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Abstract. In this paper, we introduce a special multichannel model in the class of multi-

channel sinusoidal model. In multichannel sinusoidal model, the inherent frequencies from

distinct channels are same with different amplitudes. The underline assumption here is that

there is a fundamental frequency which is same in each channel and the effective frequencies

are harmonics of this fundamental frequency. We name this model as multichannel funda-

mental frequency with harmonics model. It is assumed that the errors in individual channel

are independently and identically distributed whereas the signal from different channels are

correlated. We propose generalized least squares estimators which become the maximum

likelihood estimators also, when the error distribution of the different channels follows a

multivariate Gaussian distribution. The proposed estimators are strongly consistent and

asymptotically normally distributed. We have provided the implementation of the general-

ized least squares estimators in practice. Special attention has been taken when the number

of channels is two and both have equal number of components. Simulation experiments have

been carried out to observe the performances of the proposed estimators. Real data sets

have been analyzed using a two-channel fundamental frequency model.

1. Introduction

The problem of estimation of parameters in harmonic signals, whose frequencies are integer

multiples of an inherent fundamental frequency is an important problem in many areas of

science and technology. It is required in wide range of applications, for example, music

classification, compression of audio and voiced speech [19], [10], biomedical research for

human circadian system ([2], [3]), modeling male voice sound [12], and so on. The problem

of estimation of the fundamental frequency along with the other parameters are of interest.

But many times, the frequencies of sinusoidal components from different sources are close

to each other and in such a situation a multichannel set-up is more useful. Apart from that
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if these frequencies are harmonics of a fundamental frequency, a multichannel fundamental

frequency model is more appropriate to use in practice.

The problem of finding the unknown parameters of sinusoidal signals from multichannel

outputs has received a considerable amount of attention in recent times. Starting from

Sakai [17], researchers were interested in different forms of multichannel sinusoidal signals.

Tzagkarakis and Mouchtaris [18] proposed a multichannel version of sinusoids plus noise

model and applied to spot microphone signals of a music recording. Griffin et al. [6] applied

compressed sensing to multichannel audio coding. Zhou, So and Christensen [23] addressed

the problem of parametric modeling of multichannel damped sinusoidal signals utilizing the

shift invariance property of the signal subspace under the assumption of white Gaussian

noise sequences. Chan, So and Sun [4] addressed the parameter estimation of exponentially

damped sinusoids in white noise using multichannel measurements. Zhou et al. [22] discussed

a robust estimation method of the parameters of multichannel sinusoidal signals. Nandi and

Kundu [14] considered a multichannel sinusoidal model with single component under channel-

wise correlated error and discussed the problem of estimation of the unknown parameters

and the asymptotic properties of the proposed estimators.

In this paper we are going to introduce a multichannel sinusoidal model with a fundamental

frequency. Different channels may have different number of harmonics. A M -channel model

with p1, . . . , pM numbers of harmonics can be written as
y1(t)

...

yM(t)

 =


µ1(t;α

0
1, λ

0)
...

µM(t;α0
M , λ

0)

+


e1(t)

...

eM(t)

 ; t = 1, . . . , n. (1)

Here

µm(t;α0
m, λ

0) =

pm∑
j=1

[
A0
mj cos(jλ0t) +B0

mj sin(jλ0t)
]

; m = 1, . . . ,M,

0 < λ0 < π/pM is the fundamental frequency and α0
m = (A0

m1, B
0
m1, . . . , A

0
mpm , B

0
mpm)>;

for m = 1, . . . ,M are the amplitude parameters associated with the m-th channel. Let us

use the following notations; α0 = (α0>
1 , . . . ,α0>

M )> and ξ0 = (α0>, λ0)>. Without loss of

generality, it is assumed that p1 ≤ . . . ≤ pM and pM << n. Note that the restriction on the

fundamental frequency namely 0 < λ0 < π/pM is a very natural restriction. Even in a single

channel multicomponent sinusoidal frequency model which has the following mean function

µ(t) =
K∑
j=1

{Aj cos(ωjt) +Bj sin(ωjt)} ; t = 1, . . . , n,
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has the following restrictions on the frequencies: 0 < ω1 6= ω2 · · · 6= ωK < π, due to

the periodic nature of the function, see for example Hannan [8]. Hence, for the fundamental

frequency with harmonics model, the above restriction is natural as it was originally assumed

by Quinn and Thomson [15], and since then by all the other authors also who have considered

this model, see for example Chapter 5 of Nandi and Kundu [13].

The model (1) can be written in a vector form based on the following notations, y(t) =

(y1(t), . . . , yM(t))>, µ0(t) =
(
µ1(t;α

0
1, λ

0), . . . , µM(t;α0
M , λ

0)
)>

and e(t) = (e1(t), . . . , eM(t))>,

as follows:

y(t) = µ0(t) + e(t); t = 1, . . . n.

The problem is to estimate the unknown parameters namely {α0
m;m = 1, . . . ,M} and λ0,

based on the sample {y(t); t = 1, . . . , n} under suitable assumptions on {e(t); t = 1, . . . , n}.

Nandi and Kundu [14], had considered multichannel one component sinusoidal model,

whereas in this manuscript we have considered multichannel fundamental frequency with

harmonics model. As it has been observed in one channel model also that even though the

fundamental frequency with harmonics model has less number of non-linear parameters than

the sum of sinusoidal model, it needs special attention. The asymptotic properties of the

least squares estimators of the two models are quite different and one cannot be obtained

from the other, see for example the Chapter 4 of Nandi and Kundu [13]. That is the main

purpose of this paper.

Since, it is assumed p1 ≤ . . . ≤ pM , µ0(t) can be expressed as

µ0(t) =

p1∑
j=1


A0

1j B0
1j

A0
2j B0

2j
...

...

A0
Mj B0

Mj


(

cos(jλ0t)

sin(jλ0t)

)
+

p2∑
j=p1+1


0 0

A0
2j B0

2j
...

...

A0
Mj B0

Mj


(

cos(jλ0t)

sin(jλ0t)

)
+ . . .+ .

pM∑
j=pM−1+1


0 0
...

...

0 0

A0
Mj B0

Mj


(

cos(jλ0t)

sin(jλ0t)

)
.

In model (1), the M -variate random vector y(t) represents the signal from the M channels at

time point t; λ0 is the fundamental frequency and in the first channel p1 number of harmonics

of λ0 is present, similarly, in the second channel, p2 number of harmonics is present, and so

on. A frequency jλ0 is said to be the jth harmonics of the fundamental frequency λ0. For
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j = 1, . . . , pm, A0
mj and B0

mj denote the amplitudes corresponding to the jth harmonics in

the m-th channel for m = 1, . . . ,M . The elements of the random vector e(t) represent the

channels-wise noise parts and its structure is stated in Assumption 1.

Assumption 1. The error term e(t) = (e1(t), . . . , eM(t))> is a sequence of independent and

identically distributed (i.i.d.) random vectors with mean vector 0 and the dispersion matrix

Σ = ((σij)). It is assumed that Σ−1 = ((σij)) exists.

The main aim of this paper is to propose the generalized least squares estimators (GLSEs)

of the unknown parameters. It may be mentioned that under the assumption of multivariate

normality of the error components, the GLSEs become the maximum likelihood estimators

also. First it is assumed that the dispersion matrix Σ is known and we have developed

the GLSEs of the unknown parameters. It is observed that the proposed estimators can

be obtained by solving only one non-linear equation. We have developed the consistency

and the asymptotic normality properties of the GLSEs. We have performed an extensive

simulations to show the effectiveness of the proposed estimators. The performances are along

the expected lines.

Since in practice, the dispersion matrix Σ may not be known, hence, we cannot use the

GLSEs directly. In practice we propose to use a two-step procedure. In the first step we

obtain a consistent estimator of Σ based on the least squares estimators (LSEs) of ξ. To

compute the LSEs of ξ, one does not need to know Σ. Now to compute the GLSEs of ξ,

we have used this consistent estimator of Σ as a plug-in estimator. It has been explained in

details in the data analysis section.

The two-channel model when the number of harmonics is same has several applications in

practice. If p1 = p2 = p, the mean vector of the two-channel model takes the following form.

µ0(t) =

p∑
j=1

(
A0

1j B0
1j

A0
2j B0

2j

)(
cos(jλ0t)

sin(jλ0t)

)
. (2)

We have discussed this special case in details. It has several applications in different fields,

see for example Christensen [5], Handel and Host-Madsen [7], Nandi and Kundu [14] and the

references cited there in. Further, it is observed that in this case some of the calculations can

be performed more explicitly, and the asymptotic results can be written in a more compact

form.

The rest of the article is organized as follows. In Section 2, we consider the GLSEs of the

model (1). We have provided the methodologies, asymptotic properties of the estimators
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and the implementation of the GLSEs in practice. A special case when M = 2, and p1 = p2

has been discussed in Section 3. In Section 4, we provide numerical experiment results based

on simulations. Analyses of real datasets are discussed in Section 5 and finally in Section 6,

we conclude the paper. The proofs are provided in Appendices.

2. Generalized Least Squares Estimators

2.1. Methodology. The GLSEs of the unknown parameters can be obtained by minimizing

S(α1, . . . ,αM , λ) = S(ξ) = |Σ|
n∑
t=1

(y(t)− µ(t))>Σ−1 (y(t)− µ(t)) .

Here it is assumed that Σ is known. We use the notation P = p1 + . . .+pM and the GLSE of

ξ as ξ̂. Since Σ is assumed to be known, hence, minimizing S(ξ) is equivalent to minimize

R(ξ), where

R(ξ) =
n∑
t=1

(y(t)− µ(t))>Σ−1 (y(t)− µ(t)) . (3)

First we will show that ξ̂ can be obtained by solving only one one-dimensional optimization

problem. Let us write

R(ξ) =
n∑
t=1

(y(t)−X t(λ)α)>Σ−1 (y(t)−X t(λ)α) . (4)

Here X t(λ) is a M × 2P matrix whose m-th row is

(cos(λt) sin(λt) · · · cos(p1λt) sin(p1λt) · · · cos(pmλt) sin(pmλt) 0 · · · 0),

for m = 1, . . . ,M . For given λ, the GLSEs of α can be obtained as

α̂(λ) =

[
n∑
t=1

X>t (λ)Σ−1X t(λ)

]−1 [ n∑
t=1

X>t (λ)Σ−1y(t)

]
. (5)

Hence, α̂, the GLSE of λ, can be obtained by minimizing Q(λ), where

Q(λ) =
n∑
t=1

(y(t)−X t(λ)α̂(λ))>Σ−1 (y(t)−X t(λ)α̂(λ)) . (6)

Once, λ̂ is obtained, the GLSEs of α can be obtained as α̂(λ̂). Note that the minimization of

Q(λ) can be performed by using one dimensional optimization method, for example Newton-

Raphson method or bisection method may be used for this purpose. It is well known that

the least squares surface has several local minima, see for example Rice and Rosenblatt

[16]. Hence, special attention needs to be taken to choose the initial guesses. The Fourier
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frequencies or the periodogram function are usually used for this purpose. The details are

explained in the data analysis section.

If Σ = I, the identity matrix, or we want to find the least squares estimators (LSEs) of

ξ, then it can be obtained by minimizing

R1(ξ) =
n∑
t=1

(y(t)− µ(t))> (y(t)− µ(t)) . (7)

Note that (7) can be written as

R1(ξ) =
M∑
j=1

(Y j −Zj(λ)αj)
> (Y j −Zj(λ)αj) , (8)

where Y j = (yj(1), . . . , yj(n))> and

Zj(λ) =


cos(λ) sin(λ) . . . cos(pjλ) sin(pjλ)

cos(2λ) sin(2λ) . . . cos(2pjλ) sin(2pjλ)
...

...
...

...
...

cos(nλ) sin(nλ) . . . cos(npjλ) sin(npjλ)

 .
For fixed λ, the LSEs of αj, say α̃j(λ), can be obtained as

α̃j(λ) =
(
Zj(λ)>Zj(λ)

)−1
Z>j (λ)Y j; j = 1, . . . ,M.

Then λ̂, LSE of λ0, can be obtained by minimizing

Q1(λ) =
M∑
j=1

Y >j

(
I −Zj(λ)

(
Zj(λ)>Zj(λ)

)−1
Zj(λ)>

)
Y j. (9)

If p1 = . . . = pM = p, then Z1(λ) = · · · = ZM(λ) = Z(λ), where

Z(λ) =


cos(λ) sin(λ) . . . cos(pλ) sin(pλ)

cos(2λ) sin(2λ) . . . cos(2pλ) sin(2pλ)
...

...
...

...
...

cos(nλ) sin(nλ) . . . cos(npλ) sin(npλ)

 . (10)

2.2. Asymptotic Properties. In this section we provide the consistency and the asymp-

totic normality properties of the GLSEs as well as for the LSEs.

Theorem 2.1. Under Assumption 1, if Σ is known, then ξ̂ is a strongly consistent estimator

of ξ0.
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Proof of Theorem 2.1 See in Appendix A.

To provide the asymptotic normality properties of the GLSEs we use the following nota-

tions. The 2P + 1 diagonal matrix D as

D = diag
{
n1/2, . . . , n1/2, n3/2

}
. (11)

Let us denote the m-th row of Σ−1 as σm, a 1 × M vector, the M × 1 vectors Aj =

(A1j, . . . , AMj)
>, Bj = (B1j, . . . , BMj)

>, for j = 1, . . . , pM . Further, Amj = Bmj = 0, for

pm + 1 ≤ j ≤ pM .

Theorem 2.2. Under Assumption 1,

D
(
ξ̂ − ξ0

)
d−→ N2P+1

(
0, 2Π−1

)
.

Here, ‘
d−→’ means convergence in distribution. The (2P + 1) × (2P + 1) matrix Π has the

following form:

Π =


Π11 Π12 . . . Π1M a1

Π>12 Π22 . . . Π2M a2

...
...

...
...

...

Π>1M Π>2M . . . ΠMM aM

a>1 a>2 . . . aM γ

 . (12)

Here Πmm is a 2pm × 2pm diagonal matrix for m = 1, . . . ,M , γ is a scalar, the rest of

matrices and vectors are compatible. The matrices are as follows:

Πmm = σmmI2pm , Πmk =
[
σmkI2pm 0

]
; 1 ≤ m ≤ k ≤M.

Let us use the following notations. The M ×M , diagonal matrices Im, for m = 1, . . . ,M

are as follows:

I1 = diag{1, . . . , 1}, I2 = diag{0, 1, . . . , 1}, . . . IM = diag{0, . . . , 0, 1}.
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The vectors a>1 = (a11, b11, . . . , a1p1 , b1p1), . . . , a
>
M = (aM1, bM1, . . . , aMpM , bMpM ), where

a1j =
j

2
σ1I1Bj, b1j = −j

2
σ1I1Aj; j = 1, . . . , p1

a2j =
j

2
σ2I1Bj, b2j = −j

2
σ2I1Aj; j = 1, . . . , p1

a2j =
j

2
σ2I2Bj, b2j = −j

2
σ2I2Aj; j = p1 + 1, . . . , p2

...
...

aMj =
j

2
σMI1Bj, bMj = −j

2
σMI1Aj; j = 1, . . . , p1

...
...

aMj =
j

2
σMIMBj, bMj = −j

2
σMIMAj; j = p1 + . . .+ pM−1 + 1, . . . , pM ,

γ =
1

3

[
M∑
m=1

pm∑
j=1

σmmj2(A2
mj +B2

mj) + 2
∑

1≤m<k≤M

pm∑
j=1

σmkj2(AmjAkj +BmjBkj)

]
.

Proof of Theorem 2.2 See in Appendix B.

It is important to observe that the GLSEs of the linear parameters have the asymptotic

variances which are of the order O(1/n), where as the asymptotic variance of the GLSE of λ

is of the order O(1/n3). This is not very surprising, and it is the case even for one channel

fundamental frequency with harmonics model or multiple sinusoidal frequency model also,

see for example Nandi and Kundu [12] or Kundu [9] in this respect. Most likely it is due to

the presence of time t with λ always in the model. It indicates that a very efficient estimator

of λ is possible.

Now we provide the consistency and asymptotic normality properties of the LSEs which

can be obtained by minimizing (8). They can be obtained quite conveniently and they will

be used to compute GLSE in practice.

Theorem 2.3. If ξ̃ denotes the LSE of ξ, then under Assumption 1, ξ̃ is a strongly consistent

estimator of ξ0.

Proof of Theorem 2.3 It can be obtained along the same line as the proof of Theorem 2.1.

Theorem 2.4. Under the same set of assumptions as in Theorem 2.2

D
(
ξ̃ − ξ0

)
d−→ N2P+1

(
0, 2Γ−1HΓ−1

)
.
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The (2P + 1)× (2P + 1) matrix Γ has the following form:

Γ =


Γ11 Γ12 . . . Γ1M b1

Γ>12 Γ22 . . . Γ2M b2
...

...
...

...
...

Γ>1M Γ>2M . . . ΓMM bM

b>1 b>2 . . . bM δ

 . (13)

Here Γmm is a 2pm × 2pm diagonal matrix for m = 1, . . . ,M , δ is a scalar, the rest of the

matrices and vectors are compatible. The matrices are as follows:

Γmm = I2pm , Γmk =
[
I2pm 0

]
; 1 ≤ m ≤ k ≤M.

We denote M unit vectors {um;m = 1, . . . ,M}, each of order M × 1, where the vector um

has 1 at the m-th row and zero elsewhere. The vectors b>1 = (c11, d11, . . . , c1p1 , d1p1), . . . ,

b>M = (cM1, dM1, . . . , cMpM , dMpM ), where

c1j =
j

2
u>1Bj, d1j = −j

2
u>1Aj; j = 1, . . . , p1

c2j =
j

2
u>2Bj, d2j = −j

2
u>2Aj; j = 1, . . . , p2

...
...

cMj =
j

2
u>MBj, dMj = −j

2
u>MAj; j = 1, . . . , pM ,

and

δ =
1

3

M∑
m=1

pm∑
j=1

j2(A2
mj +B2

mj).

The matrix H has the same form as matrix Π, where σmk will be replaced by σmk, for

1 ≤ m, k ≤M in all the entries.

Proof of Theorem 2.4 It can be obtained along the same line as the proof of Theorem

2.2.

It is interesting to observe that both the LSEs and GLSEs have the same rates of conver-

gence for the linear as well as non-linear parameters, although their asymptotic variances

might be different. It is observed in our extensive simulation study, see Section 4, that the

mean squared errors (MSEs) of the LSEs are more than the corresponding MSEs of the

GLSEs. The difference of the performances of the LSEs and GLSEs depend on the structure

of Σ as expected.
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2.3. Implementation. As it has been mentioned before that often in practice the dispersion

matrix Σ is not known. Hence, to compute the GLSEs of the unknown parameters, one needs

a consistent estimator of Σ. Note that once the LSE of ξ is obtained, one can obtain the

estimator of σmk as follows:

σ̃mm =
1

n

n∑
t=1

[
ym(t)−

pm∑
j=1

{
Ãmj cos(jλ̃t) + B̃mj sin(jλ̃t)

}]2
; m = 1, . . . ,M,

σ̃mk =
1

n

n∑
t=1

[
ym(t)−

pm∑
j=1

{
Ãmj cos(jλ̃t) + B̃mj sin(jλ̃t)

}]

×

[
yk(t)−

pk∑
j=1

{
Ãkj cos(jλ̃t) + B̃kj sin(jλ̃t)

}]
; 1 ≤ m ≤ k ≤M.

The following result provides the consistency properties of σ̃mk.

Theorem 2.5. Under Assumption 1, σ̃mm and σ̃mk are strongly consistent estimator of σmm

and σmk, respectively, for 1 ≤ m ≤ k ≤M .

Proof of Theorem 2.5 To prove Theorem 2.5 let us use the term oas(1) means it converges

to zero almost surely, and the term oas(1/n), means noas(1/n) converges to zero almost surely.

Now from Theorems 2.3 and 2.4 it follows that Ãmj = A0
mj + oas(1), B̃mj = B0

mj + oas(1),

for j = 1, . . . , pm and m = 1, . . . ,M . Also λ̃ = λ0 + oas(1/n). Now using these and writing

ym(t) = µm(t) + em(t), m = 1, . . . ,M in the expression of σ̃mk, the results can be obtained

from the strong law of large numbers. The explicit details are avoided.

Hence, in practice, the GLSEs can be obtained as a two-step process. In the first step we

can obtain a consistent estimator of Σ based on the LSEs, and at the second step it can be

used to compute the GLSEs of ξ.

3. A Special Case

In this section we consider a special case when the number of channels is two, and p1 =

p2 = p. In this case the parameter vector ξ is a (2p + 1) vector, and it can be written as

ξ = (α>1 ,α
>
2 , λ)> = (A11, B11, . . . , A1p, B1p, A21, B21, . . . , A2p, B2p, λ)>. Then ξ̃, LSE of ξ,
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can be obtained by minimizing

R1(ξ) =
n∑
t=1

[
y1(t)−

p∑
j=1

{
A1j cos(jλt) +B1j sin(jλt)

}]2
+

n∑
t=1

[
y2(t)−

p∑
j=1

{
A2j cos(jλt) +B2j sin(jλt)

}]2
. (14)

For given λ, the LSE of αm can be obtained as

α̃m(λ) = (ZT (λ)Z(λ))−1ZT (λ)Y m, m = 1, 2.

Here the vector Y m and the matrix Z are same as defined in (8) and (10), respectively. The

LSE of λ can be obtained by minimizing

Q1(λ) = Y T
1

(
I − PZ(λ)

)
Y 1 + Y T

2

(
I − PZ(λ)

)
Y 2,

or equivalently by maximizing

Q2(λ) = Y T
1PZ(λ)

Y 1 + Y T
2PZ(λ)

Y 2,

here PZ(λ)
= Z(λ)(Z>(λ)Z(λ))−1Z>(λ) is the projection matrix on the columns of Z(λ).

Clearly, ξ̃ is a consistent estimator of ξ0. In this case the asymptotic distribution of ξ̃ can

be written in the following form;

Theorem 3.1. If D is 2p + 1 diagonal matrix with all the diagonal entries as
√
n, except

the last one which is n3/2, then under Assumption 1,

D(
(
ξ̃ − ξ0

)
d→ N

(
0, 2Γ−1HΓ−1

)
.

Here

Γ =

(
J ⊗ I2p r

r> β

)
, J =

(
1 1

1 1

)
, r = (r>1 r>2 )>,

r>1 =
1

2

(
−B0

11, A
0
11,−2B0

12, 2A
0
12, . . . ,−pB0

1p, pA
0
1p

)
,

r>2 =
1

2

(
−B0

21, A
0
21,−2B0

22, 2A
0
22, . . . ,−pB0

2p, pA
0
2p

)
,

β =
1

3

p∑
j=1

j2
(
A02

1j +B02

1j + A02

2j +B02

2j

)
,

and

H =

(
Σ⊗ I2p s

sT γ

)
, s = (sT1 sT2 )T ,

s>1 =
(
−σ2

1B
0
11 − σ12B0

21, σ
2
1A

0
11 + σ12A

0
21, . . . ,−σ2

1pB
0
1p − σ12pB0

2p, σ
2
1pA

0
1p + σ12pA

0
2p

)
1×2p
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s>2 =
(
−σ12B0

11 − σ2
2B

0
21, σ12A

0
11 + σ2

2A
0
21, . . . ,−σ12pB0

1p − σ2
2pB

0
2p, σ12pA

0
1p + σ2

2pA
0
2p

)
1×2p

γ =
2

3

p∑
j=1

j2
[
σ2
1

(
A02

1j +B02

1j

)
+ σ2

2

(
A02

2j +B02

2j

)
+ 2σ12

(
A0

1jA
0
2j +B0

1jB
0
2j

)]
.

Here ‘⊗’ denotes the Kronecker product.

Now let us discuss about the GLSE of ξ. The GLSE of ξ can be obtained by minimizing

R(α1,α2, λ) =
n∑
t=1

[
σ22

(
y1(t)− µ1(t)

)2
+ σ11

(
y2(t)− µ2(t)

)2
−2σ12

(
y1(t)− µ1(t)

)(
y2(t)− µ2(t)

)]
. (15)

If we denote ηj = (A1j, B1j, A2j, B2j)
>, j = 1, . . . , p and η = (η>1 , . . . ,η

>
p )>, and we use the

following notations; Mn(λ) is a 2p× 2p matrix of the following form.

Mn(λ) =


M(1, 1, λ) M(1, 2, λ) · · · M(1, p, λ)

M(2, 1, λ) M(2, 2, λ) · · · M(2, p, λ)
...

...
...

...

M(p, 1, λ) M(p, 2, λ) · · · M(p, p, λ)

 ,

where

M(j, k, λ) =
2

n

(∑n
t=1 cos(jλt) cos(kλt)

∑n
t=1 cos(jλt) sin(kλt)∑n

t=1 sin(jλt) cos(kλt)
∑n

t=1 sin(jλt) sin(kλt)

)
,

and the vector Wn(λ) of order 4p is defined as

Wn(λ) = (W1n(λ)T , . . .Wpn(λ)T )T , Wjn(λ) =
2

n


∑n

t=1 y1(t) cos(jλt)∑n
t=1 y1(t) sin(jλt)∑n
t=1 y2(t) cos(jλt)∑n
t=1 y2(t) sin(jλt)

 .

For a given λ, the GLSEs of η can be written as

η̂(λ) = (Σ−1 ⊗Mn(λ))−1(Σ−1 ⊗ I2p)Wn(λ)

= (Σ⊗ (Mn(λ))−1)(Σ−1 ⊗ I2p)Wn(λ)

= (I2 ⊗ (Mn(λ))−1)Wn(λ).

Note that for large n, M(j, k, λ) = o(1) when j 6= k = 1, . . . , p. Therefore for large n, Mn(λ)

is a box diagonal matrix with the j-th diagonal sub-matrix as M(j, j, λ). Using this special
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structure of Mn(λ) for large n, we deduce that

η̂j(λ) = (Σ−1 ⊗M(j, j, λ))−1(Σ−1 ⊗ I2)Wjn(λ)

= (I2 ⊗ (M(j, j, λ))−1)Wjn(λ), j = 1, . . . , p.

This boils down to the method of estimation of the linear parameters sequentially, once the

fundamental frequency λ is estimated..

Additionally, we also have M(j, j, λ) = I2 + o(1/n) for large n. Therefore, using this in

η̂j(λ) for large n, we have

η̂j(λ) = (I2 ⊗ I2)−1)Wjn(λ) + o(1/n)

= Wjn(λ) + o(1/n), j = 1, . . . , p.

This is nothing but the approximate LSEs of the linear parameters corresponding to the

j-th component. Finally, the GLSE of λ can be obtained by minimizing R(α̂1(λ), α̂2(λ), λ)

with respect to λ. Under the same assumptions as in Theorem 3.1, the GLSEs are consistent

estimators. The asymptotic distribution of ξ̂ can be written as follows.

Theorem 3.2. Under the same assumptions as Theorem 3.1,

D
(
ξ̂ − ξ0

)
d→ N

(
0, 2H−1G

)
.

Here HG is a (4p+ 1)× (4p+ 1) matrix, and

HG =

(
Σ−1 ⊗ I2p v

vT γG

)
, v = (vT1 vT2 )T ,

vT1 = (v11, u11, v12, u12, . . . , v1p, u1p

)T
, vT2 = (v21, u21, v22, u22, . . . , v2p, u2p

)T
,

v1j =
j

2|Σ|
(
σ2
2B

0
1j − σ12B0

2j

)
, u1j = − j

2|Σ|
(
σ2
2A

0
1j − σ12A0

2j

)
,

v2j =
j

2|Σ|

(
σ2
1B

0
2j − σ12B0

1j

)
, u2j = − j

2|Σ|
(
σ2
1A

0
2j − σ12A0

1j

)
, j = 1, . . . , p

γG =
1

3|Σ|

p∑
j=1

j2
[
σ2
2

(
A02

1j +B02

1j

)
+ σ2

1

(
A02

2j +B02

2j

)
− 2σ12

(
A0

1jA
0
2j +B0

1jB
0
2j

)]
.

It is worth mentioning that Christensen [5] also considered a two-channel model as dis-

cussed in this section and provided the maximum likelihood estimators of the unknown

parameters based on the assumption that the errors are normally distributed and the ma-

trix Σ is a diagonal matrix. Hence, the methodology proposed by Christensen [5], can be

obtained as a special case of this manuscript. Further, the author did not consider more
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Figure 1. The MSEs of different estimates of A11.

than two channels model and did not provide any asymptotic properties of the proposed

estimators. These are some of the major contributions of this manuscript.

4. Numerical Experiments

In this section we present some simulation results for two channel model with p1 = p2 = 2.

In Section 5 we present the analysis of a data set where p1 6= p2. The main aim is to

compare the behavior of the LSEs and GLSEs for different model parameters, for different

error distributions and for different sample sizes. We consider the following model parameter:

A11 = 4.0; B11 = 6.5; A12 = 5.0; B12 = 3.0;

A21 = 5.0; B21 = 3.0; A22 = 3.0; B22 = 2.0, λ = 0.2. (16)

The sequence of the random vectors {e(t)} has been considered in three different ways:

(1) a sequence of bivariate normal vectors with mean 0 and variance matrix Σ,

(2) a sequence of bivariate t4 distributed random vectors with the same mean and vari-

ance structure as (1),

(3) a sequence of bivariate t8 distributed random vectors with the same mean and vari-

ance structure as (1).

Here tν denotes as t distribution with ν degrees of freedom.
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Figure 2. The MSEs of different estimates of B11.

The variance covariance matrix considered in simulation studies are

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
; Σ1 : σ2

1 = 1, σ2
2 = 1, ρ = 0.9; Σ2 : σ2

1 = 3, σ2
2 = 3, ρ = 0.95.

The sample sizes considered in these experiments are 100, 200, 300, 400 and 500. In all

the three cases of error generations, the data are generated using parameter values (16) and

different Σk’s and sample sizes. For every value of N , the sample size and Σ, the error

matrix, 5000 realizations are generated and estimates are obtained using both the LS and

GLS methods. The average estimates and mean squared errors (MSEs) of all the parameter

estimates using both the proposed methods are computed. We report the MSEs of different

parameters estimated in Figures 1-9. In Figure 1, the MSEs of the LSE and GLSE of A11

from all the three cases considered here are plotted against the sample size. The plot at the

left is for dispersion matrix Σ1 and the right one is for Σ2. Similarly, the MSEs of the other

parameter estimates are plotted in Figures 2-9.

The following observations can be made from the experiment described above.

(1) The MSEs of the LSEs as well as the GLSEs in all the cases considered here decrease

as the sample size increases.

(2) The spread of the MSEs in right side plots are wider than that of the left side plots.

This is due to the fact that the elements of Σ2 are larger than the elements of Σ1.

(3) There are clear separation of lines for LSEs and GLSEs. The MSEs in all three cases

(1), (2) and (3) considered here for an estimator using LS method are clubbing at
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Figure 3. The MSEs of different estimates of A12.
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Figure 4. The MSEs of different estimates of B12.

slightly larger values than the case when GLS method is used. The lines for GLS

method are also clubbed. This has been observed in case of each parameter estimator.

(4) In all the linear parameter estimators using LS method, the MSEs is larger when

error is distributed as bivariate t than the case when the error is bivariate normal.

The MSEs for t8 distribution is marginally larger than t4 distribution. This has not

been observed in case of the fundamental frequency.

With the same model parameters as given in (16) and σ2
1 = σ2

2 = 1.0, we would like to see

the behavior of the MSEs with varying ρ, the correlation coefficient of the bivariate error

process. The sample size N is fixed at 500 and ρ is varied from 0.1 to 0.9 and 0.98. The

MSEs of the LSEs and GLSEs of the fundamental frequency λ have been calculated when
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Figure 5. The MSEs of different estimates of A21.
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Figure 6. The MSEs of different estimates of B21.

the error random vectors are bivariate normal, bivariate t4 and bivariate t8 as considered

before. These six cases have been plotted in Figure 10. We observe that the MSEs of the

LSEs increases as ρ increases under all the error distributions considered here whereas the

MSEs of the GLSEs first increases and then decreases as ρ increases. The MSEs of the LSEs

is always larger than that of the GLSEs in all the cases. In case of both the LSEs and

GLSEs, the MSEs decrease with the error distribution from t8, t4 and then normal.

5. Data Analysis

In this Section, we analyze two short duration speech data using a two-channel fundamen-

tal frequency model, proposed in this article. The ‘aaa’ and ‘uuu’ voiced speech data, both
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Figure 7. The MSEs of different estimates of A22.
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Figure 8. The MSEs of different estimates of B22.

have 512 signal values, sampled at 10 kHz frequency were collected at the Speech Signal

Processing laboratory of the Indian Institute of Technology, Kanpur. The mean corrected

and scaled data are plotted in Figure 11. To have an idea about inherent frequencies, we

plot the periodogram functions of both the datasets. The periodogram function of a set of

n observations {z(t), t = 1, . . . , n} is defined for ω ∈ (0, π) as

I(ω) =
1

n

∣∣∣∣∣
n∑
t=1

z(t)e−iωt

∣∣∣∣∣
2

.

The periodogram functions of ‘aaa’ and ‘uuu’ are plotted in Figure 12. The preliminary

analysis of the periodograms reveals that the first significant frequency (peak) in ‘aaa’ data

is close to 0.113 and that of ‘uuu’ data is close to 0.114. So they are approximately equal.
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Figure 9. The MSEs of different estimates of λ.
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Figure 10. The MSEs of LSEs and GLSEs of λ under different error distri-

bution with varying ρ.

We also observe that in the periodogram function of ‘uuu’ data, rest of the peaks, that

is the frequencies, are at equal intervals. This means that they are the harmonics of the

first frequency, λ as per our notation. In ‘aaa dataset, although all the significant peaks

are not at equal intervals, any significant peak is at kλ where k is an integer and λ is the

first frequency, the fundamental frequency. Therefore, these two data sets can be analyzed

using two-channel fundamental frequency model with different number of harmonics. In this

analysis, it is expected that amplitude estimates corresponding to some of the harmonics in

‘aaa’ data will be close to zero.

In this case p1 and p2 are unknown. A significant amount of work has been done in

estimating the number of harmonics for one channel fundamental frequency model, see for
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Figure 11. The mean corrected and scaled ‘aaa’ and ‘uuu’ data.
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Figure 12. The periodogram functions of ‘aaa’ and ‘uuu’ data.

example Chapter 5 of Nandi and Kundu [13]. By exploratory analysis, we have obtained

p1 = 17 and p2 = 6, the numbers of harmonics in ‘aaa’ and ‘uuu’ data, respectively. We first

estimated the LSEs of the unknown fundamental frequency and linear parameters and the

elements of the error variance matrix Σ. The error variances and covariance are estimated

as σ̃2
1 = 9.93× 10−2, σ̃2

2 = 7.26× 10−2 and σ̃12 = 3.94× 10−3. The fitted signal using LSEs

along with mean corrected data in both the channels are plotted in Figure 13. They match

quite well. In order to find the GLSEs of the unknown parameters, the estimates of σ2
1, σ2

2

and σ12, obtained above are used. The unknown parameters are estimated by minimizing

S(α1,α2, λ) following the methodology described in Section 3. The error variances and the

covariance estimated using GLSEs of λ and the linear parameters are as follows:

σ̂2
1 = 9.56× 10−2, σ̂2

2 = 7.68× 10−2, σ̂12 = 4.26× 10−3.
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Figure 13. The fitted (red) and the observed mean corrected (blue) ‘aaa’

and ‘uuu’ data using LSEs.
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Figure 14. The fitted (red) and the observed mean corrected (blue) ‘aaa’

and ‘uuu’ data using GLSEs.

The fitted values using GLSEs and the mean corrected observed data are plotted in Figure

14. By observing Figures 13 and 14, it can be said that using model (1) is a reasonable way

of analyzing ‘aaa’ and ‘uuu’ data sets simultaneously and both the LSEs and the GLSEs

work well in this case.

6. Concluding Remarks

In this article, we propose a multichannel fundamental frequency with harmonics model

in its most general form. This model is useful when signals from different channels have

the same fundamental frequency, and the effective frequencies are harmonics of this common

fundamental frequency. It has been assumed that the noise among the channels may be
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correlated also, which has not been considered before. We have proposed the GLSEs of the

unknown parameters which become the maximum likelihood estimators also when the noise

becomes multivariate normal distribution. The theoretical properties of the GLSEs have been

established. It is observed that to implement the GLSEs in practice one needs to know the

noise dispersion matrix, which may not be available. We have provided an implementation

procedure of the GLSEs in practice using LSEs which do not need any information about

the variance covariance matrix. Numerical experiments have been conducted based on a

two-channel model with the number of components as two. Two short duration voice data

have been analyzed using a two-channel model with different number of harmonics. The

data analyses reveal that the proposed model works quite well in practice.

In this paper we have assumed that the noise components are independent and identically

distributed in each channel, although they may not be independent between the channels. It

will be interesting to develop proper methodologies when the error variances in each channel

may also not be independent. Although, the dependency structure on the error variance in

each channel can be easily incorporated, it is not immediate how it can be generalized to

the multichannel case. Moreover, defining the LSEs of the unknown parameters can be done

along the same way, but defining the GLSEs needs some careful attention. More work is

needed along that direction.
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Appendix A

To prove Theorem 2.1, we need the following result and lemmas. In this Appendix, for any

vector a, |a| means the Euclidean norm of a.

Result A.1: If ω ∈ (0, π), then the following results hold.

lim
n→∞

1

n

n∑
t=1

cos(ωt) = lim
n→∞

1

n

n∑
t=1

sin(ωt) = 0,

lim
n→∞

1

nk+1

n∑
t=1

tk cos2(ωt) = lim
n→∞

1

nk+1

n∑
t=1

tk sin2(ωt) =
1

2(k + 1)
,

lim
n→∞

1

nk+1

n∑
t=1

tk cos(ωt) sin(ωt) = 0,

lim
n→∞

1

n
2k+1

2

n∑
t=1

tk cos(ωt) = lim
n→∞

1

n
2k+1

2

n∑
t=1

tk sin(ωt) = 0.
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Proof of Result A.1: The proofs can be found in Mangulis [11].

Lemma 1. Let ξ̂ be the GLSE of ξ0 that minimizes R(ξ), and ξ ∈ Θ = [−M,M ]2P ×
[0, π/pM ]. For any ε > 0, suppose Sε = {ξ : ξ ∈ Θ, |ξ − ξ0| > (2P + 1)ε}, for some fixed ξ0,

an interior point of Θ. If for any ε > 0,

lim
n→∞

inf
Sε

1

n
[R(ξ)−R(ξ0)] > 0, a.e.,

then as n→∞, ξ̂ is a strongly consistent estimator of ξ0.

Proof of Lemma 1: The proof mainly follows using contradiction argument, as that of

Lemma 1 of Wu [20].

Lemma 2. Let {e(t)} be a sequence of i.i.d. random variables with mean zero and finite

variance σ2 > 0, then as n→∞,

sup
ω

∣∣∣∣∣ 1

nk+1

n∑
t=1

tke(t) cos(ωt)

∣∣∣∣∣ a.e.−→ 0, and sup
ω

∣∣∣∣∣ 1

nk+1

n∑
t=1

tke(t) sin(ωt)

∣∣∣∣∣ a.e.−→ 0.

Proof of Lemma 2: See for example Kundu [9].

Proof of Theorem 2.1: Observe that

1

n
[R(ξ)−R(ξ0)] = f1(ξ) + f2(ξ),

where

f1(ξ) =
1

n

n∑
t=1

(
µ0(t)− µ(t)

)>
Σ−1

(
µ0(t)− µ(t)

)
f2(ξ) =

2

n

n∑
t=1

e(t)>Σ−1
(
µ0(t)− µ(t)

)
=

1

n

n∑
t=1

e(t)>Σ−1µ0(t)− 1

n

n∑
t=1

e(t)>Σ−1µ(t).

Hence, because of Lemma 2,

lim
n→∞

sup
ξ∈Sε
|f2(ξ)| = lim

n→∞
sup
ξ∈Sε

∣∣∣∣∣ 1n
n∑
t=1

e(t)>Σ−1µ(t)

∣∣∣∣∣ ≤ lim
n→∞

sup
ξ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

e(t)>Σ−1µ(t)

∣∣∣∣∣ −→ 0, a.e.

Now consider the following sets for m = 1, . . . ,M, j = 1, . . . , pm,

Sε,Amj = {ξ : |Amj − A0
mj| > ε; ξ ∈ Θ}, Sε,Bmj = {ξ : |Bmj −B0

mj| > ε; ξ ∈ Θ}

and

Sε,λ = {ξ : |λ− λ0| > ε; ξ ∈ Θ}.
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Clearly,

Sε ⊂

(
M⋃
m=1

pm⋃
j=1

Sε,Amj

)⋃(
M⋃
m=1

pm⋃
j=1

Sε,Bmj

)⋃
Sε,λ.

Now let us consider

lim inf
n→∞

inf
ξ∈Sε,A11

1

n
f1(ξ) = lim inf

n→∞
inf

ξ∈Sε,A11

σ11

n

n∑
t=1

(A0
11−A11)

2 cos2(λ0t) =
σ11

2
(A0

11−A11)
2 > 0.

Similarly, it can be shown that for other sets Sε,Amj , Sε,Bmj , Sε,λ, the corresponding limits

are strictly positive. Hence, using Lemma 1, the result follows.

Appendix B

Proof of Theorem 2.2: In order to obtain the asymptotic distribution of ξ̂, we denote

R′(ξ) and R′′(ξ) as the vector of first derivatives and the matrix of second derivatives of

R(ξ), of the order 2P + 1 and (2P + 1) × (2P + 1), respectively. Now we express R′(ξ)

around the point ξ0, the true parameter vector using multivariate Taylor series expansion as

follows

R′(ξ̂)−R′(ξ0) = R′′(ξ)(ξ̂ − ξ0), (17)

where ξ is a point on the line joining ξ̂ and ξ0. Since ξ̂ minimizes R(ξ), R′(ξ̂) = 0. Using

the (2P + 1)× (2P + 1) diagonal matrix D, as defined in (11), (17) can be written as

D(ξ̂ − ξ0) = [D−1R′′(ξ)D−1]−1[D−1R′(ξ0)],

provided, [D−1R′′(ξ)D−1] is an invertible matrix. Since, ξ̂ −→ ξ0, a.s.,

lim
n→∞

[D−1R′′(ξ)D−1] = lim
n→∞

[D−1R′′(ξ0)D−1].

By repeated use of Result A.1, it follows that

lim
n→∞

[D−1R′′(ξ0)D−1] = Π, (18)

as defined in (12). Note that D−1R′(ξ0) is a 2P + 1 vector as follows:

D−1R′(ξ0) = D−1
[
∂R(ξ)

∂A11

,
∂R(ξ)

∂B11

, . . . ,
∂R(ξ)

∂AMpM

,
∂R(ξ)

∂BMpM

,
∂R(ξ)

∂λ

]>
ξ=ξ0

= D−1
[
∂R(ξ0)

∂A11

,
∂R(ξ0)

∂B11

, . . . ,
∂R(ξ0)

∂AMpM

,
∂R(ξ0)

∂BMpM

,
∂R(ξ0)

∂λ

]>
. (19)
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Now to compute the right hand side of (19), let us use the following notations.

ηm(t;α0
m, λ

0) =

pm∑
j=1

jt[−A0
mj sin(jλ0t) +B0

mj cos(jλ0t)]; m = 1, . . . ,M,

and η0(t) = (η1(t;α
0
1, λ

0), . . . , ηM(t;α0
M , λ

0))>, for t = 1, . . . , n. Then, using the M unit

vectors {um;m = 1, . . . ,M}, defined in Theorem 2.4, we have

1√
n

∂R(ξ0)

∂Amj
= −2u>mΣ−1

n∑
t=1

cos(jλ0t)√
n

e(t) = −2σm
n∑
t=1

cos(jλ0t)√
n

e(t);

1√
n

∂R(ξ0)

∂Bmj

= −2u>mΣ−1
n∑
t=1

sin(jλ0t)√
n

e(t) = −2σm
n∑
t=1

sin(jλ0t)√
n

e(t);

j = 1, . . . , pm, m = 1, . . . ,M,

1

n3/2

∂R(ξ0)

∂λ
= − 2

n3/2

n∑
t=1

(η0(t))>Σ−1e(t).

Since, all the elements of D−1R′(ξ0) satisfy the Lindeberg Feller’s conditions (Chung;1974),

therefore,

D−1R′(ξ0)
d−→ N2P+1(0, 2Π),

where Π is same as defined in (12).
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