Certification Program on Business
Analytics, Data Mining and Operations Research 23-24
Venue:
Indian Statistical Institute Delhi Centre
Results for
Certification Program on Business Analytics, Data Mining and Operations
Research Examination 2019
Results for
Certification Program on Business Analytics, Data Mining and Operations
Research Examination 2020
Results for
Certification Program on Business Analytics, Data Mining and Operations
Research Examination 2021
Results
for Certification Program on Business Analytics, Data Mining and
Operations Research Examination 2022
Business
analytics is a discipline that focuses on understanding business
performance and developing new strategies based on data and statistics.
It uses specialized techniques and tools to gather information, organize
data and interpret it to support business decision making. Business
intelligence professionals make use of programming software like
Minitab, SPSS, Matlab & R and management skills to improve
efficiency, financial performance and implement strategic solutions.
Objective: The online program
offers rigorous training that will prepare you to use data and analytics
to identify business opportunities, generate business insights and create
business solutions.
Course fee: Rs. 45,000/- + (GST
18%)=Total Rs 53100/- per participant(Course fee once deposited is
non-refundable/non-transferable)..
Participants Profile: Bachelor's degree with
Mathematics/Statistics/ Physics or Bachelor's degree in Economics with
Statistics as subject or BE/B Tech degree or MBA, or Six Sigma black belt
Tentative Dates: 1st Module 12 - 15 September 2023,
2nd Module 10 - 13 October 2023
3rd Module 20 - 23 November 2023,
4th Module 11 - 14 December 2023
Examination :- 15 Dec. 2023
Venue: Indian Statistical
Institute Delhi Centre
Programme Coordinator: Professor S. K. Neogy
(ph. No. 011-414939 68/66, e.mail:skn@isid.ac.in, sknisid@gmail.com)
For Certification Program on
Business Analytics, Data Mining and Operations Research please send your participant
details along with bio-data, on line transaction details/draft and Registration form (download
the form as pdf file)
on or before September 6, 2023 to the Progammme Coordinator in the mailing
address given below.
All payments regarding the programs need to be done
electronically i.e.by NEFT/RTGS/etc. by the participants. Details are
attached below.

Please ensure that you satisfy the
eligibility criteria. If you do not satisfy eligibility criteria/ qualification
criteria, then your application will be rejected and draft/paid amount
will be sent back to your address. For further details, visit http://www.isid.ac.in/~sqc/badmor.html
or write to programme coordinator, Professor S. K. Neogy (e.mail: skn@isid.ac.in, sknisid@gmail.com).
Mailing address: Professor S. K. Neogy
Programme Coordinator
Room
no. 320/318 Faculty Block
SQC
& OR unit, Indian Statistical Institute,
7,
S. J. S. Sansanwal Marg,
New
Delhi: 110016, India
Ph.
No: 41493968, 41493966/Mob: 8800170139
e.mail:
skn@isid.ac.in, sknisid@gmail.com, sqc@isid.ac.in,
Syllabus
Module 1: Introduction, Basic Concepts and Visual
Analytics using R
-Introduction to Analytics and concepts of
statistical / machine learning / analytics problems, Developing a
Predictive Business Analytics Function
-Introduction to random experiments and random
variable, concepts of parameters, concepts of visual analytics using
random variables and their parameters, different summary measures and
presentations, examples and exercises
-Graphs and Charts for data visualization
-Sampling Concept and Methods
Module 2: Probability distributions, Estimation and
Hypothesis Testing
-Distribution as a model of a business process;
usage of distribution for decision making.
-Probability and Distributions, understanding
normal distribution, brief introduction to some useful distributions,
probability computations
-Estimation and hypothesis Testing
-Estimation of parameters like means, variances,
proportions and model parameters in different circumstances and their
usages in analytics;
-Concepts of standard errors and confidence
intervals
-Theory of estimates; concept of likelihood,
sufficiency and information criteria.
-Formulating hypotheses in real life scenarios
-Test for means, variances, proportions, odds
ratios and relative risks
Module 3: Prediction Modeling through Regression
-Simple and multiple linear regressions.
-Concepts of cross validation, usage of validation
set, k fold cross validation and concepts of bootstrap.
-Logistic regression
-Multivariate data analysis
Module 4a: Tree based Method, Forecasting and
Segmentation
-Classification and Regression Tree including
concepts of bagging, random forests and boosting, fitting and validating
tree based models
-Forecasting by using AR, MA and ARMA models.
Moving average and Exponential smoothing for forecasting, Measure of
forecasting accuracy.
-Cluster analysis, carrying out non-hierarchical
clustering, choosing the right solution for non-hierarchical clustering
Module 4b: Operations Research, Neural Network and
Game Theory
-
Text as Data: Text
Mining and Sentiment Analysis, Market Basket Analysis: Association
Rules and Lift
-Introduction to deep learning including project
and presentation
-Wrap up and examination
After each module assignments will be given.
Participants need to carry out the assignments in team and present the
finding in first day of next module.
Last Modified: August19, 2023
|