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Abstract

In this paper we have considered the chirp like model which has been recently
introduced, and it has a very close resemblance with a chirp model. We consider the
weighted least squares estimators of the parameters of a chirp like model in presence of
an additive stationary error, and study their properties. It is observed that although the
least squares method seems to be a natural choice to estimate the unknown parameters
of a chirp like model, the least squares estimators are very sensitive to the outliers. It
is observed that the weighted least squares estimators are quite robust in this respect.
The weighted least squares estimators are consistent and they have the same rate of
convergence as the least squares estimators. We have further extended the results in
case of multicomponent chirp like model. Some simulations have been performed to
show the effectiveness of the proposed method. In simulation studies, weighted least
squares estimators have been compared with the least absolute deviation estimators
which, in general, are known to work well in presence of outliers. One EEG data set
has been analyzed and the results are quite satisfactory.
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1 Introduction

The chirp signal has received a considerable amount of attention in the statistical signal

processing literature due to its wide applications in various fields. A multicomponent chirp

model can be described as follows:

y(n) =

p∑
k=1

{A0
k cos(α0

kn+ β0
kn

2) +B0
k sin(α0

kn+ β0
kn

2)}+X(n). (1)

The multicomponent chirp model (1) can be seen as an uniform linear frequency modulated

(FM) sinusoidal model. The history of chirp model goes back to 1950, see for example the

article by Lancaster [10]. According to Lancaster [10], Pulse compression (aka ‘chirp’) radar

was invented in the 1950s by Sperry and a couple of other defense contractors. Klauder et al.

[6] used single component chirp model (1) in designing chirp radars that provides a solution

for the conflicting requirements of simultaneous long-range and high-resolution performance

in radar systems. Since then it has become extremely popular in radar technology. Chirp

model has been used quite successfully to analyze sonar data also. The chirp sonar data has

been used in estimating the physical and acoustic properties of the seabed quite frequently,

see for example Schock [14, 15] and the references cited therein. Chirp model has been used

quite extensively in optics also. It has been observed by Guillet et al. [4] that the broadband

radio-frequency waveforms can be analyzed quite effectively using chirp models.

Recently, Grover [2], see also Kundu and Grover [7] and Grover, Kundu and Mitra [3],

introduced a chirp like model which behaves like a chirp model and it is observed based

on extensive data analyses that it is not possible to discriminate a chirp and a chirp like

model in many instances. Mathematically, the multicomponent chirp like (MCCL) model in

presence of additive noise can be written as follows:

y(n) =

p∑
j=1

{A0
j cos(α0

jn) +B0
j sin(α0

jn)}+

q∑
k=1

{C0
k cos(β0

kn
2) +D0

k sin(β0
kn

2)}+X(n). (2)
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Here A0
j , B

0
j , C

0
k , D

0
k are linear parameters, α0

j and β0
k are the frequency and frequency rate,

respectively. The sequence of random variables, {X(t)} denotes the noise present in the

model. It has mean zero and finite variance. The explicit assumptions on {X(t)} will be

provided later. Based on extensive data analyses by Grover, Kundu and Mitra [3] it has

been observed that MCCL model often provides a better fit to a nearly periodic data set

than a multicomponent chirp model, and it needs less number of parameters. Moreover, the

implementation of the MCCL model is much easier than a multicomponent chirp model.

Similar to the chirp model, MCCL also can be used for future prediction also.

Note that the MCCL model (2) is also a non-linear regression model. Hence, the least

squares (LS) method seems to be a natural choice in estimating the unknown parameters.

It has been shown by Grover [2] that the MCCL does not satisfy the standard sufficient

conditions of Jennrich [5] or Wu [17] so that the least squares estimators (LSEs) become

consistent. It has been shown by Grover, Kundu and Mitra [3] that under a fairly general set

of assumptions the LSEs are consistent and asymptotically normally distributed. Although,

the LSEs have these desirable properties, it has been observed that they are quite sensitive

to the presence of outliers. Even if only a few outliers are present in the data, it can affect

the performance of the LSEs quite significantly. One natural choice in this case is to choose

some robust estimators like L1 norm estimators or M-estimators. But implementing any

robust estimators or establishing the properties of these estimators in a general set up are

quite challenging. Due to this reason we have explored in this paper the weighted least

squares estimators (WLSEs) to estimate the unknown parameters of the MCCL model. It

is observed that the WLSEs are quite robust compared to the LSEs and they are easy

to implement even in a general set up. Based on an extensive numerical experiments, it

has been observed that the performance of the WLSEs are comparable with the robust

least absolute deviation estimators (LADEs). But developing theoretical properties of the

LADEs and implementing them in practice are quite difficult specially for multicomponent
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models. Therefore, we propose to use the WLSEs in presence of outliers in this case. We

have established the consistency and asymptotic normality properties of the WLSEs and

it is observed that the LSEs and WLSEs have the same rate of convergence under a fairly

general set of error assumptions. We have further proposed sequential WLSEs, which can

be implemented quite conveniently and they have the same asymptotic properties as the

WLSEs.

The rest of the paper is organized as follows. In Section 2 and Section 3 we consider

the one component chirp like ( OCCL) and MCCL models, respectively. Simulation results

have been presented in Section 4 and the data analyses have been presented in Section 5.

The conclusions have appeared in Section 6. Preliminary results required for the proofs have

been presented in Appendix A and all the proofs in Appendices B, C and D.

2 One Component Chirp Like Model

2.1 WLSEs

The OCCL model can be defined as follows:

y(n) = A0 cos(α0n) +B0 sin(α0n) + C0 cos(β0n2) +D0 sin(β0n2) +X(n). (3)

Here, A0, B0, C0, D0 are linear parameters, and α0, β0 are frequency and frequency rate,

respectively. We make the following assumptions on {X(n)}.

X(n) =
∞∑

k=−∞

a(k)e(n− k); n = 1, 2, . . . . (4)

Here e(n)’s are i.i.d random variables with mean zero, and finite fourth moment. Moreover,

a(k)’s are such that
∞∑

k=−∞

|a(k)| <∞. (5)
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It is assumed that the weight function w(t) satisfies the following assumption:

Assumption 1: Suppose w(t) is a non-negative continuous function defined on [0,1], such

that min
0≤t≤1

w(t) > γ > 0 and max
0≤t≤1

w(t) ≤ K <∞.

The WLSEs of the unknown parameter θ0 = (A0, B0, C0, D0, α0, β0)> can be obtained

by minimizing

Q(θ) =
N∑
n=1

w
( n
N

) (
y(n)− A cos(αn)−B sin(αn)− C cos(βn2)−D sin(βn2)

)2
(6)

with respect to the unknown parameter vector θ = (A,B,C,D, α, β)>. Let us denote the

WLSE of θ0 as θ̂ = (Â, B̂, Ĉ, D̂, α̂, β̂)>. The WLSEs cannot be obtained in analytical form as

minimization of Q(θ) is a non-linear optimization problem. One needs to use some numerical

techniques like Newton-Raphson or Gauss-Newton method to compute the WLSEs. The

OCCL model has six unknown parameters, we will show that the WLSEs of the unknown

parameters can be obtained by solving a two-dimensional optimization problem. From (6)

it is immediate that the LSEs can be obtained as a special case of the WLSEs by assuming

w(t) = 1.

For a given α and β, the minimization of Q(θ) can be obtained as a simple weighted

least squares approach. The WLSEs of A, B, C and D for a given α and β, say Â(α, β),

B̂(α, β),Ĉ(α, β) and D̂(α, β), can be obtained as

δ(α, β) =
(
Â(α, β) B̂(α, β) Ĉ(α, β) D̂(α, β)

)>
= U−1N (α, β)u, (7)
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where UN(α, β) = ((uij)) is a 4× 4 symmetric matrix, as follows:

u11 =
∑N

n=1w
(
n
N

)
cos2(αn) u12 = u21 =

∑N
n=1w

(
n
N

)
sin(αn) cos(αn)

u13 = u31 =
∑N

n=1w
(
n
N

)
cos(αn) cos(βn2) u14 = u41 =

∑N
n=1w

(
n
N

)
cos(αn) sin(βn2)

u22 =
∑N

n=1w
(
n
N

)
sin2(αn) u23 = u32 =

∑N
n=1w

(
n
N

)
sin(αn) cos(βn2)

u24 = u42 =
∑N

n=1w
(
n
N

)
sin(αn) sin(βn2) u33 =

∑N
n=1w

(
n
N

)
cos2(βn2)

u34 = u43 =
∑N

n=1w
(
n
N

)
cos(βn2) sin(βn2) u44 =

∑N
n=1w

(
n
N

)
sin2(βn2)

and u = (u1, u2, u3, u4)
> is a 4× 1 vector as given below

u1 =
∑N

n=1w
(
n
N

)
y(n) cos(αn) u2 =

∑N
n=1w

(
n
N

)
y(n) sin(αn)

u3 =
∑N

n=1w
(
n
N

)
y(n) cos(βn2) u4 =

∑N
n=1w

(
n
N

)
y(n) sin(βn2).

Therefore, the WLSEs of α and β can be obtained by minimizing R(α, β), where

R(α, β) = Q(Â(α, β), B̂(α, β), Ĉ(α, β), D̂(α, β), α, β),

with respect to α and β. Hence, we have observed that although OCCL model has six

parameters, the WLSEs of the nonlinear parameters α and β can be obtained by solving

a two dimensional optimization problem. Once the WLSEs of α and β are obtained, then

the WLSEs of the other parameters can be obtained in explicit forms. The following result

provides the consistency properties of the WLSEs.

Theorem 1: If {X(n)} has the structure as given in (4), and w(t) satisfies Assumption 1,

then the WLSE θ̂ is a strongly consistent estimator of θ0.

Proof: See in Appendix B.

Now we provide the asymptotic distribution of the WLSEs, and for that we need the

following notations.

lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
=

∫ 1

0

tkw(t)dt = ck+1 > 0, (8)
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lim
N→∞

1

Nk+1

N∑
n=1

nkw2
( n
N

)
=

∫ 1

0

tkw2(t)dt = dk+1 > 0; k = 0, 1, 2, . . . . (9)

Let us define the following four 3× 3 matrices:

Σ1 =

 d1 0 B0d2
0 d1 −A0d2

B0d2 −A0d2 (A02 +B02)d3

 , Σ2 =

 d1 0 D0d3
0 d1 −C0d3

D0d3 −C0d3 (C02 +D02)d5

 , (10)

G1 = 2

 c1 0 B0c2
0 c1 −A0c2

B0c2 −A0c2 (A02 +B02)c3

 , G2 = 2

 c1 0 D0c3
0 c1 −C0c3

D0c3 −C0c3 (C02 +D02)c5

 ,
(11)

and two diagonal matrices of order 3

D1 = diag
(
N1/2, N1/2, N3/2

)
and D2 = diag

(
N1/2, N1/2, N5/2

)
.

Theorem 2: Under the same assumptions as in Theorem 1, and if the matrices Σi’s and

Gi’s as defined in (10) and (11), are of full rank, then(
(Â− A0), (B̂ −B0), (α̂− α0)

)
D1

d→ N3

(
0, σ2ζ G−11 Σ1G

−1
1

)
,(

(Ĉ − C0), (D̂ −D0), (β̂ − β0)
)
D2

d→ N3

(
0, σ2η G−12 Σ2G

−1
2

)
.

Here
d→ means convergence in distribution and using i =

√
−1

ζ =

[
∞∑

k=−∞

a(k) cos(α0k)

]2
+

[
∞∑

k=−∞

a(k) sin(α0k)

]2
=

∣∣∣∣∣
∞∑

k=−∞

a(k)eiα
0k

∣∣∣∣∣
2

,

η =

[
∞∑

k=−∞

a(k) cos(3β0k2)

]2
+

[
∞∑

k=−∞

a(k) sin(3β0k2)

]2
=

∣∣∣∣∣
∞∑

k=−∞

a(k)ei3β
0k2

∣∣∣∣∣
2

.

Also
(

(Â− A0), (B̂ −B0), (α̂− α0)
)
D1 and

(
(Ĉ − C0), (D̂ −D0), (β̂ − β0)

)
D2 are inde-

pendently distributed.

Proof: See in Appendix C.

We note that the WLSE of the frequency α is asymptotically independent of the WLSE

of the frequency rate β. In fact, the WLSEs of A and B, the linear parameters associated
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with α are asymptotically independent of the WLSEs of C and D, the linear parameters

associated with β. The asymptotic distribution of the WLSEs of the sinusoidal parameters

only depends of the true values of the sinusoidal parameters. This has also been observed in

case of chirp component. The WLSEs of sinusoidal component parameters are asymptotically

independent of the WLSEs of the chirp component parameters, therefore, sequential method

works even in one component chirp like model and has been discussed in Section 2.2.

So far we have discussed about the consistency and asymptotic normality properties of

the WLSEs. Now we will discuss about the numerical issues related to the WLSEs. We

have already mentioned that the WLSEs can be obtained by solving a two-dimensional

optimization problem. Let us look at the behavior of UN(α, β) for large N . Observe that

using Results A.1 and A.2 (stated in Appendix A), we obtain that

lim
N→∞

1

N
uii =

c1
2

; 1 ≤ i ≤ 4, (12)

lim
N→∞

1

N
uij = 0; 1 ≤ i 6= j ≤ 4. (13)

Hence, δ̂(α, β) for large N can be obtained approximately as

δ̂
>

(α, β) =
(
Â(α) B̂(α) Ĉ(β) D̂(β)

)
=
(

2u1
Nc1

2u2
Nc1

2u3
Nc1

2u4
Nc1

)
,

where u1, u2, u3, u4 are same as defined before. Once, the WLSEs of α and β are estimated,

the linear parameters are obtained as δ̂
>

(α̂, β̂). When w(t) = 1, Â(α̂) and B̂(α̂) corresponds

to the approximate LSEs of A and B and similarly, Ĉ(β̂) and D̂(β̂) are those of C and D,

respectively.

2.2 Weighted Sequential Estimators

It has been observed that the WLSEs can be obtained by solving a two-dimensional opti-

mization problem, and it needs a N × N2 order of searching for the initial guesses similar
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to the LSEs. Finding the initial guesses can take a significant amount of time if N is large.

To reduce the amount of computation of searching the initial guesses, Grover, Kundu and

Mitra [3] proposed sequential estimators (SE), which have the same asymptotic efficiency as

the ordinary LSEs. It reduces the computational burden significantly. First of all it reduces

the search of the initial guesses to the order of N + N2, and also instead of solving one

two-dimensional optimization problem, one needs to solve two one-dimensional optimization

problems. Similar to the SEs, we can provide weighted SEs (WSEs) also. Estimate A, B

and α first by minimizing

Q1(A,B, α) =
N∑
n=1

w
( n
N

)
(y(n)− A cos(αn)−B sin(αn))2 (14)

with respect to A, B and α. Let Ã, B̃ and α̃ minimize Q1(A,B, α). Then consider the

modified data after taking out the effect of the sinusoidal component as follows:

ỹ(n) = y(n)− Ã cos(α̃n)− B̃ sin(α̃n); n = 1, . . . , N. (15)

Estimate C, D and β, by minimizing

Q2(C,D, β) =
N∑
n=1

w
( n
N

) (
ỹ(n)− C cos(βn2)−B sin(βn2)

)2
. (16)

Note that the minimization of Q1(A,B, α) can be obtained by solving a one-dimensional

optimization problem. For a given α, the values of A and B which minimize Q1(A,B, α) can

be obtained as [
Ã(α) B̃(α)

]>
= V −1N (α)v,

here V N(α) = ((vij)) is a 2× 2 matrix, v = (v1, v2)
> is a 2× 1 vector, as follows:

v11 = u11, v12 = v21 = u12, v22 = u22, v1 = u1, v2 = u2.

Hence, the WSE of α can be obtained by minimizing Q1(Ã(α), B̃(α), α) with respect to α.

Similarly, the minimization of Q2(C,D, β) also can be obtained by solving a one-dimensional
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optimization problem. It may be seen that for a given β, the values of C and D which

minimize Q2(C,D, β) can be obtained as

[
C̃(β) D̃(β)

]>
= W−1

N (β)w,

here WN(β) = ((wij)) is a 2× 2 matrix, as follows:

w11 = u33, w12 = w21 = u34, w22 = u44,

and w = (w1, w2)
> is a 2× 1 vector, where

w1 =
N∑
n=1

w
( n
N

)
ỹ(n) cos(βn2) and w2 =

N∑
n=1

w
( n
N

)
ỹ(n) sin(βn2).

Therefore, the WSE of β can be obtained by minimizing Q2(C̃(β), D̃(β), β) with respect to β.

It is immediate that the WSEs can be obtained by solving two one-dimensional optimization

problems sequentially. Let θ̃ = (Ã, B̃, C̃, D̃, α̃, β̃)> denote the WSEs of θ0. The following

results provide the asymptotic properties of θ̃.

Theorem 3: Under the same assumption as in Theorem 1, the WSE θ̃ is a strongly con-

sistent estimator of θ0.

Proof: The proof follows using the Lemmas required to prove Theorem 1, and based on

the similar approaches as in Grover, Kundu and Mitra [3].

Theorem 4: Under the same assumption as in Theorem 2, the WSE θ̃ has the same

asymptotic distribution as the WLSE θ̂.

Proof: The proof follows along the same line as the proof of Theorem 2, but in this case

we need Lemma C-3, see Appendix C, to establish the result. Please see eqn. (30) and (31)

of Prasad et al. [13], and it should be clear why it is needed.
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3 Multicomponent Chirp Like Model

3.1 WLSEs

In this section we discuss about the WLSEs of the MCCL model as defined in (2). Let us

use the following notations: θj = (Aj, Bj, αj), γi = (Ci, Di, βi),

µ1(n;θj) = Aj cos(αjn) +Bj sin(αjn) and µ2(n;γi) = Ci cos(βin
2) +Di sin(βin

2),

for j = 1, . . . , p and i = 1, . . . , q. Therefore, the WLSEs of the MCCL model can be obtained

by minimizing the weighted residual sum of squares defined as follows:

Q(θ1, . . . ,θp,γ1, . . . ,γq) =
N∑
n=1

w
( n
N

)(
y(n)−

p∑
j=1

µ1(n;θj)−
q∑
i=1

µ2(n;γi)

)2

. (17)

Let us denote θ̂j = (Âj, B̂j, α̂j), γ̂i = (Ĉi, D̂i, β̂i) as the WLSEs of θ0j = (A0
j , B

0
j , α

0
j ),

γ0
i = (C0

i , D
0
i , β

0
i ), respectively, for j = 1, . . . , p and i = 1, . . . , q. Now we are in a position

to state the consistency results of the WLSEs of the MCCL model.

Theorem 5: If {X(n)} has the same structure as given in (4), and w(t) satisfies Assumption

1, then the WLSEs θ̂j = (Âj, B̂j, α̂j), γ̂i = (Ĉi, D̂i, β̂i) are consistent estimators of θ0j =

(A0
j , B

0
j , α

0
j ), γ

0
i = (C0

i , D
0
i , β

0
i ), respectively, for j = 1, . . . , p and i = 1, . . . , q.

Proof: The proof can be obtained along the same line as the proof of Theorem 1.

Now we would like to state the asymptotic distribution of the WLSEs. For that pur-

pose, we need to introduce the following notations. The 3 × 3 matrices Σ1j and G1j are

obtained from the matrices Σ1 and G1, respectively, by replacing A0, B0 with A0
j and B0

j ,

respectively, for j = 1, . . . , p. Similarly, Σ2k and G2k are obtained from the matrices Σ2 and

G2, respectively, by replacing C0, D0 with C0
k and D0

k, respectively, for k = 1, . . . , q. The

matrices D1 and D2 are same as defined before. Then we have the following result.
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Theorem 6: Under the same assumptions as in Theorem 1, and if all the matrices defined

above are of full rank, then for j = 1, . . . , p and k = 1, . . . , q,

(
(Âj − A0

j), (B̂j −B0
j ), (α̂j − α0

j )
)
D1

d→ N3

(
0, σ2ζj G

−1
1j Σ1jG

−1
1j

)
,

(
(Ĉk − C0

k), (D̂k −D0
k), (β̂k − β0

k)
)
D2

d→ N3

(
0, σ2ηk G

−1
2k Σ2kG

−1
2k

)
.

Here

ζj =

[
∞∑

l=−∞

a(l) cos(α0
j l)

]2
+

[
∞∑

l=−∞

a(l) sin(α0
j l)

]2
=

∣∣∣∣∣
∞∑

l=−∞

a(l)eiα
0
j l

∣∣∣∣∣
2

,

ηk =

[
∞∑

l=−∞

a(l) cos(3β0
kl

2)

]2
+

[
∞∑

l=−∞

a(l) sin(3β0
kl

2)

]2
=

∣∣∣∣∣
∞∑

l=−∞

a(l)ei3β
0
kl

2

∣∣∣∣∣
2

,

and they are all independently distributed.

Proof: The asymptotic distribution of the WLSE of the parameter correcponding to the

j-th sinusoidal component
(

(Âj − A0
j), (B̂j −B0

j ), (α̂j − α0
j )
)
D1 and correcponding to the

k-th chirp component
(

(Ĉk − C0
k), (D̂k −D0

k), (β̂k − β0
k)
)
D2 follow exactly in the same way

as the proof of Theorem 2 considering the estimator vector θ̂F = (θ̂1, . . . , θ̂p, γ̂1, . . . , γ̂q)

and Q(θ1, . . . ,θp,γ1, . . . ,γq) instead of Q(θ) defined in (6). The independence of θ̂i and θ̂j,

i 6= j can be proved using Lemma C-1, see Appendix C, and that of γ̂k and γ̂ l, k 6= l can be

proved using Lemma C-2, see Appendix C. To prove independence between θ̂j and γ̂k we

also need to use Lemma C-2.

3.2 WSE

It has been observed that the WLSEs of the unknown parameters of a MCCL model can be

obtained by solving a (p + q) dimensional optimization problem. In most of the practical

situations the problem can be a quite numerically challenging problem. Due to this reason

we propose the WSEs of the unknown parameters, which can be obtained by solving (p+ q)
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separate one-dimensional optimization problems and they have the same asymptotic prop-

erties as the WLSEs. The idea is same as the WSEs of the OCCL model. First obtain θ̃1,

the WSE of θ1, by the argument minimum of (18), where

S1(θ1) =
N∑
n=1

w
( n
N

)
(y(n)− µ1(n;θ1))

2 . (18)

Then obtain γ̃1, the WSE of γ1, by the argument minimum of (19), where

S2(γ1) =
N∑
n=1

w
( n
N

)
(y1(n)− µ2(n;γ1))

2 , (19)

where y1(n) = y(n)−µ1(n; θ̃1), for n = 1, . . . , N . By repeating this procedure (p+ q) times,

we can obtain θ̃1, . . . , θ̃p and γ̃1, . . . , γ̃q. In each step, whether a sinusoidal component or a

chirplet component is estimated, depends on the powers Ã2
j + B̃2

j and C̃2
k + D̃2

k. By following

similar procedure as in Grover, Kundu and Mitra [3], it can be shown that the WSEs have

the same asymptotic properties as the WLSEs. Lemma C-3, provided in Appendix C, can

be required to derive the asymptotic properties of WSEs.

4 Simulations

In this section, we report simulation results in the form of mean square errors (MSEs) and

mean absolute deviations (MADs) for the WLSEs. These results are obtained with 5000

simulation runs for each data set. For the first set of experiments, we consider the following

model with one sinusoidal and one chirp component:

y(n) = 10 cos(1.5n) + 10 sin(1.5n) + 10 cos(0.1n2) + 10 sin(0.1n2) +X(n).

Here, X(n)s are generated from a white Gaussian noise process with mean 0 and variance

σ2. For different error variances and sample sizes, we generate data from this model. These

data sets are then contaminated by adding outliers to middle five percent of observations.
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Figure 1: In each sub-plot, the graphed lines represent the MSEs of the WLSEs, the LSEs
and the LADEs of the simulated one component model.

We then compute the WLSEs of the frequency and chirp rate parameters using the following

weight function:

w
( n
N

)
=

1

4
− n

N
+
n2

N2
.

The weight function plays an important role in the computation of the WLSEs and therefore

its choice is a crucial step. Since in the simulated data sets, the outliers are the middle

observations, we have chosen a convex weight function that gives minimum weightage to

these observations. To compute the WLSEs, the initial guesses of both α and β are obtained

based on grid search. In case of α, the grid size is
π

N
and for β it is

π

N2
. In both the cases

the ranges are [0, π]. We have used Nelder-Mead algorithm to obtain the final estimates. In

the figures to follow, we report the MSEs and MADs of the WLSEs and those of LSEs and

LADEs for comparison. It can be seen that the proposed method outperforms the LSEs for

all the error variances and sample sizes considered. It has been observed that the WLSEs

and LADEs seem to exhibit identical performance as revealed by the curves that lie on top

of each other in Figure 1.
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Figure 2: In each sub-plot, the graphed lines represent the MADs of the WLSEs, the LSEs
and the LADEs of the simulated one component model.

For a clearer picture of the comparison between the performance of WLSEs and LADEs,

we report the ratio of the MSEs of the WLSEs to those of LADEs and the ratio of MADs of

the WLSEs to those of LADEs in the subsequent figures. The plots reveal that the MSEs and

MADs of WLSEs are slightly smaller than those of LADEs. It should be noted that although

the performance of WLSEs is at par with that of the LADEs, there is a significant difference

in their computational time. The main difference is in the computational complexity involved

in finding the initial values for the two estimators. For the WLSEs, we need to perform initial

value computations of the order O(N3) whereas for the LADEs, it is of the order O(N4).

In the next set of experiments, we consider a more general model with two sinusoidal

components and one chirplet:

y(n) = 10 cos(1.5n) + 10 sin(1.5n) + 10 cos(0.1n2) + 10 sin(0.1n2)

+10 cos(2.2n) + 10 sin(2.2n) +X(n). (20)

Different data sets are simulated from the above model with different error variances and

sample sizes. To assess the performance of the WLSEs of the parameters of this model, we
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Figure 3: In each sub-plot, the graphed line represents the ratio of MSEs of the WLSEs to
those of the LADEs of the simulated one component model.
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Figure 4: In each sub-plot, the graphed line represents the ratio of MADs of the WLSEs to
those of the LADEs of the simulated one component model.
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Figure 5: In each sub-plot, the graphed lines represent the MSEs of the WLSEs, the LSEs
and the LADEs of the simulated model defined in (20).

again add a few outliers in the middle of each data set. For every value of N and σ2, 5000

realisations are generated and estimates are obtained. For comparison, we also compute the

LSEs and the LADEs of these parameters. The MSEs and the MADs of the three estimators

are reported in Figure 5 and 6.

In this case also, we observe the ratio of MSEs and MADs of WLSEs to those of LADEs.

The results are shown in Figure 7 and 8. It is observed that for all choices of N and σ2

considered here, the ratio is less than 1.

Although the difference between the performance of WLSEs and LADEs seem subtle, it is

important to note that finding the LADEs even for a model with one sinusoidal component

and one chirp component involves solving a six-dimensional optimisation problems. As

pointed out before, to find the initial guesses, we need to perform a grid search of order O(N3)

for WLSEs and that of order O(N4) for the LADEs. However in case of the WLSEs, we

can use the proposed sequential algorithm which reduces the multidimensional optimisation

problem into a cascade of one-dimensional optimisation problems. In this case, to find the
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Figure 6: In each sub-plot, the graphed lines represent the MADs of the WLSEs, the LSEs
and the LADEs of the simulated model defined in (20).
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Figure 7: In each sub-plot, the graphed line represents ratio of the MSEs of the WLSEs to
those of the LADEs of the simulated model defined in (20).
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Figure 8: In each sub-plot, the graphed line represents ratio of the MADs of the WLSEs to
those of the LADEs of the simulated model defined in (20).

initial values for the unknown parameters, the computational cost reduces from O(N3) to

O(N + N2) for the sequential WLSEs. This makes the proposed method, as opposed to

LADEs, faster as well as practically feasible to implement. It is important to note that

for the model with multiple sinusoids and chirplets, say p and q respectively, finding the

initial guesses for sequntial WLSEs is of order O(pN + qN2). On the other hand, finding the

initial guesses for LADEs is of the order O(N4(p+q)). Finding LADEs is, therefore, highly

computationally complex and might be infeasible in practice for large values of p and q,

whereas sequential WLSEs overcome this problem in an efficient manner.

5 Data Analyses

In this section, we demonstrate how to implement the proposed sequential method efficiently

to describe an observed EEG data using a chirp-like model. This signal originates from a

study to examine EEG correlates of genetic predisposition to alcoholism. We consider one

segment of the data sampled at 256 Hz for 1 second. We scale the signal values to lie between
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Figure 9: The scaled EEG signal.

-1 and 1 and the resultant signal is plotted in Figure 9.

To assess the applicability and robustness of the sequential estimators, we add white

Gaussian noise with mean 0 and variance 100 to the middle most observation. The maximum

model order is set to p + q = 30. To find the initial guesses for the non-linear parameters,

we have used grid search method with the same grid sizes as it has been used for simulation

experiments also. The final estimates are then found using the Nelder-Mead optimisation

algorithm. Following form of the BIC criterion is used for model selection:

BIC[p, q] = N loge(SSresiduals[p, q]) + 0.5(5p+ 7q + armaa,b + 1) loge(N),

where the SSresiduals[p, q] is the residuals sum of squares when p number of sinusoidal com-

ponents and q number of chirp components are fitted to the data. This form of BIC is used

to account for the fact that the magnitude of penalty should depend on the type of model

parameter. This is inspired from Djuric’s asymptotic MAP rule [1], where the frequency

parameter of a sinusoidal signal is shown to contribute with a three times larger penalty

term than the sinusoidal amplitude. Therefore p + p + 3p = 5p is the penalty term corre-

sponding to the sinusoidal part of the signal and extrapolating that for the chirp parameter,
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Figure 10: The BIC plot with respect to the number of components.

q+ q+ 5q = 7q is the penalty term corresponding to the chirp component of the signal. The

BIC plot is shown in Figure 10.

The estimated number of components are chosen corresponding to the minimum value

of BIC. In Figure 11, the estimated signal is shown with p = 5 and q = 11. We can see that

the algorithm provides a reasonably accurate fit to the data.

In Figure 12, we plot the residuals obtained from the above fit. Using the Augmented

Dickey Fuller (ADF) test, we test the stationarity of these residuals. Based on the resultant

small p-value, we reject the null hypothesis that the time series has a unit root and thereby

conclude that the residuals are stationary. To test for the linear stationary process of the

residual, we have used the ‘auto.arima’ function in ‘forecast’ package in R to fit an ARMA

model to the residuals. It fits ARMA(4,4) with the following coefficients: ar(1) = 0.954,

ar(2) = -0.334, ar(3) = -0.278, ar(4) = 0.406, ma(1) = -0.664, ma(2) = 0.169, ma(3) =

0.286 and ma(4) = -0.627. It indicates that the residual is a linear stationary process, which

satistifies the model assumptions.
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Figure 11: The estimated EEG signal along with the original EEG signal.

0 50 100 150 200 250−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

 

residuals

Figure 12: The residuals plot of the EEG signal.
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6 Conclusions

In this paper, we have studied the WLSEs to estimate the unknown parameters of a chirp

like model. The chirp like model has been proposed as an alternative to the well known chirp

model. Similar to the chirp model, this model also can be used for future prediction also. The

chirp like model is a combination of sinusoidal components and chirplet components observed

in additive noise. We have mainly considered the problem of estimation of parameters in

presence of outliers. The least squares method does not work well in presence of outliers. We

propose to use the weighted least squares method to estimate the unknown parameters. The

LADEs usually work well in presence of outliers, but establishing theoretical properties of

LADEs in case of sinusoidal as well as chirplet model is not straight forward specially in case

of multicomponent models. We have proved that the WLSEs of the unknown parameters of

the chirp like model are strongly consistent and asymptotically normal under the assumption

of linear stationary error. Numerical experiments using moderate size samples reveal that

WLSEs perform better than LSEs and even LADEs in terms of MSEs and MADs.

Finally it should be mentioned that in this paper we have assumed that the error com-

ponent is a linear stationary process. All the theoretical developments are based on this

assumption. But in practice the error compeonent may not be a linear stationary process.

In case of a nonlinear time series residuals all the theoretical results need to be developed.

It is definitely a non-trivial extension, more work is needed in that direction.
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Appendix A: Preliminaries

To establish the consistency and asymptotic normality of the WLSEs we need some trigono-

metric and number theoretic results and one famous number theoretic conjecture. We ex-

plicitly mention it here for easy reference.

Result A.1: If α, β ∈ (0, π), and α 6= β, then the following results hold.

lim
N→∞

1

N

N∑
n=1

cos(αn) = lim
N→∞

1

N

N∑
n=1

sin(αn) = 0,

lim
N→∞

1

Nk+1

N∑
n=1

nk cos2(αn) =
1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin2(αn) =
1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn) sin(αn) = 0,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin(αn) sin(βn) = lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn) cos(βn) = 0,

where k = 0, 1, 2, . . ..

Proof: The proofs can be found in Mangulis [11].

Result A.2: If α, β ∈ (0, π), and α 6= β, then except for countable number of points, the

following results hold.

lim
N→∞

1

N

N∑
n=1

cos(αn2) = lim
N→∞

1

N

N∑
n=1

sin(αn2) = 0,
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lim
N→∞

1

Nk+1

N∑
n=1

nk cos2(αn2) =
1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin2(αn2) =
1

2(k + 1)
,

lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn2) sin(βn2) = 0,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin(αn2) cos(βn) = lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn2) sin(βn) = 0,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin(αn2) sin(βn) = lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn2) cos(βn) = 0.

In addition if α 6= β, then for k = 0, 1, 2, . . .,

lim
N→∞

1

Nk+1

N∑
n=1

nk sin(αn2) sin(βn2) = lim
N→∞

1

Nk+1

N∑
n=1

nk cos(αn2) cos(βn2) = 0.

where k = 0, 1, 2, . . ..

Proof: The proofs can be obtained from Vinogradov’s [16] results. See Lahiri, Kundu and

Mitra [9] for details.

The following well known number theoretic conjecture, see for example Montgomery [12],

can not be established formally. But extensive numerical experiments indicate that it holds

true.

Conjecture A: If α, β ∈ (0, π), then except for countable number of points, for k =

0, 1, 2, . . .,

lim
N→∞

1√
NNk

N∑
n=1

nk cos(αn2) sin(βn2) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nk cos(αn2) sin(βn) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nk sin(αn2) cos(βn) = 0,
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lim
N→∞

1√
NNk

N∑
n=1

nk cos(αn2) cos(βn) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nk sin(αn2) sin(βn) = 0.

In addition if α 6= β, then for k = 0, 1, 2, . . .,

lim
N→∞

1√
NNk

N∑
n=1

nk cos(αn2) cos(βn2) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nk sin(αn2) sin(βn2) = 0.

Appendix B: Proof of Theorem 1.

We need the following lemmas to prove Theorem 1.

Lemma B-1: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, then

E

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w2

(
n+ 1

N

)
w

(
n+ 2

N

)
e(n)e2(n+ 1)e(n+ 2)

∣∣∣∣∣ = O(N
1
2 ).

Proof:

E

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w2

(
n+ 1

N

)
w

(
n+ 2

N

)
e(n)e2(n+ 1)e(n+ 2)

∣∣∣∣∣ ≤E( N∑
n=1

w
( n
N

)
w2

(
n+ 1

N

)
w

(
n+ 2

N

)
e(n)e2(n+ 1)e(n+ 2)

)2
 1

2

= O(N
1
2 ).

Similarly, it follows that

E

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w

(
n+ 1

N

)
w

(
n+ k

N

)
w

(
n+ k + 1

N

)
e(n)e(n+ 1)e(n+ k)e(n+ k + 1)

∣∣∣∣∣ = O(N
1
2 ),

for some fixed k, where k = 2, 3, . . ..
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Lemma B-2: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, then for arbitrary integers m, k ≥ 1,

E sup
θ

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w

(
n+ k

N

)
e(n)e(n+ k)eimθn

∣∣∣∣∣ = O(N
3
4 ).

Proof:

E sup
θ

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w

(
n+ k

N

)
e(n)e(n+ k)eimθn

∣∣∣∣∣ ≤E sup
θ

∣∣∣∣∣
N∑
n=1

w
( n
N

)
w

(
n+ k

N

)
e(n)e(n+ k)eimθn

∣∣∣∣∣
2
 1

2

=

[
E sup

θ

(
N∑
n=1

w
( n
N

)
w

(
n+ k

N

)
e(n)e(n+ k)eimθn

)
(

N∑
n=1

w
( n
N

)
w

(
n+ k

N

)
e(n)e(n+ k)e−imθn

)] 1
2

≤

[
E

N∑
n=1

w2
( n
N

)
w2

(
n+ k

N

)
e2(n)e2(n+ k)+

2E

∣∣∣∣∣
N−1∑
n=1

w
( n
N

)
w

(
n+ k

N

)
w

(
n+ 1

N

)
w

(
n+ k + 1

N

)
e(n)e(n+ k)e(n+ 1)e(n+ k + 1)

∣∣∣∣∣+

. . .+ 2E

∣∣∣∣w( 1

N

)
w

(
1 + k

N

)
w (1)w

(
N + k

N

)
e(1)e(1 + k)e(N)e(N + k)

∣∣∣∣] 1
2

= O(N +N.N
1
2 )

1
2 = O(N

3
4 ).

Lemma B-3: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, then

E sup
β

∣∣∣∣∣
N∑
n=1

w
( n
N

)
e(n)eiβn

2

∣∣∣∣∣
2

= O(N
7
4 ).

Proof:

E sup
β

∣∣∣∣∣
N∑
n=1

w
( n
N

)
e(n)eiβn

2

∣∣∣∣∣
2

=
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E sup
β

(
N∑
n=1

w
( n
N

)
e(n)eiβn

2

)(
N∑
n=1

w
( n
N

)
e(n)e−iβn

2

)
= O(N +N.N

3
4 ) = O(N

7
4 )

Lemma B-4: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, then

E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
e(n)eiβn

2

∣∣∣∣∣ ≤ O(N−
1
8 ).

Proof:

E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
e(n)eiβn

2

∣∣∣∣∣ ≤
E sup

β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
e(n)eiβn

2

∣∣∣∣∣
2
 1

2

= O(N−
1
8 ).

Lemma B-5: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, and {X(n)} is same as defined in (4), then

E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ ≤ O(N−
1
8 ).

Proof:

E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ =

E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

∞∑
k=−∞

a(k)e(n− k)w
( n
N

)
eiβn

2

∣∣∣∣∣ ≤
∞∑

k=−∞

|a(k)|

[
E sup

β

∣∣∣∣∣ 1

N

N∑
n=1

e(n− k)w
( n
N

)
eiβn

2

∣∣∣∣∣
]

= O(N−
1
8 ).

Since E sup
β

∣∣∣∣∣ 1

N

N∑
n=1

e(n− k)w
( n
N

)
eiβn

2

∣∣∣∣∣ is independent of k, the result follows from Lemma

B-4.

Lemma B-6: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, and {X(n)} is same as defined in (4), then

sup
β

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ −→ 0, a.s.
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Proof: Consider the sequence N9, then we obtain

E sup
β

∣∣∣∣∣ 1

N9

N9∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ ≤ O(N−
9
8 ).

Therefore, using Borel Cantelli lemma, it follows that

sup
β

∣∣∣∣∣ 1

N9

N9∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ −→ 0, a.s.

Now consider J , such that N9 < J ≤ (N + 1)9, then

sup
β

sup
N9<J≤(N+1)9

∣∣∣∣∣ 1

N9

N9∑
n=1

w
( n
N

)
X(n)eiβn

2 − 1

J

J∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ =

sup
β

sup
N9<J≤(N+1)9

∣∣∣∣∣ 1

N9

N9∑
n=1

w
( n
N

)
X(n)eiβn

2 − 1

N9

J∑
n=1

w
( n
N

)
X(n)eiβn

2

+

1

N9

J∑
n=1

w
( n
N

)
X(n)eiβn

2 − 1

J

J∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ ≤
sup
β

sup
N9<J≤(N+1)9

∣∣∣∣∣ 1

N9

N9∑
n=1

w
( n
N

)
X(n)eiβn

2 − 1

N9

J∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣+

sup
β

sup
N9<J≤(N+1)9

∣∣∣∣∣ 1

N9

J∑
n=1

w
( n
N

)
X(n)eiβn

2 − 1

J

J∑
n=1

w
( n
N

)
X(n)eiβn

2

∣∣∣∣∣ ≤
K

N9

(N+1)9∑
n=N9+1

|X(n)|+K

(N+1)9∑
n=1

|X(n)|
(

1

N9
− 1

(N + 1)9

)
Note that the mean squared error of the first term is of the orderO

(
1

N18 × ((N + 1)9 −N9)2
)

=

O(N−2). Similarly, the mean squared error of the second term is of the order

O

(
N18 ×

(
(N + 1)9 −N9

N18

)2
)

= O(N−2). Therefore, both the terms converge to zero

almost surely.

Along the same line the following result follows.

Lemma B-7: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, w(t) satisfies Assumption 1, and {X(n)} is same as defined in (4), then

sup
α

∣∣∣∣∣ 1

N

N∑
n=1

w
( n
N

)
X(n)eiαn

∣∣∣∣∣ −→ 0, a.s.
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Lemma B-8: Let us denote

Sc = {θ : θ = (A,B,C,D, α, β)>, |θ − θ0| ≥ 6c}.

If there exists a c > 0,

lim inf
θ∈Sc

1

N
[Q(θ)−Q(θ0)] > 0 a.s. (21)

then θ̂, the WLSE of θ0, is a strongly consistent estimator of θ0.

Proof: It follows using simple arguments by contradiction, exactly similar to the lemma

by Wu [17].

Proof of Theorem 1:

Let us denote

µ(n;θ) = A cos(αn) +B sin(αn) + C cos(βn2) +D sin(βn2). (22)

Consider

1

N
[Q(θ)−Q(θ0)] =

1

N

[
N∑
n=1

w
( n
N

)
(y(n)− µ(n;θ))2 −

N∑
n=1

w
( n
N

)
X2(n)

]

=
1

N

[
N∑
n=1

w
( n
N

)
(µ(n;θ0)− µ(n;θ))2

]

+
2

N

[
N∑
n=1

w
( n
N

)
X(n)(µ(n;θ0)− µ(n;θ))

]
= f1(θ) + f2(θ).

Here

f1(θ) =
1

N

[
N∑
n=1

w
( n
N

)
(µ(n;θ0)− µ(n;θ))2

]
,

f2(θ) =
2

N

[
N∑
n=1

w
( n
N

)
X(n)(µ(n;θ0)− µ(n;θ))

]
.
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Consider

Sc,1 = {θ : θ = (A,B,C,D, α, β)>, |A− A0| ≥ c}

Sc,2 = {θ : θ = (A,B,C,D, α, β)>, |B −B0| ≥ c}

Sc,3 = {θ : θ = (A,B,C,D, α, β)>, |C − C0| ≥ c}

Sc,4 = {θ : θ = (A,B,C,D, α, β)>, |D −D0| ≥ c}

Sc,5 = {θ : θ = (A,B,C,D, α, β)>, |α− α0| ≥ c}

Sc,6 = {θ : θ = (A,B,C,D, α, β)>, |β − β0| ≥ c}.

Now Sc ∈ ∪6j=1Sc,j = S. Therefore,

lim inf
θ∈Sc

f1(θ) ≥ lim inf
θ∈S

f1(θ) = lim inf
θ∈∪jSc,j

f1(θ).

Now

lim inf
θ∈Sc,1

f1(θ) = lim inf
|A−A0|≥c

(A− A0)2
1

N

N∑
n=1

w
( n
N

)
cos2(α0n)

≥ γ lim inf
|A−A0|≥c

(A− A0)2
1

N

N∑
n=1

cos2(α0n) > 0, (using Result A.1).

Similarly using Results A.1 and A.2, it can be shown for Sc,2, . . . , Sc,6 also. Therefore,

lim inf
θ∈Sc

f1(θ) > 0.

Using Lemma B-7, it follows that

lim sup
θ
|f2(θ)| = 0,

therefore

lim inf
θ∈Sc

1

N
[Q(θ)−Q(θ0)] > 0 a.s.

Using Lemma B-8, the result follows.
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Appendix C: Proof of Theorem 2.

We need the following lemmas to prove Theorem 2.

Lemma C-1: If 0 < α, β < π, and w(t) satisfies Assumption 1, then for k = 0, 1, 2, . . .,

(a) lim
N→∞

1

N

N∑
n=1

w
( n
N

)
sin2(αn) = lim

N→∞

1

N

N∑
n=1

w
( n
N

)
cos2(αn) =

1

2

∫ 1

0

w(t)dt >
γ

2
,

(b) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
cos(αn) = 0,

(c) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin2(αn) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
cos2(αn)

=
1

2

∫ 1

0

tkw(t)dt =
ck+1

2
> 0,

(d) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn) cos(αn) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn) cos(βn) = 0,

In addition if α 6= β, then,

(e) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn) sin(βn) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
cos(αn) cos(βn) = 0.

Proof of Lemma C-1: Proof of (a). First we will show

lim
N→∞

1

N

N∑
n=1

w
( n
N

)
cos2(αn) =

1

2

∫ 1

0

w(t)dt.

For ε > 0, there exists a polynomial pε(x), such that |w(x) − pε(x)| ≤ ε, for all x ∈ [0, 1].

Hence, ∫ 1

0

w(x)dx− ε ≤
∫ 1

0

pε(x)dx ≤
∫ 1

0

w(x)dx+ ε.

Further

1

N

N∑
n=1

pε

( n
N

)
cos2(αn)− ε

N

N∑
n=1

cos2(αt) ≤ 1

N

N∑
n=1

w
( n
N

)
cos2(αn) ≤

1

N

N∑
n=1

pε

( n
N

)
cos2(αn) +

ε

N

N∑
n=1

cos2(αn).
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Suppose

pε(x) = a0 + a1x+ · · ·+ akx
k ⇒

∫ 1

0

pε(x)dx = a0 +
a1
2

+ · · ·+ ak
k + 1

.

Now due to Result A.1,

1

N

N∑
n=1

pε

( n
N

)
cos2(αn) =

1

N

N∑
n=1

{
a0 +

a1n

N
+ · · ·+ akn

k

Nk

}
cos2(αn)

−→ 1

2

[
a0 +

a1
2

+ · · ·+ ak
k + 1

]
=

1

2

∫ 1

0

pε(x)dx.

Therefore,

lim
N→∞

1

N

N∑
n=1

pε

( n
N

)
cos2(αn)− ε

2
≤ lim

N→∞

1

N

N∑
n=1

w
( n
N

)
cos2(αn) ≤

lim
N→∞

1

N

N∑
n=1

pε

( n
N

)
cos2(αn) +

ε

2
.

Hence

1

2

∫ 1

0

w(t)dt− ε

2
≤ lim

N→∞

1

N

N∑
n=1

w
( n
N

)
cos2(αn) ≤ 1

2

∫ 1

0

w(t)dt+
ε

2
.

Since ε is arbitrary, the result follows.

The result involving sin2(αn) will go through exactly in the same way. Note that using (a),

Result A.2 and by properly choosing w(·), (b), (c), (d) and (e) follow.

Lemma C-2: If 0 < α, β < π, and w(t) satisfies Assumption 1, then except for countable

number of points, for k = 0, 1, 2, . . .,

(a) lim
N→∞

1

N

N∑
n=1

w
( n
N

)
sin2(βn2) = lim

N→∞

1

N

N∑
n=1

w
( n
N

)
cos2(βn2) =

1

2

∫ 1

0

w(t)dt >
γ

2
,

(b) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin2(βn2) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
cos2(βn2)

=
1

2

∫ 1

0

tkw(t)dt =
ck+1

2
> 0,

(c) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn2) = lim

N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
cos(αn2) = 0,
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(d) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn2) cos(αn2) = lim

N→∞

1

Nk+1

N∑
n=1

w
( n
N

)
sin(αn2) cos(βn2) = 0,

(f) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn2) sin(βn) = lim

N→∞

1

Nk+1

N∑
n=1

w
( n
N

)
cos(αn2) cos(βn) = 0,

(g) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn2) cos(βn) = lim

N→∞

1

Nk+1

N∑
n=1

w
( n
N

)
cos(αn2) sin(βn) = 0,

In addition if α 6= β, then,

(e) lim
N→∞

1

Nk+1

N∑
n=1

nkw
( n
N

)
sin(αn2) sin(βn2) = lim

N→∞

1

Nk+1

N∑
n=1

w
( n
N

)
cos(αn2) cos(βn2) = 0.

Proof of Lemma C-2: The proof follows along the same line as the proof of Lemma C-1.

Lemma C-3: If α, β ∈ (0, π), and if Conjecture A is true, then except for countable number

of points, for k = 0, 1, 2, . . .,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
cos(αn2) sin(βn2) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
cos(αn2) cos(βn) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
sin(αn2) sin(βn) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
sin(αn2) cos(βn) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
cos(αn2) sin(βn) = 0.

In addition if α 6= β, then

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
cos(αn2) cos(βn2) = 0,

lim
N→∞

1√
NNk

N∑
n=1

nkw
( n
N

)
sin(αn2) sin(βn2) = 0.
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Proof of Lemma C-3: If Conjecture A is true, then proof follows along the same line as

the proof of Lemma C-1.

Proof of Theorem 2:

This proof can be obtained by expanding Q(θ) around the point θ0. We will use the

structure of the weight function w(t), Lemmas C-1 and C-2 and the Central Limit Theorem

of the stochastic process to obtain the asymptotic distribution of θ̂.

The criterion function is

Q(θ) =
N∑
n=1

w
( n
N

) (
y(n)− A cos(αn)−B sin(αn)− C cos(βn2)−D sin(βn2)

)2
,

therefore, the vector of first order derivatives is

Q′(θ0) =



∂Q(θ)
∂A

∂Q(θ)
∂B

∂Q(θ)
∂α

∂Q(θ)
∂C

∂Q(θ)
∂D

∂Q(θ)
∂β


θ=θ0

= −2



∑N
n=1w

(
n
N

)
X(n) cos(α0n)∑N

n=1w
(
n
N

)
X(n) sin(α0n)∑N

n=1 nw
(
n
N

)
X(n)(B0 cos(α0n)− A0 sin(α0n))∑N

n=1w
(
n
N

)
X(n) cos(β0n2)∑N

n=1w
(
n
N

)
X(n) sin(β0n2)∑N

n=1 n
2w
(
n
N

)
X(n)(D0 cos(β0n2)− C0 sin(β0n2))


and the matrix of second order derivatives is

Q
′′
(θ0) =



∂2Q(θ)
∂A2

∂2Q(θ)
∂A∂B

∂2Q(θ)
∂A∂α

∂2Q(θ)
∂A∂C

∂2Q(θ)
∂A∂D

∂2Q(θ)
∂A∂β

∂2Q(θ)
∂B∂A

∂2Q(θ)
∂B2

∂2Q(θ)
∂B∂α

∂2Q(θ)
∂B∂C

∂2Q(θ)
∂B∂D

∂2Q(θ)
∂B∂β

∂2Q(θ)
∂α∂A

∂2Q(θ)
∂α∂B

∂2Q(θ)
∂α2

∂2Q(θ)
∂α∂C

∂2Q(θ)
∂α∂D

∂2Q(θ)
∂α∂β

∂2Q(θ)
∂C∂A

∂2Q(θ)
∂C∂B

∂2Q(θ)
∂C∂α

∂2Q(θ)
∂C2

∂2Q(θ)
∂C∂D

∂2Q(θ)
∂C∂β

∂2Q(θ)
∂D∂A

∂2Q(θ)
∂D∂B

∂2Q(θ)
∂D∂α

∂2Q(θ)
∂D∂C

∂2Q(θ)
∂D2

∂2Q(θ)
∂D∂β

∂2Q(θ)
∂β∂A

∂2Q(θ)
∂β∂B

∂2Q(θ)
∂β∂α

∂2Q(θ)
∂β∂C

∂2Q(θ)
∂β∂D

∂2Q(θ)
∂β2


θ=θ0

.

The elements of Q
′′
(θ0) are given in Appendix D. Consider the following diagonal matrix

D = diag(N−1/2, N−1/2, N−3/2, N−1/2, N−1/2, N−5/2) =

(
D−11 0

0 D−12

)
, (23)
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where D1 and D2 are same as used in the statement of Theorem 2. Then using Lemmas

C-1 and C-2, it follows that

DQ′(θ0)
d−→ N6(0, σ

2 Σ), (24)

where

Σ =

(
ζΣ1 0
0 ηΣ2

)
.

Here Σ1 and Σ2 are same as defined in equation (10) and

ζ =

∣∣∣∣∣
∞∑

k=−∞

a(k)eiα
0k

∣∣∣∣∣
2

, η =

∣∣∣∣∣
∞∑

k=−∞

a(k)ei3β
0k2.

∣∣∣∣∣
2

.

Now expanding Q′(θ̂) around θ0 using multivariate Taylor series expansion, we obtain

Q′(θ̂) = Q′(θ0) +Q′′(θ̄)(θ̂ − θ0),

where θ̄ lies on the line joining θ̂ and θ0. Since θ̂ minimizes Q(θ), we have Q′(θ̂) = 0,

therefore

DQ′(θ0) = −DQ′′(θ̄)DD−1(θ̂ − θ0). (25)

Theorem 1 implies that θ̂
a.s.−→ θ0. Therefore, using the continuous mapping theorem and

repeated use of Lemmas C-1 and C-2, we observe that

lim
N→∞

DQ
′′
(θ̄)D = lim

N→∞
DQ

′′
(θ0)D = G, (26)

where

G =

(
G1 0
0 G2

)
.

with G1 and G2 same as defined in (11). Now using (24) and (26) in (25), we obtain

D−1(θ̂ − θ0) d−→ N6(0, σ
2 Σ−1GΣ−1).

Hence, the result follows.
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Appendix D

The second order derivatives of Q(θ) with respect to elements of θ at θ0 are provided in this

Appendix.

∂2Q(θ0)

∂A2
= 2

N∑
n=1

w
( n
N

)
cos2(α0n),

∂2Q(θ0)

∂A∂B
= 2

N∑
n=1

w
( n
N

)
cos(α0n) sin(α0n),

∂2Q(θ0)

∂A∂α
= 2

N∑
n=1

n w
( n
N

)
(B0 cos(α0n)− A0 sin(α0n)) cos(α0n) + 2

N∑
n=1

n w
( n
N

)
X(n) sin(α0n),

∂2Q(θ0)

∂A∂C
= 2

N∑
n=1

w
( n
N

)
cos(α0n) cos(β0n2),

∂2Q(θ0)

∂A∂D
= 2

N∑
n=1

w
( n
N

)
cos(α0n) sin(β0n2),

∂2Q(θ0)

∂A∂β
= 2

N∑
n=1

n2w
( n
N

)
cos(α0n)(D0 cos(β0n2)− C0 sin(β0n2))

∂2Q(θ0)

∂B2
= 2

N∑
n=1

w
( n
N

)
sin2(α0n),

∂2Q(θ0)

∂B∂α
= 2

N∑
n=1

n w
( n
N

)
(B0 cos(α0n)− A0 sin(α0n)) sin(α0n)− 2

N∑
n=1

n w
( n
N

)
X(n) cos(α0n),

∂2Q(θ0)

∂B∂C
= 2

N∑
n=1

w
( n
N

)
sin(α0n) cos(β0n2),

∂2Q(θ0)

∂B∂D
= 2

N∑
n=1

w
( n
N

)
sin(α0n) sin(β0n2),

∂2Q(θ0)

∂B∂β
= 2

N∑
n=1

n2w
( n
N

)
sin(α0n)(D0 cos(β0n2)− C0 sin(β0n2))

∂2Q(θ0)

∂α2
= 2

N∑
n=1

n2w
( n
N

) (
B0 cos(α0n)− A0 sin(α0n)

)2
+2

N∑
n=1

n2w
( n
N

)
X(n)

{
A0 cos(α0n) +B0 sin(α0n)

}
,
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∂2Q(θ0)

∂α∂C
= 2

N∑
n=1

n w
( n
N

)
cos(β0n2)(B0 cos(α0n)− A0 sin(α0n)),

∂2Q(θ0)

∂α∂D
= 2

N∑
n=1

n w
( n
N

)
sin(β0n2)(B0 cos(α0n)− A0 sin(α0n)),

∂2Q(θ0)

∂α∂β
= 2

N∑
n=1

n3w
( n
N

)
(B0 cos(α0n)− A0 sin(α0n))(D0 cos(β0n2)− C0 sin(β0n2))

∂2Q(θ0)

∂C2
= 2

N∑
n=1

w
( n
N

)
cos2(β0n2),

∂2Q(θ0)

∂C∂D
= 2

N∑
n=1

w
( n
N

)
cos(β0n2) sin(β0n2),

∂2Q(θ0)

∂C∂β
= 2

N∑
n=1

n2w
( n
N

)
(D0 cos(β0n2)− C0 sin(β0n2)) cos(β0n2) + 2

N∑
n=1

nw
( n
N

)
X(n) sin(β0n2),

∂2Q(θ0)

∂D2
= 2

N∑
n=1

w
( n
N

)
sin2(β0n2),

∂2Q(θ0)

∂D∂β
= 2

N∑
n=1

n2w
( n
N

)
(D0 cos(β0n0)− C0 sin(β0n2)) sin(β0n2)− 2

N∑
n=1

n2w
( n
N

)
X(n) cos(β0n2),

∂2Q(θ0)

∂β2
= 2

N∑
n=1

n4w
( n
N

) (
D0 cos(β0n2)− C0 sin(β0n2)

)2
+2

N∑
n=1

n4w
( n
N

)
X(n)

{
C0 cos(β0n2) +D0 sin(β0n2)

}
.

Now consider the (1, 1)th element of DQ(θ0)D for large N .

lim
N→∞

1

N

∂2Q(θ0)

∂A2
= lim

N→∞

2

N

N∑
n=1

w
( n
N

)
cos2(α0n)

= lim
N→∞

2

N

N∑
n=1

(
1 + a1

n

N
+ a2

n2

N2
+ ·+ am

nm

Nm

)
cos2(α0n)

= (1 +
a1
2

+
a2
3

+ · · ·+ am
m+ 1

) = c1,

using Result A.1. Here ck+1, k = 0, 1, . . . are same as defined in (8). Similarly the other

elements of lim
N→∞

DQ(θ0)D can be obtained using Lemmas C-1 and C-2.
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