.

Appendix C

In this Appendix, we prove the strong consistency of σ̃2
j and σ̃12 for two-channel multiple

sinusoidal model. If for k = 1, . . . , p, j = 1, 2, Ãjk, B̃jk and ω̃k are LSEs of A0
jk, B

0
jk and ω0

k,

respectively, then the LSE of σ2
j will be

σ̃2
j =

1

n

n∑
t=1

[
yj(t)−

n∑
k=1

(
Ãjk cos(ω̃kt) + B̃jk sin(ω̃jt)

)]2
.

We need the following lemma to prove the strong consistency of σ̃2
j along with Lemma 1.

Lemma 4. If ω̃k is the LSE of ω0
k for model (1), then as n→∞,

n(ω̃k − ω0
k)→ 0, a.s.
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Proof of Lemma 4: Observe that from equation (29), we have

R′(ξ̃)−R′(ξ0) = R′′(ξ̄)(ξ̃ − ξ0). (27)

Define a diagonal matrix U = diag{1, 1, 1, 1, 1
n
}, then from equation (27), we can write

U−1(ξ̃ − ξ0) =
[ 1√

n
UR′′(ξ̄)U

1√
n

]−1[ 1

n
UR′(ξ0)

]
.

Then, 1
n
U = D1, therefore

[
1√
n
UR′′(ξ̄)U 1√

n

]−1
−→ Γ−1 as n → ∞ and because of Lemma

1, we have

1

n
UR′(ξ0) −→ 0, a.s.

That proves the lemma.

Proof of Theorem 2.3: Observe that for j = 1, 2,

σ̃j =
1

n

n∑
t=1

[
yj(t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)

]2
=

1

n

n∑
t=1

e2j(t) +
2

n

n∑
t=1

ej(t)
[
A0
j cos(ω0t) +B0

j sin(ω0t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)
]

+
1

n

n∑
t=1

[
A0
j cos(ω0t) +B0

j sin(ω0t)− Ãj cos(ω̃t)− B̃j sin(ω̃t)
]2

= R1(j) +R2(j) +R3(j) (say).

The second term R2(j) converges to zero almost surely because of Lemma 1 and the last term

R3(j) converges to zero due to Lemma 4 for j = 1, 2. Since R1(j) = 1
n

∑n
t=1 e

2
j(t) converges

almost surely to σ2
j , j = 1, 2 because of strong law of large numbers, we have σ̃2

j
a.s.→ σ2

j .
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Now consider the estimator of σ12.

σ̃12 =
1

n

n∑
t=1

[
y1(t)− Ã1 cos(ω̃t)− B̃1 sin(ω̃t)

][
y2(t)− Ã2 cos(ω̃t)− B̃2 sin(ω̃t)

]
=

1

n

n∑
t=1

e1(t)e2(t) +
2

n

n∑
t=1

e1(t)
[
A0

2 cos(ω0t) +B0
2 sin(ω0t)− Ã2 cos(ω̃t)− B̃2 sin(ω̃t)

]
+

2

n

n∑
t=1

e2(t)
[
A0

1 cos(ω0t) +B0
1 sin(ω0t)− Ã1 cos(ω̃t)− B̃1 sin(ω̃t)

]
1

n

n∑
t=1

[
A0

1 cos(ω0t) +B0
1 sin(ω0t)− Ã1 cos(ω̃t)− B̃1 sin(ω̃t)

]
×[

A0
2 cos(ω0t) +B0

2 sin(ω0t)− Ã2 cos(ω̃t)− B̃2 sin(ω̃t)
]

= T1 + T2 + T3 + T4 (say).

Note that using Lemma 1, T2 and T3 converges to zero almost surely and using Lemma 4,

T4 also converges to zero almost surely. Now observe that the sequence {e(t)e2(t)} is an

i.i.d. sequence of random variables with mean σ12 and variance σ2
1σ

2
2 − σ2

12. Therefore, T1

converges to σ12 almost surely. This proves the theorem.

Appendix D

In this Appendix, we prove Theorem 3.1 which states the strong consistency of GLSE of

ξ. The following lemma similar to Appendix A is required.

Lemma 5. Let ξ̂ = (Â1, B̂1, Â2, B̂2, ω̂)T be an estimator of ξ0 that minimizes S(ξ), defined

in (10) and for any ε > 0, let Gε =
{
ξ : |ξ − ξ0| > 5ε

}
for some fixed ξ0 ∈ [−M,M ] ×

[−M,M ]× [−M,M ]× [−M,M ]× (0, π). If for any ε > 0,

limn→∞ inf
Gε

1

n

[
S(ξ)− S(ξ0)

]
≥ 0, a.s. (28)

then as n→∞, ξ̂ → ξ0 a.s.

Proof of Lemma 2: This lemma can be proved along the same line as Lemma 2, so it is

omitted.

Proof of Theorem 3.1: In this proof, we denote

µk(ω; t) = Ak cos(ωt) +Bk sin(ωt), µ0
k(ω

0; t) = A0
k cos(ω0t) +B0

k sin(ω0t).
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Write
1

n

[
S(ξ)− S(ξ0)

]
= h1(ξ) + h2(ξ) + h3(ξ)

where

h1(ξ) =
σ2
2

n

n∑
t=1

(
µ0
1(ω

0; t)− µ1(ω; t)
)2

+
σ2
1

n

n∑
t=1

(
µ0
2(ω

0; t)− µ2(ω; t)
)2

−2σ12
n

n∑
t=1

(
µ0
1(ω

0; t)− µ1(ω; t)
)(
µ0
2(ω

0; t)− µ2(ω; t)
)

h2(ξ) =
2σ2

2

n

n∑
t=1

e1(t)
(
µ0
1(ω

0; t)− µ1(ω; t)
)
− 2σ12

n

n∑
t=1

e1(t)
(
µ0
2(ω

0; t)− µ2(ω; t)
)

h3(ξ) =
2σ2

1

n

n∑
t=1

e2(t)
(
µ0
2(ω

0; t)− µ2(ω; t)
)
− 2σ12

n

n∑
t=1

e1(t)
(
µ0
1(ω

0; t)− µ1(ω; t)
)
.

According to Assumption 1, {e1(t)} and {e2(t)} are sequences of i.i.d. random variables with

mean zeros are finite variances. Therefore, using Lemma 1, we have

lim
n→∞

sup
ξ∈Gε

h2(ξ) = 0, and lim
n→∞

sup
ξ∈Gε

h3(ξ) = 0.

Note that the proof will be complete if we can show lim inf infξ∈Gε h1(ξ) > 0 a.s. Since

Gε ⊂ Gε,A1 ∪Gε,A2 ∪Gε,B1 ∪Gε,B2 ∪Gε,ω,

where

Gε,Ai =
{
ξ : |Ai − A0

i | > ε
}
, Gε,Bi =

{
ξ : |Bi −B0

i | > ε
}
, i = 1, 2

and Gε,ω =
{
ξ : |ω − ω0| > ε

}
.

Now for any ε > 0, for each of the above sets lim inf infξ∈G h1(ξ > 0 a.s. where G can be

Gε,Ai , Gε,Bi , k = 1, 2 or Gε,ω. Therefore, the result follows.

Appendix E

In this Appendix, we prove Theorem 3.2. As the model considered in Theorem 3.1 is the

two channel model with one frequency, the number of unknown parameters is 5.

Let S ′(ξ) and S ′′(ξ) be a 5× 1 vector and 5× 5 matrix of S(ξ), where S(ξ) is defined in

(10). Expanding S ′(ξ) around ξ0 using multivariate Taylor series expansion

S ′(
˜̃
ξ)− S ′(ξ0) = S ′′(ξ̄)(

˜̃
ξ − ξ0), (29)
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where ξ̄ is a point on the line joining
˜̃
ξ and ξ0. Define a diagonal matrix D1 as

D1 = diag{n−
1
2 , n−

1
2 , n−

1
2 , n−

1
2 , n−

3
2}.

We note that S ′(
˜̃
ξ) = 0 and (29) can be written as

D1
−1(
˜̃
ξ − ξ0) = [D1S

′′(ξ̄)D1]−1[D1S
′(ξ0)] (30)

if [D1S
′′(ξ̄)D1] is an invertible matrix for large n. The elements of S ′′(ξ) are all continuous

function and using the consistency results of
˜̃
ξ, we have

lim
n→∞

[D1S
′′(ξ̄)D1] = lim

n→∞
[D1S

′′(ξ0)D1] = Γg, (31)

where the matrix Γg is given in Theorem 3.2. The elements of S ′′(ξ0) are listed in Appendix

F. The first order derivatives of S(ξ) at the true value ξ0 are as follows.

∂S(ξ)

∂A1

∣∣∣∣
ξ=ξ0

= −2σ2
2

n∑
t=1

e1(t) cos(ω0t) + 2σ12

n∑
t=1

e2(t) cos(ω0t)

∂S(ξ)

∂B1

∣∣∣∣
ξ=ξ0

= −2σ2
2

n∑
t=1

e1(t) sin(ω0t) + 2σ12

n∑
t=1

e2(t) sin(ω0t)

∂S(ξ)

∂A2

∣∣∣∣
ξ=ξ0

= −2σ2
1

n∑
t=1

e2(t) cos(ω0t) + 2σ12

n∑
t=1

e1(t) cos(ω0t)

∂S(ξ)

∂B2

∣∣∣∣
ξ=ξ0

= −2σ2
1

n∑
t=1

e2(t) sin(ω0t) + 2σ12

n∑
t=1

e1(t) sin(ω0t)

∂S(ξ)

∂ω

∣∣∣∣
ξ=ξ0

= 2σ2
2

n∑
t=1

te1(t)
(
A0

1 sin(ω0t)−B0
1 cos(ω0t)

)
+2σ2

1

n∑
t=1

te2(t)
(
A0

2 sin(ω0t)−B0
2 cos(ω0t)

)
−2σ12

n∑
t=1

te1(t)
(
A0

2 sin(ω0t)−B0
2 cos(ω0t)

)
−2σ12

n∑
t=1

te2(t)
(
A0

1 sin(ω0t)−B0
1 cos(ω0t)

)
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Appendix F

In this Appendix, we list the second order derivatives of S(ξ) with respect the elements

of ξ.

∂2S(ξ)

∂A2
1

= 2σ2
2

n∑
t=1

cos2(ωt),
∂2S(ξ)

∂B2
1

= 2σ2
2

n∑
t=1

sin2(ωt),
∂2S(ξ)

∂A1B1

= 2σ2
2

n∑
t=1

cos(ωt) sin(ωt),

∂2S(ξ)

∂A2
2

= 2σ2
1

n∑
t=1

cos2(ωt),
∂2S(ξ)

∂B2
2

= 2σ2
1

n∑
t=1

sin2(ωt),
∂2S(ξ)

∂A2B2

= 2σ2
1

n∑
t=1

cos(ωt) sin(ωt),

∂2S(ξ)

∂A1A2

= −2σ12

n∑
t=1

cos2(ωt),
∂2S(ξ)

∂A1B2

= −2σ12

n∑
t=1

cos(ωt) sin(ωt),

∂2S(ξ)

∂B1A2

= −2σ12

n∑
t=1

cos(ωt) sin(ωt),
∂2S(ξ)

∂B1B2

= −2σ12

n∑
t=1

sin2(ωt),

∂2S(ξ)

∂ω2
= 2σ2

2

n∑
t=1

t2
(
A1 sin(ωt)−B1 cos(ωt)

)2
+ 2σ2

1

n∑
t=1

t2
(
A2 sin(ωt)−B2 cos(ωt)

)2
+2σ2

2

n∑
t=1

t2
(
y1(t)− A1 cos(ωt)−B1 sin(ωt)

)(
A1 cos(ωt) +B1 sin(ωt)

)
+2σ2

1

n∑
t=1

t2
(
y2(t)− A2 cos(ωt)−B2 sin(ωt)

)(
A2 cos(ωt) +B2 sin(ωt)

)
−4σ12

n∑
t=1

t2
(
A1 sin(ωt)−B1 cos(ωt)

)(
A2 sin(ωt)−B2 cos(ωt)

)
−2σ12

n∑
t=1

t2
(
y1(t)− A1 cos(ωt)−B1 sin(ωt)

)(
A2 sin(ωt)−B2 cos(ωt)

)
−2σ12

n∑
t=1

t2
(
y2(t)− A2 cos(ωt)−B2 sin(ωt)

)(
A1 sin(ωt)−B1 cos(ωt)

)
,

∂2S(ξ)

∂A1∂ω
= −2σ2

2

n∑
t=1

t cos(ωt)
(
A1 sin(ωt)−B1 cos(ωt)

)
+2σ12

n∑
t=1

t cos(ωt)
(
A2 sin(ωt)−B2 cos(ωt)

)
−2σ12

n∑
t=1

t sin(ωt)
(
y2(t)− A2 cos(ωt)−B2 sin(ωt)

)
,



30 SWAGATA NANDI1 AND DEBASIS KUNDU2

∂2S(ξ)

∂A2∂ω
= −2σ2

1

n∑
t=1

t cos(ωt)
(
A2 sin(ωt)−B2 cos(ωt)

)
+2σ12

n∑
t=1

t cos(ωt)
(
A1 sin(ωt)−B1 cos(ωt)

)
−2σ12

n∑
t=1

t sin(ωt)
(
y1(t)− A1 cos(ωt)−B1 sin(ωt)

)
,

∂2S(ξ)

∂B1∂ω
= −2σ2

2

n∑
t=1

t sin(ωt)
(
A1 sin(ωt)−B1 cos(ωt)

)
+2σ12

n∑
t=1

t sin(ωt)
(
A2 sin(ωt)−B2 cos(ωt)

)
−2σ12

n∑
t=1

t cos(ωt)
(
y2(t)− A2 cos(ωt)−B2 sin(ωt)

)
,

∂2S(ξ)

∂B2∂ω
= −2σ2

1

n∑
t=1

t sin(ωt)
(
A2 sin(ωt)−B2 cos(ωt)

)
+2σ12

n∑
t=1

t sin(ωt)
(
A1 sin(ωt)−B1 cos(ωt)

)
−2σ12

n∑
t=1

t cos(ωt)
(
y1(t)− A1 cos(ωt)−B1 sin(ωt)

)
.
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