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Abstract. In this paper, we consider a two-dimensional random amplitude chirp signal

model. It is assumed that the additive error is independent and identically distributed. This

is an extension of the one dimensional random amplitude chirp model proposed by Besson

et al. [1] to two-dimension. The random amplitudes can be thought of as a multiplicative

error and are assumed to be independent and identically distributed with non-zero mean such

that the fourth order moment exists. The parameters are estimated by maximizing a two-

dimensional chirp periodogram like function and discuss their theoretical properties. The

proposed estimators are consistent and we obtain the asymptotic distribution as multivariate

normal. Under normality of the additive error, the proposed estimator attains the Cramer-

Rao lower bound. We propose a general multicomponent two-dimensional model of similar

form. The performances of the proposed estimators for finite samples are evaluated based

on numerical experiments and are reported graphically.

1. Introduction

A two-dimensional (2-D) complex-valued chirp signal model with random amplitude is

expressed as

y(m,n) = ψ(m,n)ei(α
0
1m+α0

2m
2+β0

1n+β
0
2n

2) +X(m,n), m = 1, . . . ,M ;n = 1, . . . , N. (1)

Here i =
√
−1; and y(m,n) = yR(m,n) + iyI(m,n) are the complex-valued signals; α0

1 and

α0
2 are the frequency and the chirp rate, respectively in the first dimension and β0

1 and β0
2

are the corresponding frequency and the chirp rate, respectively in the second dimension.

Further, 0 < α0
1, α

0
2, β

0
1 , β

0
2 < π and the amplitude {ψ(m,n)} is a 2-D sequence of real-

valued random variables which can be viewed as multiplicative error as ψ(m,n) is random

and enters the model as product of the non-random signal component. The additive error

{X(m,n)} is a 2-D sequence of complex-valued random variables with zero mean and it is

assumed that the fourth moment exists. The problem is to estimate the unknown parameters

α0
1, α

0
2, β

0
1 and β0

2 based on MN observations {y(m,n);m = 1, . . . ,M ;n = 1, . . . , N} under

certain assumptions on the sequence of random amplitudes {ψ(m,n)} and the sequence of
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additive error {X(m,n)}. The specific assumptions on {ψ(m,n)} and {X(m,n)} are given

in Appendix A.

The 2-D chirp model as well as 2-D sinusoidal model has many applications in image

analysis and telecommunications. The later is one of the basic models in statistical signal

processing literature. Different other applications are found in biomedical spectral analysis,

texture analysis; see Kliger and Francos [11], [12], Cao et al [3] etc. Similar models have been

used in analysis of synthetic aperture radar data by Djurović et al. [4]. Grover et al. [10]

illustrated that 2-D chirp model can be effectively used in black and white texture analysis.

Apart from these applications, such signals are commonly observed in surveillance system, in

sonar and radar, mobile telecommunications, finger print images etc., see for example Zhang

et al. [23], Simeunović et al [21], Djurović and Simeunović [5], Porwal et al. [20] and the

references cited therein.

Model (1) is a natural extension of one-dimensional (1-D) random amplitude chirp model

to two dimension. Nandi and Kundu [18] considered this model and proved the consistency

of the estimators proposed by Besson et al. [1] and obtained their asymptotic distribution.

In case of constant amplitude instead of random amplitude, this model is the usual 1-D

chirp model which again generalizes the complex-valued exponential or sinusoidal model.

The complex-valued exponential model is the most basic model in this class of models. The

2-D random amplitude chirp model is a more generalized version of these models.

The 2-D random amplitude chirp model can be viewed as a generalized version of 2-D

chirp model when ψ(m,n) is identically equal to a non-zero constant. Several authors have

studied the 2-D chirp model, see for example, Zhang, Wang and Cao [23], Cao et al. [3],

Lahiri, Kundu and Mitra [15], Lahiri and Kundu [14] and Grover, Kundu and Mitra [8, 10].

Model (1) can also be seen as a generalization of 2-D random amplitude sinusoidal model

when α0
2 = β0

2 = 0. The 2-D sinusoidal model has many applications in grey symmetric

textures. When ψ(m,n) is constant and the frequency rates α0
2 and β0

2 are simultaneously

equal to zero, then model (1) is nothing but the 2-D sinusoidal model. Therefore, model (1)

is quite a general model.

The aim of this paper is to consider the problem of estimation of the unknown parameters,

the frequencies α0
1 and α0

2 and the frequency rates β0
1 and β0

2 and study the theoretical

properties of these estimators. The estimation method considered in this paper is based on

the maximization of the 2-D periodogram function of y2(m,n), interlaced with zeros. We

have shown that the proposed method is equivalent to the nonlinear least squares estimation
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method. It is an extension of the method proposed by Besson et al. [1] for 1-D random

amplitude chirp model to two dimension. Although, this estimator has not been studied,

and its properties have not been explored. We have shown that the proposed estimators of the

unknown parameters are consistent and asymptotically normally distributed. A consistent

estimator of an unknown parameter means that as the number of observations increase,

the resulting sequence of estimators converges to the true value of the parameter. The

asymptotic normality here means that the proposed estimator is asymptotically distributed

with Gaussian behavior as the data sample size goes up. This asymptotic distribution also

provides different rates of convergence of the estimators of the frequency and the chirp

rate parameters. Based on the asymptotic distribution, the approximate variance of the

estimator can be obtained at least for large sample sizes. It has also been observed that

the proposed estimator attains the Cramer-Rao lower bound when the additive error is

normally distributed. We perform numerical experiments extensively to see the behavior

of the estimates for different sample sizes and different variances for additive as well as

multiplicative error. The performances are quite satisfactory and gives an idea how the large

sample results will be useful in practice for finite samples.

The rest of the paper is organized as follows. In Section 2, we discuss the method of

estimation of the unknown parameters of model (1) and its equivalence to the nonlinear

least squares method. In Section 3, we consider the multicomponent model and discuss

how the estimation problem of the one component model can be applied to this case. In

Section 4, numerical experiments are presented and we conclude the paper in Section 5.

All the required assumptions, theoretical results and proofs are provided in Appendices. In

Appendix A, the theoretical results of the proposed estimator for the one component model

is presented including the assumptions. Similarly, for multicomponent model, the results

are stated in Appendix B. The consistency of the proposed estimator for the one component

model has been proved in Appendix C. The asymptotic distribution of the same has been

derived in Appendix D. The outline of the proof of the consistency of the estimator for

multicomponent model is presented in Appendix E.

2. Estimation of Parameters of 2D-Random Amplitude Chirp Signal

In this section, we first discuss the problem of estimation of unknown parameters, namely,

the frequency and the chirp rate parameters present in model (1). We consider a method of

estimation which is equivalent to the nonlinear least squares estimation method.
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In order to describe the estimation method, write α = (α1, α2)
>, β = (β1, β2)

>; α0 and

β0 are the true values of α and β, respectively. Also denote ξ = (α1, α2, β1, β2)
> as the

unknown parameter vector and ξ0 be the true value of ξ. Then consider the estimator ξ̂ of

ξ0 which maximizes the following four dimensional function.

Q(ξ) =
1

MN

∣∣∣∣∣
M∑
m=1

N∑
n=1

y2(m,n)e−i2(α1m+α2m2+β1n+β2n2)

∣∣∣∣∣
2

. (2)

Observe that Q(ξ) is the 2-D chirp periodogram function of y2(m,n) with exponent replaced

by twice the usual 2-D chirp periodogram exponent. The usual nonlinear least squares

method is behind the motivation of taking this particular form of the criterion function

of our proposed estimation method. In the following, we start with the form of the usual

residual sum of squares corresponding to the additive error and derive the equivalence of the

nonlinear least squares and the estimation method addressed in this paper.

The following derivation motivates us to maximize Q(ξ) to obtain the nonlinear least

squares estimators of the unknown parameters present in model (1). Write model (1) as

y(m,n) = ψ(m,n)eiφ
0(m,n) +X(m,n), m = 1, . . . ,M ;n = 1, . . . , N

where φ0(m,n) = (α0
1m+α0

2m
2 +β0

1n+β0
2n

2). Considering ψ(m,n) as unknown parameters

for m = 1, . . . ,M and n = 1, . . . , N , the usual nonlinear least squares estimators of ψ(m,n)

and α0
1, α

0
2, β

0
1 and β0

2 are obtained by minimizing

R(ψ, ξ) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣y(m,n)− ψ(m,n)ei(α1m+α2m2+β1n+β2n2)
∣∣∣2 , ψ = ((ψ(m,n)))

with respect to ψ(1, 1), . . . , ψ(M,N) and ξ = (α1, α2, β1, β2)
>. Denote

ym = (y(m, 1), . . . , y(m,N))>, ψm = (ψ(m, 1), . . . , ψ(m,N))>,

Am = diag
{
eiφ(m,1), . . . , eiφ(m,N)

}
, φ(m,n) = (α1m+ α2m

2 + β1n+ β2n
2),

for m = 1, . . . ,M and n = 1, . . . , N . Then, the criterion function R(ψ, ξ) can be written as

R(ψ, ξ) =
1

MN

M∑
m=1

||ym −Amψm||
2 .

In order to minimize R(ψ, ξ), differentiating it with respect to ψm for fixed ξ, we have

∂R(ψ, ξ)

∂ψm

=
1

MN

M∑
m=1

[
−A>my∗m −A∗mym + 2ψm

]
,
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where y∗m and A∗m are complex conjugate of ym and Am, respectively. Therefore, for a given

ξ, the vectors ψ1, . . . ,ψM which minimize R(ψ, ξ) is given by

ψ̂m(ξ) =
1

2

[
A>my∗m + A∗mym

]
, m = 1, . . . ,M.

Replacing ψm by ψ̂m(ξ) in R(ψ, ξ)

R(ψ̂(ξ), ξ) =
1

MN

M∑
m=1

∣∣∣∣∣∣∣∣ym − 1

2
AmA>my∗m −

1

2
AmA∗mym

∣∣∣∣∣∣∣∣2

=
1

MN

M∑
m=1

∣∣∣∣∣∣∣∣ym − 1

2
A2
my∗m −

1

2
ym

∣∣∣∣∣∣∣∣2

=
1

4MN

M∑
m=1

∣∣∣∣ym −A2
my∗m

∣∣∣∣2
=

1

2MN

M∑
m=1

yHmym −
1

2MN

M∑
m=1

Re
[
y>mA2∗

mym

]
,

where yHm is the conjugate transpose of ym. Now minimizing R(ψ̂(ξ), ξ) with respect to ξ is

equivalent to maximizing

1

MN

M∑
m=1

Re
[
y>mA2∗

mym

]
=

1

MN

M∑
m=1

Re
[ N∑
n=1

y2(m,n)e−2iφ(m,n)
]

=
1

MN

M∑
m=1

Re
[ N∑
n=1

y2(m,n)e−2i(α1m+α2m2+β1n+β2n2)
]
.

Therefore, taking into consideration of the corresponding imaginary part, we base our esti-

mation method on maximization of Q(ξ) with respect to ξ.

The nonlinear least squares estimation method has been addressed through the peri-

odogram like function Q(ξ). The unknown parameters α1, α2, β1 and β2 are estimated

by maximizing Q(ξ). Denote ξ̂
>

= (α̂>, β̂
>

) = (α̂1, α̂2, β̂1, β̂2) as the maximizer of Q(ξ),

then

ξ̂ = arg max(α1,α2,β1,β2) Q(ξ). (3)

Using notation y2(m,n) = z(m,n), and 2α1 = a1, 2α2 = a2, 2β1 = b1 and 2β2 = b2, we note

that Q(ξ) is the usual 2-D chirp periodogram function for 2-D chirp model. The real and

imaginary parts of the squared responses z(m,n), say zR(m,n) and zI(m,n) are explicitly

given in Appendix C. These will be required to establish the consistency and the asymptotic
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distribution of the proposed estimator ξ̂. It is observed that the maximization of Q(ξ) can

be carried out by any four-dimensional optimization method over Ω.

In model (1), if we fix n = s, then {y(m, s);m = 1, . . . ,M} represents the sth column of

the M ×N data matrix ((y(m,n))). Therefore, the sth column is a sample of the following

1-D complex-valued random amplitude chirp model

y(m, s) = δ(m, s, β0
1 , β

0
2)ei(α

0
1m+α0

2m
2) + e(m, s),

where the amplitude δ(m, s, β0
1 , β

0
2) = ψ(m, s)ei(β

0
1s+β

0
2s

2) is complex-valued. If we sum the

columns over s,

N∑
s=1

y(m, s) =
[ N∑
s=1

δ(m, s, β0
1 , β

0
2)
]
ei(α

0
1m+α0

2m
2) +

N∑
s=1

e(m, s),

⇒ z1(m) = a(m,β0
1 , β

0
2)ei(α

0
1m+α0

2m
2) + ε1(m), m = 1, . . . ,M.

Similarly, each row of the data matrix ((y(m,n))) and their sum say z2(n) represent 1-D

complex-valued random amplitude model of the same form with unknown parameters β0
1

and β0
2 . Efficient estimation of α0

1 and α0
2 as well as β0

1 and β0
2 may be developed based on

the above observation.

Model (1) is a highly nonlinear model in its parameters. Therefore, all the theoretical

results of the proposed estimator ξ̂ will be valid for large samples. The theoretical properties

namely the consistency and asymptotic normality of ξ̂ as well as the necessary assumptions

required to establish these properties are stated in Appendices A, C and D.

3. Multicomponent Random Amplitude Chirp Model

In this section, we extend the idea of 2-D random amplitude chirp model to multiple com-

ponents when p pairs of a frequency and a chirp rate corresponding to both the dimensions

are present. The model can be formulated as

y(m,n) =

p∑
k=1

ψk(m,n)ei(α
0
1km+α0

2km
2+β0

1kn+β
0
2kn

2) +X(m,n); m = 1, . . . ,M ;n = 1, . . . , N.

(4)

For k = 1, . . . , p, the frequencies α0
1k and α0

2k and the frequency rates β0
1k and β2k are unknown

and needed to be estimated given a sample of size MN . The additive errors {X(m,n)} is a

2-D sequence of complex-valued random variables similar to model (1). The sequence of ran-

dom variables {ψk(m,n)} corresponds to the kth component random amplitude, k =, . . . , p;
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it is assumed that {ψ1(m,n)} . . . {ψp(m,n)} are sequences of independent and identically

distributed (i.i.d.) random variables. We assume that the number of component, p is known

in advance.

The method of estimation of the unknown parameters for the multicomponent model (4) is

based on the same chirp periodogram like function Q(ξ) defined in Section 2. The unknown

parameters are estimated by maximizing Q(ξ) locally. Denote ξk = (α1k, α2k, β1k, β2k)
> and

suppose ξ0k is the true value of ξk. The maximization is carried out in a neighborhood of ξ0k
to estimate the kth component parameters. Let Nk be a neighborhood of ξ0k such that for

j 6= k, ξ0j /∈ Nk. That is, Nk has to be chosen in such a way that no other ξ0j belongs to Nk

and ξ0k and ξ0j , j 6= k are needed to be well separated. The choice of Nk for small samples

depends on the variance of the additive error sequence {X(m,n)} also. Formally, estimate

ξk as

ξ̂k = arg max
(α1,α2,β1,β2)∈Nk

1

MN

∣∣∣∣∣
M∑
m=1

N∑
n=1

y2(m,n)e−i2(α1m+α2m2+β1n+β2n2)

∣∣∣∣∣
2

where y(m,n) is given in (4). The whole process of estimation can be carried out by solving

p separate optimization problems and each one involves a four dimensional maximization

over a bounded region.

Similar to the one component model, the theoretical properties of the estimator ξ̂k of ξ0k
defined above are provided in Appendix B along with the assumptions required to develop

the properties of the estimator.

4. Numerical Experiments

In this section, we perform simulation experiments to evaluate the accuracy of the proposed

estimators. These simulations are carried out for various choices of M , N and σ2. For every

M = N = 25, 50, 75, 100 and σ2 = 0.01, 0.1, 0.5, 1, 1000 replications are generated. In the

first set of experiments, we consider a simple synthetic signal generated using the following

model structure:

y(m,n) = ψ(m,n)ei(1.50m+0.15m2+2.50n+0.25n2) +X(m,n). (5)

Here, the multiplicative error ψ(m,n) is assumed to be i.i.d. sequence of Gaussian ran-

dom variables with mean 5 and variance 0.5. Similarly, the additive error random variables

{X(m,n)} are assumed to be i.i.d N(0, σ2). The objective is to estimate the nonlinear param-

eters of the model by maximizing the function defined in (2). We use Nelder-Mead algorithm
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Figure 1. MSEs and the asymptotic variances of the estimates when the

data is from model (5).

to optimize the function Q(ξ). For the initial values for the optimization, we use the true

values of the parameters. For each generated data set, we compute the proposed estimators

and report their averages, mean squares errors (MSEs) and the corresponding theoretically

derived asymptotic variances (avar). Figure 1 shows the results of these simulations.

In the second set of simulations, we consider a more challenging set of samples from a

multiple component 2-D model with the following expression:

y(m,n) = ψ1(m,n)ei(1.50m+0.15m2+2.50n+0.25n2) + ψ2(m,n)ei(1.00m+0.10m2+2.00n+0.20n2) +X(m,n).

(6)

The amplitude random variables ψ1(m,n) ∼ N (6, 0.5) and ψ2(m,n) ∼ N (5, 0.5). The

additive errors X(m,n) ∼ N (0, σ2). The average estimates, the MSEs and the asymptotic

variances of the proposed estimators for the first and second component parameters are

shown in Figure 2 and Figure 3 respectively.

Some noteworthy observations from the simulation results are stated below:

• The biases of the estimates are small and are close to 0, which implies that the

difference between the average estimates and the true values of the parameters is

negligible.

• For fixed values of M and N , the accuracy of the proposed estimators (measured in

terms of MSEs) progressively decreases as the error variance increases.
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Figure 2. MSEs and the asymptotic variances of the estimates of the first

component when the data is from model (6).
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Figure 3. MSEs and the asymptotic variances of the estimates of the second

component when the data is from model (6).

• The MSEs of the estimates decrease as the dimension of the data matrix increases,

thereby verifying consistency of the proposed estimators.

• The MSEs are observed to be smaller than the theoretical asymptotic variances for

most of the cases.
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Clearly, the results of these experiments reveal that the performance of the estimators is

satisfactory. Therefore we can conclude that the proposed method yields accurate estimates

in practice.

5. Concluding Remarks

In this paper, we study the 2-D random amplitude chirp model and propose an estimation

method to estimate the unknown parameters, the frequencies and chirp rates. The proposed

method maximizes a 2-D periodogram-like function of the squared observations and are con-

sistent and asymptotically normally distributed. A 2-D multicomponent random amplitude

model has also been studied. The unknown parameters are estimated by maximizing the

same periodogram function locally. The maximization is carried out in a neighborhood of

the true value of the parameter vector. The implementation is done step by step. Numerical

experiments have been done to see the small sample performance and reported graphically.

In this paper, we have assumed that the additive error are i.i.d. It will be interesting to see

how the proposed estimators work if the additive error are from a stationary linear process.

We have not discussed the estimation of parameters of multiplicative as well as additive

error; it needs to be addressed to use the theoretical results in practice. The number of

components in multicomponent model is assumed to be known which will not be the case in

practice and needs to be estimated. Further works are needed in that direction.
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Appendix A

In this Appendix, we present the theoretical properties of the proposed estimator of the

unknown parameters present in single component model (1). The following assumptions

are required on the random amplitude sequence {ψ(m,n)} and the additive error sequence

{X(m,n)} to develop the theoretical properties. .
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Assumption 1. The random amplitude sequence {ψ(m,n)} is a 2-D sequence of i.i.d. real-

valued random variables with mean µψ, variance σ2
ψ, µψ 6= 0 and σ2

ψ > 0. The fourth moment

of {ψ(m,n)} exists.

Assumption 2. The sequence of additive error {X(m,n)} is a 2-D sequence of complex-

valued i.i.d. random variables with mean zero and variance σ2. If X(m,n) = XR(m,n) +

iXI(m,n), then both {XR(m,n)} and {XI(m,n)} are i.i.d. (0, σ
2

2
), have finite fourth moment

γ and they are independently distributed.

Assumption 3. The sequence of random amplitudes {ψ(m,n)} is assumed to be independent

of the sequence of additive errors {X(m,n)}.

Define a set Ω = [0, π] × [0, π] × [0, π] × [0, π]. The following assumption apart from

Assumptions 1- 3, is required on the true values of the parameters.

Assumption 4. (α0
1, α

0
2, β

0
1 , β

0
2) is an interior point of Ω.

The existence of the fourth moment, stated in Assumption 1, of the random amplitudes

{ψ(m,n)} is required to obtain the theoretical properties of the proposed estimators. The

independence of {ψ(m,n)} and {X(m,n)} is an important assumption to prove the con-

sistency and the asymptotic distribution of the proposed estimators of the frequency and

frequency rate. In the following, we first discuss the method of estimation of the unknown

parameters present in model (1).

We state the consistency result and the asymptotic distribution of the proposed estimators

under Assumptions 1-4 in this Appendix and prove in Appendices C and D, respectively. In

order to prove the consistency it is required to have non-zero mean and finite fourth order

moment of the random amplitude ψ(m,n). The existence of non-zero mean is an essential

assumption for random amplitude which can be thought of as a multiplicative error. We need

the existence of the fourth moment to develop the asymptotic distribution. The following

theorems state the results on the consistency properties and the asymptotic distribution of

the proposed estimators. Theorem A.1 is proved in Appendix C and Theorem A.2 is in

Appendix D. Here
d−→ denotes convergence in distribution.

Theorem A.1: Under Assumptions 1-4, α̂1, α̂2, β̂1 and β̂2 defined in (3), are consistent

estimators of α0
1, α0

2, β0
1 and β0

2 , respectively.

Theorem A.2: Under Assumptions 1-4, as min{M,N} → ∞,

(ξ̂ − ξ0)D−1 d−→ N4(0, 4(σ2
ψ + µ2

ψ)2Σ−1ΓΣ−1)
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where D = diag

{
1

M
3
2N

1
2

,
1

M
5
2N

1
2

,
1

M
1
2N

3
2

,
1

M
1
2N

5
2

}
,

Σ =
2(σ2

ψ + µ2
ψ)2

3


1 1 0 0

1 16
15

0 0

0 0 1 1

0 0 1 16
15

 , Γ = Cψ


1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

 ,
and Cψ = 8(σ2

ψ + µ2
ψ)σ2 + 1

2
γ + 1

8
σ4.

It is important to note that under the assumption of normality of the additive error

X(m,n), the asymptotic variance of the proposed estimator ξ̂ is the Cramer-Rao lower

bound.

The following facts can be deduced from the large sample distribution of ξ̂.

(1) The large-sample variances of α̂1 and α̂2 depend on the random amplitude ψ(m,n),

through its mean µψ and the variance σ2
ψ as well as on the additive error through the

variance σ2 and the fourth moment γ. We note that

α̂1 = Op(M
− 3

2N−
1
2 ), β̂ = Op(M

− 1
2N−

3
2 ), α̂2 = Op(M

− 5
2N−

1
2 ), β̂2 = Op(M

− 1
2N−

5
2 ),

according to Theorem A.2, where Op(.) denotes bounded in probability. Therefore,

the chirp rate parameters in both the dimension, α2 and β2 can be estimated more

accurately than the frequency parameters α1 and β1 for a given sample size.

(2) The marginal asymptotic distributions of the estimators of parameters in each di-

mension are same when M = N . Then the asymptotic variances of the estimators

α̂1, α̂2, β̂1 and β̂2 are given by

Var(α̂1) = Var(β̂1) =
93Cψ

M4(σ2
ψ + µ2

ψ)2
, Var(α̂2) = Var(β̂2) =

135Cψ
M6(σ2

ψ + µ2
ψ)2

.

(3) The 2-D random amplitude sinusoidal signal model of the form

y(m,n) = ψ(m,n)ei(α
0
1m+β0

1n) +X(m,n)

is a special case of model (1) when α0
2 = β0

2 = 0. The unknown frequencies α0
1 and β0

1

can be estimated by maximizing a similar periodogram function of y2(m,n) as Q(ξ),

defined in (2). The theoretical results related to the estimator follow in the same way

as model (1).
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Appendix B

In addition to Assumption 2, the following assumptions are required to establish the

theoretical properties of the proposed estimators in case of multicomponent model.

Assumption 5. The sequence of multiplicative error corresponding to the k-th component

{ψk(m,n)} is a sequence of i.i.d. real-valued random variables with mean µkψ 6= 0, variance

σ2
kψ > 0, and finite fourth moment for k = 1, . . . , p. Additionally, {ψj(m,n)} and {ψk(m,n)}

for j 6= k are independent.

Assumption 6. The sequence of additive error {X(m,n)} is assumed to be independent of

{ψ1(m,n)}, . . . , {ψp(m,n)}.

Assumption 7. (α0
1k, α

0
2k, β

0
1k, β

0
2k) is an interior point of Ω for k = 1, . . . , p and (α0

1k, α
0
2k, β

0
1k,

β0
2k) 6= (α0

1j, α
0
2j, β

0
1j, β

0
2j) for k 6= j, j, k = 1, . . . , p.

Similar to the one component model, the estimator ξ̂k of ξ0k defined in Section 3 is a

consistent estimator and stated below in Theorem B.1. The asymptotic distribution of ξ̂k is

stated in Theorem B.2. The outline of the proof of Theorem B.1 is discussed in Appendix

E. The proof of Theorem B.2 involves similar calculations as the proof of Theorem A.2 and

is not provided here.

Theorem B.1: Under Assumptions 2, and 5-7, ξ̂k is a consistent estimator of ξ0k, for

k = 1, . . . , p.

Theorem B.2: Under Assumptions 2, and 5-7, as min{M,N} −→ ∞

(ξ̂k − ξ0k)D−1
d−→ N4(0, 4(σ2

kψ + µ2
kψ)2Σ−1k ΓkΣ

−1
k )

where Ckψ = 8(σ2
kψ + µ2

kψ)σ2 + 1
2
γ + 1

8
σ4; D is same as defined in Theorem A.2 and

Σk =
2(σ2

kψ + µ2
kψ)2

3


1 1 0 0

1 16
15

0 0

0 0 1 1

0 0 1 16
15

 , Γk = Ckψ


1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

 ,

for k = 1, . . . , p. Additionally, (ξ̂k − ξ0k)D−1 and (ξ̂j − ξ0j)D−1 for k 6= j are asymptotically

independently distributed.

The estimators of the unknown parameters coming from the same chirp component are

asymptotically dependent whereas estimators corresponding to different components are
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asymptotically independent. Because of independence of (ξ̂k− ξ0k)D−1 and (ξ̂j − ξ0j)D−1 for

k 6= j, we think that parameters can be estimated using sequential estimation method.

Appendix C

In this Appendix, we first state all the lemmas we require to prove theorems A.1 and

A.2. Then the consistency of the proposed estimator ξ̂ will be proved using these lemmas.

Lemma 1 and Lemma 2 will be used to get a compact form of the asymptotic distribution

as well as to prove the consistency of the proposed estimators of the unknown parameters.

Lemma 6 provides a sufficient condition for the proposed estimator to be consistent. Lemma

3 will be used to verify the condition given in Lemma 6. Lemma 4 is important to prove the

consistency of the proposed estimator in case of multicomponent model (stated in Theorem

B.1. Lemma 5 states the convergence of different series involving the squares of the random

variable y(m,n) under Assumptions 1-3.

Write z(m,n) = y2(m,n) = zR(m,n) + izI(m,n) and recall that ξ = (α1, α2, β1, β2)
T and

ξ0 = (α0
1, α

0
2, β

0
1 , β

0
2)T . Denote a(ξ0;m,n) = α0

1m+ α0
2m

2 + β0
1n+ β0

2n
2, then

zR(m,n) = ψ2(m,n) cos(2a(ξ0;m,n)) + (X2
R(m,n)−X2

I (m,n))

+2ψ(m,n)XR(m,n) cos(a(ξ0;m,n))− 2ψ(m,n)XI(m,n) sin(a(ξ0;m,n)),(7)

zI(m,n) = ψ2(m,n) sin(2a(ξ0;m,n)) + 2ψ(m,n)XI(m,n) cos(a(ξ0;m,n))

+2ψ(m,n)XR(m,n) sin(a(ξ0;m,n)) + 2XR(m,n)XI(m,n). (8)

We now provide the lemmas which are required to prove the consistency of ξ̂ stated in

Theorem A.1 in Appendix A.

Lemma 1. If (ω, δ) ∈ (0, π)× (0, π), then except for a countable number of points

lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

cos(ωm2 + δn2) = lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

sin(ωm2 + δn2) = 0, (9)

lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

cos2(ωm2 + δn2) = lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

sin2(ωm2 + δn2) =
1

2
.(10)
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Lemma 2. If (α1, α2, β1, β2) ∈ (0, π) × (0, π) × (0, π) × (0, π), then except for a countable

number of points and for l, k = 0, 1, . . ., the followings are true;

(a) lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

cos(α1m+ α2m
2 + β1n+ β2n

2) = 0,

(b) lim
min({M,N}→∞

1

MN

M∑
m=1

N∑
n=1

sin(α1m+ α2m
2 + β1n+ β2n

2) = 0,

(c) lim
min({M,N}→∞

1

Mk+1N l+1

M∑
m=1

N∑
n=1

mknl cos2(α1m+ α2m
2 + β1n+ β2n

2) =
1

2(k + 1)(l + 1)
,

(d) lim
min({M,N}→∞

1

Mk+1N l+1

M∑
m=1

N∑
n=1

mknl sin2(α1m+ α2m
2 + β1n+ β2n

2) =
1

2(k + 1)(l + 1)
.

Lemma 3. (Lahiri [13]) Let {X(m,n)} be a 2-D sequence of i.i.d. real-valued random

variables with mean zero and finite variance σ2 > 0, then for k, l = 0, 1, . . .

lim
min({M,N}→∞

sup
α1,α2,β1,β2

∣∣∣∣∣ 1

Mk+1N l+1

M∑
m=1

N∑
n=1

mknlX(m,n)ei(α1m+α2m2+β1n+β2n2)

∣∣∣∣∣ a.s.−→ 0.

Lemma 4. (Grover et al. [8]) If (ω1, ω2, ω3, ω4) ∈ (0, π) × (0, π) × (0, π) × (0, π) and

(θ1, θ2, θ3, θ4) ∈ (0, π) × (0, π) × (0, π) × (0, π) and (ω1, ω2, ω3, ω4) 6= (θ1, θ2, θ3, θ4), then

except for a countable number of points, for k, l = 0, 1, . . ., the following results hold.

(a) lim
min({M,N}→∞

1

M
2k+1

2 N
2l+1
2

M∑
m=1

N∑
n=1

cos(ω1m+ ω2m
2 + ω3n+ ω4n

2)×

cos(θ1m+ θ2m
2 + θ3n+ θ4n

2) = 0,

(b) lim
min({M,N}→∞

1

M
2k+1

2 N
2l+1
2

M∑
m=1

N∑
n=1

sin(ω1m+ ω2m
2 + ω3n+ ω4n

2)×

sin(θ1m+ θ2m
2 + θ3n+ θ4n

2) = 0,

(c) lim
min({M,N}→∞

1

M
2k+1

2 N
2l+1
2

M∑
m=1

N∑
n=1

cos(ω1m+ ω2m
2 + ω3n+ ω4n

2)×

sin(θ1m+ θ2m
2 + θ3n+ θ4n

2) = 0.
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Lemma 5. Under Assumptions 1-3, the following results are true for model (1).

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlzR(m,n) cos(2a(ξ0;m,n))
a.s−→ 1

2(k + 1)(l + 1)
(σ2

ψ + µ2
ψ), (11)

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlzI(m,n) cos(2a(ξ0;m,n))
a.s−→ 0, (12)

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlzR(m,n) sin(2a(ξ0;m,n))
a.s−→ 0, (13)

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlzI(m,n) sin(2a(ξ0;m,n))
a.s−→ 1

2(k + 1)(l + 1)
(σ2

ψ + µ2
ψ), (14)

for k, l = 0, 1, . . . , 4.

Proof of Lemma 5: Note that E[XR(m,n)XI(m,n)] = 0 and Var[XR(m,n)XI(m,n)] = σ4

4

and so the 2-D sequence {XR(m,n)XI(m,n)} i.i.d.∼ (0, σ
4

4
). Similarly, under Assumptions 1-3,

it can be shown that {
X2
R(m,n)−X2

I (m,n)
} i.i.d.∼ (0, 2γ − σ4

2
),{

ψ(m,n)XR(m,n)
} i.i.d.∼ (0, (σ2

ψ + µ2
ψ)
σ2

2
),{

ψ(m,n)XI(m,n)
} i.i.d.∼ (0, (σ2

ψ + µ2
ψ)
σ2

2
). (15)

Consider

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlzR(m,n) cos(2a(ξ0;m,n))

=
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlψ2(m,n) cos2(2a(ξ0;m,n))

+
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl(X2
R(m,n)−X2

I (m,n)) cos(2a(ξ0;m,n))

+
2

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlψ(m,n)XR(m,n) cos(a(ξ0;m,n)) cos(2a(ξ0;m,n))

+
2

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlψ(m,n)XI(m,n) sin(a(ξ0;m,n)) cos(2a(ξ0;m,n)).

Then, {(X2
R(m,n)−X2

I (m,n))} is a sequence of i.i.d. random variables with mean zero and

finite variance. Therefore, the second term converges to zero as min{M,N} −→ ∞ using



TWO-DIMENSIONAL RANDOM AMPLITUDE CHIRP 17

Lemma 3. Similarly, the third and fourth terms also converge to zero as min{M,N} −→ ∞
using (15). The first term in the above expression can be written as

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlψ2(m,n) cos2(2a(ξ0;m,n))

=
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl
(
ψ2(m,n)− E[ψ2(m,n)]

)
cos2(2a(ξ0;m,n))

+
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlE[ψ2(m,n)] cos2(2a(ξ0;m,n))

a.s.−→ 0 +
1

2(k + 1)(l + 1)
E[ψ2(m,n)]

=
1

2(k + 1)(l + 1)
(σ2

ψ + µ2
ψ),

using Lemma 2. We have used the fact that the fourth moment of ψ(m,n) exists. The other

three results, given in (12), (13) and (14) can be proved in a similar way.

Lemma 6. Let ξ̂ = (α̂1, α̂2, β̂1, β̂2)
T be an estimate of ξ0 = (α0

1, α
0
2, β

0
1 , β

0
2)T that maximizes

Q(ξ), defined in (2) and for any ε > 0, let Sξ
0

ε =
{
ξ : |ξ − ξ0| > 4ε

}
for some fixed

ξ0 ∈ (0, π)× (0, π)× (0, π)× (0, π). If for any ε > 0, as min{M,N} −→ ∞

lim sup sup
Sξ

0
ε

1

MN

[
Q(ξ)−Q(ξ0)

]
≤ 0, a.s. (16)

then as min{M,N} −→ ∞, ξ̂ −→ ξ0 a.s.

Proof of Lemma 6: This lemma can be proved by contradiction similarly as Wu [24].
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Proof of Theorem A.1: Expanding Q(ξ) around ξ0 and using y2(m,n) = z(m,n) =

zR(m,n) + izI(m,n), it can be written as

1

MN

[
Q(ξ)−Q(ξ0)

]
=

[ 1

MN

M∑
m=1

N∑
n=1

{
zR(m,n) cos(2a(ξ;m,n)) + zI(m,n) sin(2a(ξ;m,n))

}]2
+
[ 1

MN

M∑
m=1

N∑
n=1

{
−zR(m,n) sin(2a(ξ;m,n)) + zI(m,n) cos(2a(ξ;m,n))

}]2
−
[ 1

MN

M∑
m=1

N∑
n=1

{
zR(m,n) cos(2a(ξ0;m,n)) + zI(m,n) sin(2a(ξ0;m,n))

}]2
−
[ 1

MN

M∑
m=1

N∑
n=1

{
−zR(m,n) sin(2a(ξ0;m,n)) + zI(m,n) cos(2a(ξ0;m,n))

}]2
= T1 + T2 + T3 + T4.

Using Lemma 5 with k = l = 0, we have

1

MN

M∑
m=1

N∑
n=1

zR(m,n) cos(2a(ξ0;m,n))
a.s.−→ 1

2
(σ2

ψ + µ2
ψ),

1

MN

M∑
m=1

N∑
n=1

zI(m,n) cos(2a(ξ0;m,n))
a.s.−→ 0,

1

MN

M∑
m=1

N∑
n=1

zR(m,n) sin(2a(ξ0;m,n))
a.s.−→ 0,

1

MN

M∑
m=1

N∑
n=1

zI(m,n) sin(2a(ξ0;m,n))
a.s.−→ 1

2
(σ2

ψ + µ2
ψ).

Therefore,

lim
n−→∞

T3 = −(σ2
ψ + µ2

ψ)2 and lim
n−→∞

T4 = 0.
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Now

limmin{M,N}→∞ sup
Sξ

0
ε

T1

= limmin{M,N}→∞ sup
Sξ

0
ε

[ 1

MN

M∑
m=1

N∑
n=1

{
zR(m,n) cos(2a(ξ;m,n)) + zI(m,n) sin(2a(ξ;m,n))

}]2
= limM,N→∞ sup

Sξ
0
ε

[ 1

MN

M∑
m=1

N∑
n=1

{
ψ2(m,n) cos[2a(ξ0 − ξ;m,n)]

+2X2
R(m,n)X2

I (m,n) sin(2a(ξ;m,n)) + (X2
R(m,n)−X2

I (m,n)) cos(2a(ξ;m,n))

+2ψ(m,n)XR(m,n) cos[a(2ξ0 − ξ;m,n)] + 2ψ(m,n)XI(m,n) sin[(a(2ξ0 − ξ;m,n)]
}]2

= limM,N→∞ sup
|ξ0
−ξ|>ε

[ 1

MN

M∑
m=1

N∑
n=1

{
(ψ2(m,n)− (σ2

ψ + µ2
ψ)) cos[2a(ξ0 − ξ;m,n)]

+2ψ(m,n)XR(m,n) cos[(a(2ξ0 − ξ;m,n)] + 2ψ(m,n)XI(m,n) sin[(a(2ξ0 − ξ;m,n)]

+(σ2
ψ + µ2

ψ) cos[2a(ξ0 − ξ;m,n)]
}]2

[
The second and third terms tend to zero for large M,N using Lemma 3

]
a.s.−→ 0,

using Lemma 1 and Lemma 3. Similarly, we can show that limn−→∞ sup
Sξ

0
ε
T2

a.s.−→ 0. There-

fore,

limmin{M,N}→∞ sup
Sξ

0
ε

1

MN

[
Q(ξ)−Q(ξ0)

]
= limmin{M,N}→∞ sup

Sε

[
T1 + T2 + T3 + T4

]
→ −(σ2

ψ + µ2
ψ)2 < 0 a.s.

Hence, using Lemma 6, α̂1, α̂2, β̂1 and β̂2 which maximize Q(ξ) are consistent estimators of

α0
1, α

0
2, β

0
1 and β0

2 , respectively.

Appendix D

Theorem A.2 is proved in this Appendix which states the asymptotic distribution of the

proposed estimators of the unknown parameters of the single component model (1). The

proof first uses the multivariate Taylor series expansion of the first order derivative vector of

Q(ξ) up to the first order term. The first order derivatives of Q(ξ) with respect to αk, and
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βk, k = 1, 2 are given below;

∂Q(ξ)

∂αk
=

2

MN
f1(ξ)g1(k; ξ) +

2

MN
f2(ξ)g2(k; ξ), (17)

∂Q(ξ)

∂βk
=

2

MN
f1(ξ)h1(k; ξ) +

2

MN
f2(ξ)h2(k; ξ), (18)

where

f1(ξ) =
M∑
m=1

N∑
n=1

[
zR(m,n) cos(2a(ξ;m,n)) + zI(m,n) sin(2a(ξ;m,n))

]
,

f2(ξ) =
M∑
m=1

N∑
n=1

[
zI(m,n) cos(2a(ξ;m,n))− zR(m,n) sin(2a(ξ;m,n))

]
,

g1(k; ξ) =
M∑
m=1

N∑
n=1

2mk
[
zI(m,n) cos(2a(ξ;m,n))− zR(m,n) sin(2a(ξ;m,n))

]
,

g2(k; ξ) =
M∑
m=1

N∑
n=1

2mk
[
−zI(m,n) sin(2a(ξ;m,n))− zR(m,n) cos(2a(ξ;m,n))

]
,

h1(k; ξ) =
M∑
m=1

N∑
n=1

2nk
[
zI(m,n) cos(2a(ξ;m,n))− zR(m,n) sin(2a(ξ;m,n))

]
,

h2(k; ξ) =
M∑
m=1

N∑
n=1

2nk
[
−zI(m,n) sin(2a(ξ;m,n))− zR(m,n) cos(2a(ξ;m,n))

]
.

Now using Lemma 5 with k = l = 0, it immediately follows that

(a) lim
min{M,N}→∞

1

MN
f1(ξ

0) = (σ2
ψ + µ2

ψ) and (b) lim
min{M,N}→∞

1

MN
f2(ξ

0) = 0 a.s. (19)

Therefore, for large M and N ,

∂Q(ξ)

∂αk

∣∣∣∣
ξ=ξ0

=
2

MN
f1(ξ

0)g1(k; ξ0) and
∂Q(ξ)

∂βk

∣∣∣∣
ξ=ξ0

=
2

MN
f1(ξ

0)h1(k; ξ0), k = 1, 2,

due to (b) part of (19), ignoring second terms in (17) and (18) which involve f2(ξ). The second

order derivatives of Q(ξ) with respect to αk and βk for k = 1, 2 with proper normalizations

can be calculated.
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Now, we can show the following using Lemma 5, for k, l = 0, . . . , 4,

lim
min{M,N}→∞

1

M3N

∂2Q(ξ)

∂α2
1

∣∣∣∣
ξ0

= −2

3
(σ2

ψ + µ2
ψ)2 = lim

min{M,N}→∞

1

MN3

∂2Q(ξ)

∂β2
1

∣∣∣∣
ξ0
,

lim
min{M,N}→∞

1

M5N

∂2Q(ξ)

∂α2
2

∣∣∣∣
ξ0

= −32

45
(σ2

ψ + µ2
ψ)2 = lim

min{M,N}→∞

1

MN5

∂2Q(ξ)

∂β2
2

∣∣∣∣
ξ0
,

lim
min{M,N}→∞

1

M4N

∂2Q(ξ)

∂α1∂α2

∣∣∣∣
ξ0

= −2

3
(σ2

ψ + µ2
ψ)2 = lim

min{M,N}→∞

1

MN4

∂2Q(ξ)

∂β1∂β2

∣∣∣∣
ξ0
,

lim
min{M,N}→∞

1

M2N2

∂2Q(ξ)

∂α1∂β1

∣∣∣∣
ξ0

= 0 = lim
min{M,N}→∞

1

M3N3

∂2Q(ξ)

∂α2∂β2

∣∣∣∣
ξ0
,

lim
min{M,N}→∞

1

M2N3

∂2Q(ξ)

∂α1∂β2

∣∣∣∣
ξ0

= 0 = lim
min{M,N}→∞

1

M3N2

∂2Q(ξ)

∂α2∂β1

∣∣∣∣
ξ0
. (20)

Write Q′(ξ) =

(
∂Q(ξ)

∂α1

,
∂Q(ξ)

∂α2

,
∂Q(ξ)

∂β1
,
∂Q(ξ)

∂β2

)T
as the 4×1 vector of first order derivatives

of Q(ξ) and let Q′′(ξ) be the 4× 4 matrix of second order derivatives of of Q(ξ). Consider

the diagonal matrix D given in Theorem A.2. The diagonal entries of D correspond to the

rate of convergence of each parameter estimator. Expand Q′(ξ̂) using bivariate Taylor series

expansion around ξ0,

Q′(ξ̂)−Q′(ξ0) = Q′′(ξ̄)(ξ̂ − ξ0),

where ξ̄ is a point lies on the line joining ξ̂ and ξ0. Observe that Q′(ξ̂) = 0 as ξ̂ maximizes

Q(ξ), the above equation can be written as

−[DQ′(ξ0)] = DQ′′(ξ̄)DD−1(ξ̂ − ξ0)

⇒ D−1(ξ̂ − ξ0) = −[DQ′′(ξ̄)D]−1[DQ′(ξ0)],

provided [DQ′′(ξ̄)D] is an invertible matrix a.s. Because ξ̂ −→ ξ0 a.s. and Q′′(ξ) is a

continuous function of ξ, we have

lim
min{M,N}→∞

[DQ′′(ξ̄)D] = lim
min{M,N}→∞

[DQ′′(ξ0)D] = −Σ,

using continuous mapping theorem. The matrix Σ can be obtained using limits given in (20)

as

Σ =
2(σ2

ψ + µ2
ψ)2

3


1 1 0 0

1 16
15

0 0

0 0 1 1

0 0 1 16
15

 .
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Write G1 =

[
1 1

1 16
15

]
, then Σ =

[
G1 0

0 G1

]
where 0 is a 2 × 2 zero matrix. Using (19), the

elements of DQ′(ξ0) are

1

M
3
2N

1
2

∂Q(ξ)

∂α1

∣∣∣∣
ξ0

= 2
1

MN
f1(ξ

0)
1

M
3
2N

1
2

g1(1; ξ0),

1

M
5
2N

1
2

∂Q(ξ)

∂α2

∣∣∣∣
ξ0

= 2
1

MN
f1(ξ

0)
1

M
5
2N

1
2

g1(2; ξ0),

1

M
1
2N

3
2

∂Q(ξ)

∂β1

∣∣∣∣
ξ0

= 2
1

MN
f1(ξ

0)
1

M
1
2N

3
2

h1(1; ξ0),

1

M
1
2N

5
2

∂Q(ξ)

∂β2

∣∣∣∣
ξ0

= 2
1

MN
f1(ξ

0)
1

M
1
2N

5
2

h1(2; ξ0),

for large M and N . Therefore, to find the asymptotic distribution of DQ′(ξ0), we need to

study the large sample distribution of 1

M
3
2N

1
2
g1(1; ξ0) in the first term, 1

M
5
2N

1
2
g1(2; ξ0) in the

second term and so on. Replacing zR(m,n) and zI(m,n) in g1(k; ξ0), k = 1, 2, we have

1

M
2k+1

2 N
1
2

g1(k; ξ0) =
2

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mkzI(m,n) cos(2a(ξ0;m,n))

− 2

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mkzR(m,n) sin(2a(ξ0;m,n))

=
4

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mkXR(m,n)XI(m,n) cos(2a(ξ0;m,n))

+
4

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mkψ(m,n)XI(m,n) cos(a(ξ0;m,n))

− 4

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mkψ(m,n)XR(m,n) sin(a(ξ0;m,n))

− 2

M
2k+1

2 N
1
2

M∑
m=1

N∑
n=1

mk(X2
R(m,n)−X2

I (m,n)) sin(2a(ξ0;m,n)).

The sequence of random variables {XR(m,n)XI(m,n)}, {ψ(m,n)XR(m,n)}, {ψ(m,n)XI(m,n)}
and {(X2

R(m,n) −X2
I (m,n))} are all zero mean and finite variance i.i.d. random variables

(using Lemma 5). Therefore, E[ 1

M
3
2N

1
2
g1(1; ξ0)] = 0 and E[ 1

M
5
2N

1
2
g1(2; ξ0)] = 0 for large

M and N . We observe that all the terms above satisfy the Lindeberg-Feller’s condition.

So, 1

M
3
2N

1
2
g1(1; ξ0) and 1

M
5
2N

1
2
g1(2; ξ0) converge to normal distributions with zero mean and

finite variances.
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Similarly, 1

M
1
2N

3
2
h1(1; ξ0) and 1

M
1
2N

5
2
h1(2; ξ0) also converge to normal distribution. In order

to find the large sample variances and covariances of elements of DQ′(ξ0), we first find the

variance of 1

M
3
2N

1
2
g1(1; ξ0) for large M and N .

Var
[ 1

M
3
2N

1
2

g1(1; ξ0)
]

=
1

M3N
Var
[ M∑
m=1

N∑
n=1

m
{

4XR(m,n)XI(m,n) cos(2a(ξ0;m,n)) + 4ψ(m,n)XI(m,n) cos(a(ξ0;m,n))

−4ψ(m,n)XR(m,n) sin(a(ξ0;m,n))− 2(X2
R(m,n)−X2

I (m,n)) sin(2a(ξ0;m,n))
}]

=
1

M3N
E

[
16

M∑
m=1

N∑
n=1

m2X2
R(m,n)X2

I (m,n) cos2(2a(ξ0;m,n))

+16
M∑
m=1

N∑
n=1

m2ψ2(m,n)X2
I (m,n) cos2(a(ξ0;m,n))

+16
M∑
m=1

N∑
n=1

m2ψ2(m,n)X2
R(m,n) sin2(a(ξ0;m,n))

+4
M∑
m=1

N∑
n=1

m2(X2
R(m,n)−X2

I (m,n))2 sin2(2a(ξ0;m,n))

]
[
The cross-product terms become zero using Lemma 1 and independence of

ψ(m,n), XR(m,n) and XI(m,n).
]

−→ 16.
σ2

2
.
σ2

2
.
1

6
+ 16.

σ2

2
.(σ2

ψ + µ2
ψ).

1

6
+ 16.

σ2

2
.(σ2

ψ + µ2
ψ).

1

6
+ 4.(2γ − σ4

2
)
1

6

=
8

3

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
.

Similarly, we can show as min{M,N} −→ ∞,

Var
[ 1

M
5
2N

1
2

g1(2; ξ0)
]
−→ 8

5

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Cov
[ 1

M
3
2N

1
2

g1(1; ξ0),
1

M
5
2N

1
2

g1(2; ξ0)
]
−→ 2

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Var
[ 1

M
1
2N

3
2

h1(1; ξ0)
]
−→ 8

3

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Var
[ 1

M
1
2N

5
2

h1(2; ξ0)
]
−→ 8

5

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Cov
[ 1

M
1
2N

3
2

h1(1; ξ0),
1

M
1
2N

5
2

h1(2; ξ0)
]
−→ 2

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,
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Cov
[ 1

M
3
2N

1
2

g1(1; ξ0),
1

M
1
2N

3
2

h1(1; ξ0)
]
−→ 2

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Cov
[ 1

M
5
2N

1
2

g1(2; ξ0),
1

M
1
2N

5
2

h1(2; ξ0)
]
−→ 8

9

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Cov
[ 1

M
3
2N

1
2

g1(1; ξ0),
1

M
1
2N

5
2

h1(2; ξ0)
]
−→ 4

3

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
,

Cov
[ 1

M
5
2N

1
2

g1(2; ξ0),
1

M
1
2N

3
2

h1(1; ξ0)
]
−→ 4

3

[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]
.

Now, note that DQ′(ξ0) can be written as

DQ′(ξ0) =
2

MN
f1(ξ

0)
[ 1

M
3
2N

1
2

g1(1; ξ0),
1

M
5
2N

1
2

g1(2; ξ0),
1

M
1
2N

3
2

h1(1; ξ0),
1

M
1
2N

5
2

h1(2; ξ0)
]
.

(21)

Then, as min{M,N} −→ ∞, 2
MN

f1(ξ
0)

a.s.−→ 2(σ2
ψ + µ2

ψ) using (19) and[ 1

M
3
2N

1
2

g1(1; ξ0),
1

M
5
2N

1
2

g1(2; ξ0),
1

M
1
2N

3
2

h1(1; ξ0),
1

M
1
2N

5
2

h1(2; ξ0)
]

d−→ N4(0,Γ),

where

Γ = 8
[
(σ2

ψ + µ2
ψ)σ2 +

1

2
γ +

1

8
σ4
]


1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

 .
Therefore, Slutsky’s theorem can be applied in (21) and as n −→∞, we have

DQ′(ξ0)
d−→ N4(0, 4(σ2

ψ + µ2
ψ)2Γ),

and hence

D−1(ξ̂ − ξ0) d−→ N4(0, 4(σ2
ψ + µ2

ψ)2Σ−1ΓΣ−1).

That proves the theorem.

Appendix E

In this Appendix, we provide an outline of the proof of Theorem B.1. Write

J(ξ) =
1

MN

∣∣∣∣∣
M∑
m=1

N∑
n=1

y2(m,n)e−i2(α1m+α2m2+β1n+β2n2)

∣∣∣∣∣
2
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where y(m,n) is from the multicomponent model (4). Also write x(m,n) = y2(m,n) and

x(m,n) = xR(m,n) + ixI(m,n), then xR(m,n) and xI(m,n) are explicitly given by

xR(m,n)

=

p∑
k=1

ψ2
k(m,n) cos(2a(ξ0k;m,n)) + 2

∑
k 6=j

ψk(m,n)ψj(m,n) cos(a(ξ0k + ξ0j ;m,n))

+(X2
R(m,n)−X2

I (m,n)) + 2

p∑
k=1

ψk(m,n)
{
XR(m,n) cos(a(ξ0k;m,n))−XI(m,n) sin(a(ξ0k;m,n))

}
xI(m,n)

=

p∑
k=1

ψ2
k(m,n) sin(2a(ξ0k;m,n)) + 2

∑
k 6=j

ψk(m,n)ψj(m,n) sin(a(ξ0k + ξ0j ;m,n))

+2XR(m,n)XI(m,n) + 2

p∑
k=1

ψk(m,n)
{
XR(m,n) sin(a(ξ0k;m,n)) +XI(m,n) cos(a(ξ0k;m,n))

}
.

using the notation a(ξ0k;m,n) = α0
1km + α0

2km
2 + β0

1kn + β0
2kn

2. To prove Theorem B.1, an

equivalent lemma to Lemma 5 is required for the multicomponent model given in (4).

Lemma 7. Under Assumptions 2, 5 and 6, the following results are true for model (4).

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlxR(m,n) cos(2a(ξ0k;m,n))
a.s−→ 1

2(k + 1)(l + 1)
(σ2

kψ + µ2
kψ),

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlxI(m,n) cos(2a(ξ0k;m,n))
a.s−→ 0,

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlxR(m,n) sin(2a(ξ0k;m,n))
a.s−→ 0,

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlxI(m,n) sin(2a(ξ0k;m,n))
a.s−→ 1

2(k + 1)(l + 1)
(σ2

kψ + µ2
kψ),

for k, l = 0, 1, . . . , 4.

Proof of Lemma 7: Observe that we can show that{
XR(m,n)XI(m,n)

} i.i.d.∼ (0,
σ4

4
),

{
X2
R(m,n)−X2

I (m,n)
} i.i.d.∼ (0, 2γ − σ4

2
),{

ψk(m,n)XR(m,n)
} i.i.d.∼ (0, (σ2

kψ + µ2
kψ)

σ2

2
),{

ψk(m,n)XI(m,n)
} i.i.d.∼ (0, (σ2

kψ + µ2
kψ)

σ2

2
), k = 1, . . . , p. (22)
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Consider

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknlxR(m,n) cos(2a(ξ0k;m,n))

=
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl

{
p∑
j=1

ψ2
j (m,n) cos2(2a(ξ0j ;m,n))

}
cos2(2a(ξ0k;m,n))

+
1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl(X2
R(m,n)−X2

I (m,n)) cos(2a(ξ0k;m,n))

+
2

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl
p∑
j=1

ψj(m,n)XR(m,n) cos(a(ξ0j ;m,n)) cos(2a(ξ0k;m,n))

− 2

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl
p∑
j=1

ψj(m,n)XI(m,n) sin(a(ξ0j ;m,n)) cos(2a(ξ0k;m,n))

+
2

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl
∑
j 6=k

ψj(m,n)ψk(m,n) cos(a(ξ0k + ξ0j ;m,n)) cos(2a(ξ0k;m,n)).

As {X2
R(m,n) − X2

I (m,n)}, {ψj(m,n)XR(m,n)} and {ψj(m,n)XI(m,n)} are sequences of

i.i.d. random variables with mean zero and finite variance, the second, third and fourth

terms vanish for large M and N using Lemma 3. Using independence of {ψj(m,n)} and

{ψk(m,n)} and part (a) of Lemma 4, the last term goes to zero as M,N →∞. Similarly as

in the proof of Lemma 5, using Lemma 2, the first term can be shown as

1

Mk+1

1

N l+1

M∑
m=1

N∑
n=1

mknl

{
p∑
j=1

ψ2
j (m,n) cos2(2a(ξ0j ;m,n))

}
cos2(2a(ξ0k;m,n))

a.s.−→ 1

2(k + 1)(l + 1)
(σ2

kψ + µ2
kψ).

The other three results can be proved similarly.

In order to prove Theorem B.1, a lemma involving J(ξ), similar to Lemma 6 is also

required. Then, it can be shown that for k = 1, . . . , p

1

MN
J(ξ0k)→ (σ2

kψ + µ2
kψ), a.s.

and

limM,N→∞ sup
Skε

1

MN
J(ξk) = 0 a.s.
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where Skε =
{
ξk : |ξk−ξ0k| > ε

}
for some fixed ξ0k ∈ (0, π)×(0, π)×(0, π)×(0, π). Therefore,

limM,N→∞ sup
Skε

1

MN

[
J(ξk)− J(ξ0k)

]
< 0 a.s.

and the estimator ξ̂k of ξ0k that maximizes J(ξ) locally, is a consistent estimator.
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