Publications and Preprints
 
  On $E(s^2)$-optimal supersaturated designs 
 by 
 Ashish Das, Aloke Dey, Ling-Yau Chan and Kashinath Chatterjee 
  A popular measure to assess supersaturated designs is the $E(s^2)$ crietrion. In this paper, improved lower bounds on $E(s^2)$
are obtained. Examples of $E(s^2)$-optimal designs attaining the
improved bounds are presented. The equivalence of the
bounds obtained by Butler {\it et al.} (2001) (in
the cases where their result applies) and those obtained by
Bulutoglu and Cheng (2004) is established. The concept of near $E(s^2)$-optimal design is
introduced and some means for arriving at such designs are
suggested. We also give two simple methods of constructing
$E(s^2)$-optimal designs. 
   
 isid/ms/2006/02 [fulltext]
  Click here to return to Preprints Page