
Real Analysis:

Basic Concepts
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1. Norm and Distance
� Recall that <n is the set of all n-vectors x = (x1; x2; :::; xn) ; where each xi is a real
number for i = 1; 2; :::; n:
� The (Euclidean) norm of a vector x 2 <n is denoted by kxk and de�ned by

kxk =
�
x21 + x

2
2 + ::: + x

2
n

�1
2 :

� Properties of Norm:

(1) kxk � 0; and kxk = 0 if and only if x = 0;

(2) k�xk = j�j : kxk ;

(3) kx + yk � kxk + kyk (Triangle Inequality);

(4) jxyj � kxk � kyk (Cauchy-Schwarz Inequality).
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� Distance (or Metric): For x; y 2 <n; the distance between x and y; denoted by
d (x; y) ; is

d (x; y) = kx� yk :

� Note that d (x; 0) = kxk : So norm of x can be interpreted as the distance of x from
the 0 vector.

� Properties of Distance:

(1) d (x; y) � 0; and d (x; y) = 0 iff x = y;

(2) d (x; y) = d (y; x) ;

(3) d (x; z) � d (x; y) + d (y; z) :
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2. Sequences and Limits
� Sequence: A sequence of real numbers is an assignment of a real number to each
natural number.
� The notation fxng means the sequence whose n-th term is xn:

� Examples:

(a) f1; 2; 3; 4; ::::g ;

(b)
�
1; 12;

1
3;
1
4; ::::

	
;

(c)
�
1; 12; 4;

1
8; 16; :::

	
;

(d)
�
0;�12;

2
3;�

3
4;
4
5; :::

	
;

(e) f�1; 1;�1; 1;�1; ::::g ;

(f)
�
2
1;
3
2;
4
3;
5
4; :::

	
:
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� Limit of a Sequence:
Let fx1; x2; x3; :::g be a sequence of real numbers. A real number x is called the limit
of the sequence fxng if given any real number � > 0; there is a positive integer N
such that jxn � xj < � whenever n � N:

� If the sequence fxng has a limit, we call the sequence convergent.

� If x is a limit of the sequence fxng, we say that the sequence converges to x and
write

lim
n!1

xn = x; or simply xn ! x:

� Examples: Here are three sequences which converge to 0:

(1)
�
1; 0; 12; 0;

1
3; 0;

1
4; 0; ::::

	
;

(2)
�
1;�12;

1
3;�

1
4; ::::

	
;

(3)
�
1; 31;

1
2;
3
2;
1
3;
3
3;
1
4; ::::

	
:
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� Limit Point (or Accumulation Point or Cluster Point):
If fxng is a sequence of real numbers and x is a real number, we say x is a limit point
(or accumulation point or cluster point) of the sequence if given any real number
� > 0; there are in�nitely many elements xn of the sequence such that jxn � xj < �:
� A limit is a special case of a limit point.
� A sequence can have a number of different limit points, but only one limit.

� Theorem 1:
A sequence can have at most one limit.
� Proof: To be discussed in class.

� Proofs of most theorems on sequences and their limits require the triangle inequality:
kx + yk � kxk + kyk ; for any x; y 2 <n;

or the subtraction variant of the triangle inequality:

kx� yk � jkxk � kykj ; for any x; y 2 <n:

� For proofs refer to Theorems 10.5 and 10.6 (page 219) of the textbook.
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� Theorem 2:
Let fxng and fyng be sequences with limits x and y; respectively. Then the se-
quence fxn + yng converges to the limit x + y:

� Proof: To be discussed in class.

� Theorem 3:
Let fxng and fyng be sequences with limits x and y; respectively. Then the se-
quence fxnyng converges to the limit xy:

� Proof: To be discussed in class.

� Theorem 4:
Let fxng be a convergent sequence with limit x and b be a real number.
(a) If xn � b for all n; then x � b:
(b) If xn � b for all n; then x � b:

� Proof: To be discussed in class.
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3. Sequences and Limits in <n
� A sequence in <n is an assignment of a vector in <n to each natural number.

� Open Ball:
Let �x 2 <n and � be a positive number. An open ball (with centre �x and radius �) in
<n is

B� (�x) = fx 2 <n : kx� �xk < �g :

� Intuitively, a vector y in <n is close to �x if y is in some B� (�x) for a small but positive
�: The smaller � is, the closer y is to �x:

� A sequence of vectors in <n; fx1; x2; x3; :::g ; is said to converge to the vector x if
given any real number � > 0; there is a positive integer N such that kxn � xk < �
whenever n � N:
� That is, xn 2 B� (x) for all n � N:
� The vector x is called the limit of the sequence.
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� Theorem 5:
A sequence of vectors in <n converges if and only if all n sequences of its compo-
nents converge in <1.
� Proof: To be discussed in class.
� Theorem 5 enables us to apply the results on sequences in <1 to sequences in <n:

� Theorem 6:
Let fxng and fyng be convergent sequences of vectors in <n with limits x and y;
respectively; and let fcng be a convergent sequence of real numbers with limit c:
Then the sequence fcnxn + yng converges to the limit cx + y:
� Proof: To be discussed in class.

� Limit Point (or Accumulation Point or Cluster Point):
The vector x in <n is a limit point (or accumulation point or cluster point) of the
sequence of vectors in <n; fxng ; if given any real number � > 0; there are in�nitely
many elements xn of the sequence such that kxn � xk < �:
� The uniqueness of limits in <n follows directly from Theorems 1 and 5.
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� Subsequence:
Let fxng be a sequence of vectors in<n and fnrg be a strictly increasing sequence of
natural numbers. Then the sequence fxnrg is called a subsequence of the sequence
fxng :

� Examples: Consider the sequence
�
1

1
;
3

1
;
1

2
;
3

2
;
1

3
;
3

3
;
1

4
;
3

4
; ::::

�
:

#1. Explain whether each of the following sets is a subsequence of this sequence:

(a)
�
1

1
;
3

2
;
1

2
;
1

3
;
1

4
;
1

5
; ::::

�
;

(b)
�
3

1
;
3

2
;
3

3

�
;

(c)
�
1

1
;
2

1
;
1

2
;
1

3
;
1

4
;
1

5
; ; ::::

�
:

� If a sequence has a limit point, it may nonetheless have no limit.
� However, if a sequence has a limit point, then there exists a subsequence that
converges to this limit point.
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4. Open Sets
� A set S � <n is open (in <n) if for every x 2 S; there exists an open ball (with centre
x and radius � > 0) in <n which is completely contained in S:

� That is, x 2 S ) there is an � > 0 such that B� (x) � S:

� If x 2 <n; an open set S containing x is called an open neighbourhood of x:

- Thus, an open ball (with centre x and radius � > 0) in <n is an open neighbour-
hood of x:

� The word �open� has a connotation of �no boundary�: from any point in the set one
can always move a little distance in any direction and still be in the set.

- Consequently, open sets cannot contain their �boundary points�.

#2. Example: Use the de�nition to show that the open interval (1; 2) = fx 2 < : 1 < x < 2g
is an open set.
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� In discussing the concept of an open set, it is important to specify the space in which
we are considering the set.

� For example, the set fx 2 < : 0 < x < 1g is open in <: But the set�
(x1; x2) 2 <2 : 0 < x1 < 1; x2 = 0

	
is not open in <2; although, graphically, the two

sets �look the same�.

� Theorem 7:
Open balls are open sets.

� Proof: To be discussed in class.

� Theorem 8:
(a) Any union of open sets is open.
(b) The �nite intersection of open sets is open.

� Proof: To be discussed in class.



12

� Note that the intersection of an in�nite number of open sets need not be open.
- For example, consider the open intervals Sn =

�
�1
n;
1
n

�
in <:

Note that
1T
n=1
Sn = f0g ; not an open set.

� Interior of a Set:
Let S be a subset of <n: The interior of S; denoted by int S; is the union of all open
sets contained in S:
� By de�nition, the interior of a set can be considered as the largest open set which
is contained in the given set.

� The interior of an open set S is the set S itself.

#3. Prove that the interior of an open set S is the set S itself.
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5. Closed Sets
� A set S � <n is closed (in <n) if whenever fxng is a sequence of points of S that is
convergent in <n; we have lim

n!1
xn 2 S:

� Thus, if x is a given point and if there are points in a closed set S which are arbi-
trarily close to x; then x must be in S too.

- Consequently, a closed set must contain all its �boundary points�, just the oppo-
site of the situation with open sets.

#4. Example: Prove that the set

S =
�
(x1; x2) 2 <2 : x1 � 0; x2 � 0; and x21 + x22 � 1

	
is a closed set in <2:

� Complement of a Set: If S � <n; the complement of S (in <n) is denoted Sc; and
de�ned by Sc = fx 2 <n : x is not in Sg :
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� Theorem 9:
A set S � <n is closed (in <n) if and only if its complement, Sc; is open in <n.

� Proof: To be discussed in class.

� Using Theorem 9 together with Theorem 8, we obtain the next theorem simply by

using set-theoretic complementation:
�S
i

Si

�c
=
T
i

Sci :

� Theorem 10:
(a) Any intersection of closed sets is closed.
(b) The �nite union of closed sets is closed.

� Proof: To be discussed in class.
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� Just as arbitrary intersections of open sets need not be open, so too arbitrary
unions of closed sets need not be closed.

- For example, consider the closed intervals

Sn =

�
� n

n + 1
;
n

n + 1

�
for n � 1:

Note that
S
n�1
Sn = (�1; 1) ; an open interval.

� There are many sets which are neither open nor closed in <n:

#5. Show that the half-open interval (a; b] in < is neither open nor closed in <:

#6. Show that a line minus a point in a plane is neither open nor closed in the plane.

� There are only two sets which are both open and closed in <n: <n itself and the
empty set.



16

� Consider an arbitrary set A � <n and an arbitrary point x 2 <n: Then one of the
following three possibilities must hold:

(1) There is an open ball B� (x) such that B� (x) � A:

� These points x 2 <n constitute the interior of A:

(2) There is an open ball B� (x) such that B� (x) � Ac:

� These points x 2 <n constitute the exterior of A:

(3) For every � > 0; B� (x) contains points of both A and Ac:

� These points x 2 <n constitute the boundary of A.
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6. Compact Sets
� Bounded Set: A set S � <n is bounded if it is contained in some open ball in <n:
#7. Show that the closed interval [1; 3] is bounded in <:
#8. Show that <+; the set of non-negative real numbers, is not bounded in <:

� Alternative Characterizations of Bounded Sets:
(A) Set S � <n is bounded if there exists a real number B such that kxk � B; 8 x 2 S:
#9. Prove that characterization (A) is equivalent to the de�nition of a bounded set.

(B) A set S � <n is bounded if there exists a positive real number b such that whenever
x 2 S; jxij � b for all i = 1; 2; :::; n:

#10. Prove that characterization (A) is equivalent to characterization (B).

) All these three characterizations are alternative ways to look at boundedness.

#11. Show that S = f(x1; x2) 2 <2 : x1 � 0; x2 � 0; and px1 + qx2 � I; ( p; q; I > 0)g is
bounded using all the three alternative characterizations.
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� Compact Set: A set S � <n is compact if and only if it is both closed and bounded.
� Examples:
(1) S1 = f(x1; x2) 2 <2 : 0 � x1 � 1; 0 � x2 � 1g is a compact set.
(2) S2 = f(x1; x2) 2 <2 : 0 � x1 < 1; 0 � x2 < 1g is not a compact set as it is not
closed.

(3) S3 = f(x1; x2) 2 <2 : 0 � x1 < 1; 0 � x2g is not a compact set as it is not bounded.

� An important feature of compact sets is that any sequence de�ned on a compact set
must contain a subsequence that converges to a point in the set.

� This important result is known as the Bolzano-Weierstrass Theorem.

� Theorem 11 (Bolzano-Weierstrass Theorem):
Let C be a compact subset in <n and let fxng be any sequence in C: Then fxng has
a convergent subsequence whose limit lies in C.

� Proof: The proof for compact subsets in < will be discussed in class.
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7. Continuous Functions
� Functions:
Let A � <n: A function, f; from A to <m (written f : A ! <m) is a rule which
associates with each point in A a unique point in <m:

� A is called the domain of f:

� The set f (A) = fy 2 <m : y = f (x) for some x 2 Ag is the range or image of f:

� In the special case where m = 1; f is called a real-valued function.

� If f : A! <m is a function, we can de�ne f 1 (x) as the �rst component of the vector
f (x) for each x 2 A:

� Then f 1 is a function from A to <:

� Similarly, f 2; f 3; :::; fm can be de�ned.

� These real-valued functions are called the component functions of f:
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� Conversely, if g1; g2; :::; gm are m real-valued functions on A; we can de�ne

g (x) =
�
g1 (x) ; g2 (x) ; :::; gm (x)

�
; for each x 2 A:

� Then g is a function from A to <m:

� Limit of a Function:
Let A � <n; f : A! <m; and x0 2 A: Then

lim
x!x0

f (x) = y

means that whenever fxng is sequence in A which converges to x0; the sequence
ff (xn)g in <m converges to y:

Alternative De�nition:
Let A � <n; f : A! <m; and x0 2 A: Then

lim
x!x0

f (x) = y

means that given any � > 0; there is a number � > 0; such that if x 2 A; and
0 < kx� x0k < �; then kf (x)� yk < �:
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� Example:
#12. Show by using both the de�nitions that for the real-valued function f (x) = 2x;

lim
x!1

f (x) exists.

� The concept of limit of a function is silent about the behaviour of the function at the
value x0:

� For example, consider the function

f (x) =

�
2x; x 6= 1;
3; x = 1:

Show that lim
x!1

f (x) exists.

� Continuity is distinct from the concept of limit in that the behaviour of the function at
x0 is also relevant.



22

� Continuity of a Function:
Let A � <n; f : A! <m; and x0 2 A: The function f is continuous at x0 if whenever
fxng is sequence in A which converges to x0; then the sequence ff (xn)g in <m
converges to f (x0) :

Alternative De�nition:
Let A � <n; f : A ! <m; and x0 2 A: The function f is continuous at x0 if given
any � > 0; there is a number � > 0; such that if x 2 A; and 0 < kx� x0k < �; then
kf (x)� f (x0)k < �:

� The function f is said to be continuous on A if it is continuous at every point x 2 A:

#13. Prove that the two alternative de�nitions of continuity are equivalent.

� Properties of Continuous Functions:
The sequential characterization of continuity is very helpful in proving that algebraic
combinations of continuous functions are still continuous.
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� Theorem 12:
(a) Let f and g be functions from <n to <m: Suppose f and g are continuous at x:
Then f + g; f � g; and f � g are all continuous at x:

(b) Let f and g be functions from <n to <: Suppose f and g are continuous at x; and
g (x) 6= 0: Then the quotient function f

g
is continuous at x:

� Proof: To be discussed in class.

� Theorem 13:
Let f =

�
f 1; f 2; :::; fm

�
be a function from <n to <m. Then f is continuous at x if and

only if each of its component functions f i : <n ! < is continuous at x:
� Proof: Homework!!

� Theorem 14 (Weierstrass Theorem):
Let C be a compact subset of <n and f : C ! < be continuous on C: Then there
exists xm and xM in C such that f (xm) � f (x) � f (xM) for all x 2 C:
� Proof: To be discussed in class.
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� Must read the following two chapters from the textbook:
� Chapter 12 (pages 253 � 272): Limits and Open Sets;
� Chapter 13 (pages 273 � 299): Functions of Several Variables.

� This material is standard in many texts on Real Analysis. You might consult
1. Rudin, W., Principles of Mathematical Analysis, (chapters 2, 3, 4),
2. Rosenlicht, M., Introduction to Analysis, (chapters 3, 4).

� Some of the material is also covered in
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