Real Analysis: Basic Concepts

1. Norm and Distance

- Recall that \Re^n is the set of all *n*-vectors $x = (x_1, x_2, ..., x_n)$, where each x_i is a real number for i = 1, 2, ..., n.
 - The (Euclidean) **norm** of a vector $x \in \Re^n$ is denoted by ||x|| and defined by

$$\|x\| = \left(x_1^2 + x_2^2 + \dots + x_n^2\right)^{\frac{1}{2}}.$$

• Properties of Norm:

(1) $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0;

(2) $\|\lambda x\| = |\lambda| \cdot \|x\|;$

(3) $||x + y|| \le ||x|| + ||y||$ (Triangle Inequality);

(4) $|xy| \le ||x|| \cdot ||y||$ (Cauchy-Schwarz Inequality).

• Distance (or Metric): For $x, y \in \Re^n$, the distance between x and y, denoted by d(x, y), is

$$d\left(x,y\right) = \left\|x-y\right\|.$$

- Note that d(x, 0) = ||x||. So norm of x can be interpreted as the distance of x from the 0 vector.

• Properties of Distance:

(1) $d(x, y) \ge 0$, and d(x, y) = 0 iff x = y; (2) d(x, y) = d(y, x); (3) $d(x, z) \le d(x, y) + d(y, z)$.

2. Sequences and Limits

- Sequence: A sequence of real numbers is an assignment of a real number to each natural number.
 - The notation $\{x_n\}$ means the sequence whose *n*-th term is x_n .

• Examples:

(a) $\{1, 2, 3, 4,\}$, (b) $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},\}$, (c) $\{1, \frac{1}{2}, 4, \frac{1}{8}, 16, ...\}$, (d) $\{0, -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, ...\}$, (e) $\{-1, 1, -1, 1, -1,\}$, (f) $\{\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, ...\}$.

• Limit of a Sequence:

Let $\{x_1, x_2, x_3, ...\}$ be a sequence of real numbers. A real number x is called the limit of the sequence $\{x_n\}$ if given any real number $\epsilon > 0$, there is a positive integer N such that $|x_n - x| < \epsilon$ whenever $n \ge N$.

- If the sequence $\{x_n\}$ has a limit, we call the sequence *convergent*.
- If x is a limit of the sequence $\{x_n\}$, we say that *the sequence converges* to x and write

$$\lim_{n \to \infty} x_n = x, \text{ or simply } x_n \to x.$$

• **Examples:** Here are three sequences which converge to 0:

(1) $\left\{1, 0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, 0, \ldots\right\}$, (2) $\left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots\right\}$, (3) $\left\{1, \frac{3}{1}, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \ldots\right\}$.

• Limit Point (or Accumulation Point or Cluster Point):

If $\{x_n\}$ is a sequence of real numbers and x is a real number, we say x is a *limit point* (or *accumulation point* or *cluster point*) of the sequence if given any real number $\epsilon > 0$, there are infinitely many elements x_n of the sequence such that $|x_n - x| < \epsilon$.

- A limit is a special case of a limit point.
- A sequence can have a number of different limit points, but only one limit.

• Theorem 1:

- A sequence can have at most one limit.
- Proof: To be discussed in class.
- Proofs of most theorems on sequences and their limits require the triangle inequality:

 $||x+y|| \le ||x|| + ||y||$, for any $x, y \in \Re^n$,

or the subtraction variant of the triangle inequality:

 $||x - y|| \ge ||x|| - ||y|||$, for any $x, y \in \Re^n$.

- For proofs refer to Theorems 10.5 and 10.6 (page 219) of the textbook.

• Theorem 2:

Let $\{x_n\}$ and $\{y_n\}$ be sequences with limits x and y, respectively. Then the sequence $\{x_n + y_n\}$ converges to the limit x + y.

- Proof: To be discussed in class.

• Theorem 3:

Let $\{x_n\}$ and $\{y_n\}$ be sequences with limits x and y, respectively. Then the sequence $\{x_ny_n\}$ converges to the limit xy.

- Proof: To be discussed in class.

• Theorem 4:

Let $\{x_n\}$ be a convergent sequence with limit x and b be a real number.

(a) If $x_n \leq b$ for all n, then $x \leq b$.

(b) If $x_n \ge b$ for all n, then $x \ge b$.

- Proof: To be discussed in class.

3. Sequences and Limits in \Re^n

• A sequence in \Re^n is an assignment of a vector in \Re^n to each natural number.

• Open Ball:

Let $\bar{x} \in \Re^n$ and ϵ be a positive number. An open ball (with centre \bar{x} and radius ϵ) in \Re^n is

$$B_{\epsilon}(\bar{x}) = \{x \in \Re^n : ||x - \bar{x}|| < \epsilon\}.$$

- Intuitively, a vector y in \Re^n is close to \bar{x} if y is in some $B_{\epsilon}(\bar{x})$ for a small but positive ϵ . The smaller ϵ is, the closer y is to \bar{x} .
- A sequence of vectors in \Re^n , $\{x_1, x_2, x_3, ...\}$, is said to **converge** to the vector x if given any real number $\epsilon > 0$, there is a positive integer N such that $||x_n x|| < \epsilon$ whenever $n \ge N$.
 - That is, $x_n \in B_{\epsilon}(x)$ for all $n \ge N$.
 - The vector x is called the **limit** of the sequence.

• Theorem 5:

A sequence of vectors in \Re^n converges if and only if all n sequences of its components converge in \Re^1 .

- Proof: To be discussed in class.
- Theorem 5 enables us to apply the results on sequences in \Re^1 to sequences in \Re^n .

• Theorem 6:

Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences of vectors in \Re^n with limits x and y, respectively; and let $\{c_n\}$ be a convergent sequence of real numbers with limit c. Then the sequence $\{c_nx_n + y_n\}$ converges to the limit cx + y.

- Proof: To be discussed in class.

• Limit Point (or Accumulation Point or Cluster Point):

The vector x in \Re^n is a *limit point* (or *accumulation point* or *cluster point*) of the sequence of vectors in \Re^n , $\{x_n\}$, if given any real number $\epsilon > 0$, there are infinitely many elements x_n of the sequence such that $||x_n - x|| < \epsilon$.

– The uniqueness of limits in \Re^n follows directly from Theorems 1 and 5.

• Subsequence:

Let $\{x_n\}$ be a sequence of vectors in \Re^n and $\{n_r\}$ be a *strictly increasing* sequence of natural numbers. Then the sequence $\{x_{n_r}\}$ is called a *subsequence* of the sequence $\{x_n\}$.

• **Examples:** Consider the sequence $\left\{\frac{1}{1}, \frac{3}{1}, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \frac{3}{4}, \dots\right\}$.

#1. Explain whether each of the following sets is a subsequence of this sequence:

(a)
$$\left\{ \frac{1}{1}, \frac{3}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\},$$

(b) $\left\{ \frac{3}{1}, \frac{3}{2}, \frac{3}{3} \right\},$
(c) $\left\{ \frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}.$

- If a sequence has a limit point, it may nonetheless have no limit.
 - However, if a sequence has a limit point, then there exists a subsequence that converges to this limit point.

4. Open Sets

- A set $S \subset \Re^n$ is open (in \Re^n) if for every $x \in S$, there exists an open ball (with centre x and radius $\epsilon > 0$) in \Re^n which is completely contained in S.
 - That is, $x \in S \Rightarrow$ there is an $\epsilon > 0$ such that $B_{\epsilon}(x) \subset S$.
 - If $x \in \Re^n$, an open set S containing x is called an **open neighbourhood** of x.
 - Thus, an open ball (with centre x and radius $\epsilon > 0$) in \Re^n is an open neighbourhood of x.
 - The word "open" has a connotation of "no boundary": from any point in the set one can always move a little distance in *any* direction and still be in the set.
 - Consequently, open sets cannot contain their "boundary points".
- #2. Example: Use the definition to show that the open interval $(1, 2) = \{x \in \Re : 1 < x < 2\}$ is an open set.

- In discussing the concept of an open set, it is important to specify the *space* in which we are considering the set.
 - For example, the set $\{x \in \Re : 0 < x < 1\}$ is open in \Re . But the set $\{(x_1, x_2) \in \Re^2 : 0 < x_1 < 1, x_2 = 0\}$ is *not open* in \Re^2 , although, graphically, the two sets "look the same".

• Theorem 7:

Open balls are open sets.

- Proof: To be discussed in class.

• Theorem 8:

- (a) Any union of open sets is open.
- (b) The finite intersection of open sets is open.
- Proof: To be discussed in class.

- Note that the intersection of an *infinite* number of open sets need not be open.
 - For example, consider the open intervals $S_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ in \Re .

Note that $\bigcap_{n=1}^{\infty} S_n = \{0\}$, *not* an open set.

Interior of a Set:

Let S be a subset of \Re^n . The *interior* of S, denoted by *int* S, is the union of all open sets contained in S.

- By definition, the interior of a set can be considered as the largest open set which is contained in the given set.
- The interior of an open set S is the set S itself.

#3. Prove that the interior of an open set S is the set S itself.

5. Closed Sets

- A set S ⊂ ℜⁿ is *closed* (in ℜⁿ) if whenever {x_n} is a sequence of points of S that is convergent in ℜⁿ, we have lim x_n ∈ S.
 - Thus, if x is a given point and if there are points in a closed set S which are arbitrarily close to x, then x must be in S too.
 - Consequently, a closed set must contain all its "boundary points", just the opposite of the situation with open sets.

#4. Example: Prove that the set

$$S = \left\{ (x_1, x_2) \in \Re^2 : x_1 \ge 0, x_2 \ge 0, \text{ and } x_1^2 + x_2^2 \le 1 \right\}$$

is a closed set in \Re^2 .

Complement of a Set: If S ⊂ ℜⁿ, the complement of S (in ℜⁿ) is denoted S^c, and defined by S^c = {x ∈ ℜⁿ : x is not in S}.

• Theorem 9:

A set $S \subset \Re^n$ is closed (in \Re^n) if and only if its complement, S^c , is open in \Re^n .

- Proof: To be discussed in class.
- Using Theorem 9 together with Theorem 8, we obtain the next theorem simply by using set-theoretic complementation: $\left(\bigcup_{i} S_{i}\right)^{c} = \bigcap_{i} S_{i}^{c}$.

• Theorem 10:

(a) Any intersection of closed sets is closed.

- (b) The finite union of closed sets is closed.
- Proof: To be discussed in class.

- Just as arbitrary intersections of open sets need not be open, so too arbitrary unions of closed sets need not be closed.
 - For example, consider the closed intervals

$$S_n = \left[-\frac{n}{n+1}, \frac{n}{n+1}\right]$$
 for $n \ge 1$.

Note that $\bigcup_{n\geq 1} S_n = (-1,1)$, an open interval.

• There are many sets which are *neither open nor closed* in \Re^n .

#5. Show that the half-open interval (a, b] in \Re is neither open nor closed in \Re .

#6. Show that a line minus a point in a plane is neither open nor closed in the plane.

• There are only two sets which are both open and closed in \Re^n : \Re^n itself and the empty set.

• Consider an arbitrary set $A \subset \Re^n$ and an arbitrary point $x \in \Re^n$. Then one of the following three possibilities must hold:

(1) There is an open ball $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \subset A$.

– These points $x \in \Re^n$ constitute the **interior** of A.

(2) There is an open ball $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \subset A^{c}$.

– These points $x \in \Re^n$ constitute the **exterior** of A.

(3) For every $\epsilon > 0$, $B_{\epsilon}(x)$ contains points of both A and A^{c} .

– These points $x \in \Re^n$ constitute the **boundary** of A.

6. Compact Sets

• **Bounded Set:** A set $S \subset \Re^n$ is *bounded* if it is contained in some open ball in \Re^n .

#7. Show that the closed interval [1,3] is bounded in \Re .

#8. Show that \Re_+ , the set of non-negative real numbers, is not bounded in \Re .

Alternative Characterizations of Bounded Sets:

(A) Set $S \subset \Re^n$ is *bounded* if there exists a real number B such that $||x|| \le B, \forall x \in S$. #9. Prove that characterization (A) is equivalent to the definition of a bounded set.

(B) A set $S \subset \Re^n$ is *bounded* if there exists a positive real number *b* such that whenever $x \in S$, $|x_i| \le b$ for all i = 1, 2, ..., n.

#10. Prove that characterization (A) is equivalent to characterization (B).

 \Rightarrow All these three characterizations are alternative ways to look at boundedness.

#11. Show that $S = \{(x_1, x_2) \in \Re^2 : x_1 \ge 0, x_2 \ge 0, \text{ and } px_1 + qx_2 \le I, (p, q, I > 0)\}$ is bounded using all the three alternative characterizations.

- Compact Set: A set $S \subset \Re^n$ is *compact* if and only if it is both closed and bounded.
- Examples:
- (1) $S_1 = \{(x_1, x_2) \in \Re^2 : 0 \le x_1 \le 1, 0 \le x_2 \le 1\}$ is a compact set.
- (2) $S_2 = \{(x_1, x_2) \in \Re^2 : 0 \le x_1 < 1, 0 \le x_2 < 1\}$ is *not* a compact set as it is not closed.

(3) $S_3 = \{(x_1, x_2) \in \Re^2 : 0 \le x_1 < 1, 0 \le x_2\}$ is *not* a compact set as it is not bounded.

- An important feature of compact sets is that any sequence defined on a compact set must contain a subsequence that converges to a point in the set.
 - This important result is known as the **Bolzano-Weierstrass Theorem**.

• Theorem 11 (Bolzano-Weierstrass Theorem):

Let *C* be a compact subset in \Re^n and let $\{x_n\}$ be any sequence in *C*. Then $\{x_n\}$ has a convergent subsequence whose limit lies in *C*.

– Proof: The proof for compact subsets in \Re will be discussed in class.

7. Continuous Functions

• Functions:

Let $A \subset \Re^n$. A *function*, f, from A to \Re^m (written $f: A \to \Re^m$) is a rule which associates with each point in A a *unique* point in \Re^m .

- A is called the *domain* of f.
- The set $f(A) = \{y \in \Re^m : y = f(x) \text{ for some } x \in A\}$ is the *range* or *image* of f.
- In the special case where m = 1, f is called a *real-valued* function.
- If $f: A \to \Re^m$ is a function, we can define $f^1(x)$ as the first component of the vector f(x) for each $x \in A$.
 - Then f^1 is a function from A to \Re .
 - Similarly, $f^2, f^3, ..., f^m$ can be defined.
 - These real-valued functions are called the *component functions* of f.

• Conversely, if $g^1, g^2, ..., g^m$ are m real-valued functions on A, we can define

$$g(x) = (g^{1}(x), g^{2}(x), ..., g^{m}(x)), \text{ for each } x \in A.$$

– Then g is a function from A to \Re^m .

• Limit of a Function:

Let $A \subset \Re^n$, $f: A \to \Re^m$, and $x_0 \in A$. Then

$$\lim_{x \to x_0} f\left(x\right) = y$$

means that whenever $\{x_n\}$ is sequence in A which converges to x_0 , the sequence $\{f(x_n)\}$ in \Re^m converges to y.

Alternative Definition:

Let $A \subset \Re^n$, $f: A \to \Re^m$, and $x_0 \in A$. Then $\lim_{x \to x_0} f(x) = y$

means that given any $\epsilon > 0$, there is a number $\delta > 0$, such that if $x \in A$, and $0 < ||x - x_0|| < \delta$, then $||f(x) - y|| < \epsilon$.

- Example:
- #12. Show by using both the definitions that for the real-valued function f(x) = 2x, $\lim_{x \to 1} f(x)$ exists.
 - The concept of limit of a function is silent about the behaviour of the function at the value x_0 .
 - For example, consider the function

$$f(x) = \begin{cases} 2x, & x \neq 1, \\ 3, & x = 1. \end{cases}$$

Show that $\lim_{x \to 1} f(x)$ exists.

• Continuity is distinct from the concept of limit in that the behaviour of the function at x_0 is also relevant.

• Continuity of a Function:

Let $A \subset \Re^n$, $f: A \to \Re^m$, and $x_0 \in A$. The function f is *continuous* at x_0 if whenever $\{x_n\}$ is sequence in A which converges to x_0 , then the sequence $\{f(x_n)\}$ in \Re^m converges to $f(x_0)$.

Alternative Definition:

Let $A \subset \Re^n$, $f: A \to \Re^m$, and $x_0 \in A$. The function f is *continuous* at x_0 if given any $\epsilon > 0$, there is a number $\delta > 0$, such that if $x \in A$, and $0 < ||x - x_0|| < \delta$, then $||f(x) - f(x_0)|| < \epsilon$.

- The function f is said to be *continuous* on A if it is continuous at every point $x \in A$.

#13. Prove that the two alternative definitions of continuity are equivalent.

• Properties of Continuous Functions:

The sequential characterization of continuity is very helpful in proving that algebraic combinations of continuous functions are still continuous.

• Theorem 12:

- (a) Let f and g be functions from \Re^n to \Re^m . Suppose f and g are continuous at x. Then f + g, f - g, and $f \cdot g$ are all continuous at x.
- (b) Let f and g be functions from \Re^n to \Re . Suppose f and g are continuous at x, and $g(x) \neq 0$. Then the quotient function $\frac{f}{a}$ is continuous at x.
 - Proof: To be discussed in class.

• Theorem 13:

Let $f = (f^1, f^2, ..., f^m)$ be a function from \Re^n to \Re^m . Then f is continuous at x if and only if each of its component functions $f^i : \Re^n \to \Re$ is continuous at x.

– Proof: Homework!!

• Theorem 14 (Weierstrass Theorem):

Let *C* be a compact subset of \Re^n and $f : C \to \Re$ be continuous on *C*. Then there exists x_m and x_M in *C* such that $f(x_m) \leq f(x) \leq f(x_M)$ for all $x \in C$.

- Proof: To be discussed in class.

References

- Must read the following two chapters from the textbook:
 - Chapter 12 (pages 253 272): Limits and Open Sets;
 - Chapter 13 (pages 273 299): Functions of Several Variables.
- This material is standard in many texts on Real Analysis. You might consult
 - 1. Rudin, W., Principles of Mathematical Analysis, (chapters 2, 3, 4),
- 2. Rosenlicht, M., Introduction to Analysis, (chapters 3, 4).
- Some of the material is also covered in
- 3. Spivak, M., Calculus on Manifolds, (chapter 1).